CN103911193A - 一种多元配方组合的生物柴油的添加剂及其制备方法 - Google Patents

一种多元配方组合的生物柴油的添加剂及其制备方法 Download PDF

Info

Publication number
CN103911193A
CN103911193A CN201310008013.9A CN201310008013A CN103911193A CN 103911193 A CN103911193 A CN 103911193A CN 201310008013 A CN201310008013 A CN 201310008013A CN 103911193 A CN103911193 A CN 103911193A
Authority
CN
China
Prior art keywords
weight parts
additive
diesel
weight
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310008013.9A
Other languages
English (en)
Other versions
CN103911193B (zh
Inventor
刘粤荣
陈方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US POWER Co
Original Assignee
US POWER Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US POWER Co filed Critical US POWER Co
Priority to CN201310008013.9A priority Critical patent/CN103911193B/zh
Publication of CN103911193A publication Critical patent/CN103911193A/zh
Application granted granted Critical
Publication of CN103911193B publication Critical patent/CN103911193B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种多元配方组合的生物柴油添加剂及其制备方法,基于100重量份,包括油酸5~78重量份;正丁醇5~45重量份;表面活性剂1~31重量份;改性添加剂1~42重量份;并可视具体用途添加工业纯水0~73重量份。使用该生物柴油添加剂加入柴油、甲醇改性复合体或加入其混合物中,可以获得一种新型的多元生物柴油,该生物柴油具有十六烷值高、闪点高和凝点低、冷滤点低、腐蚀性低、排放低及成本低的优势。

Description

一种多元配方组合的生物柴油的添加剂及其制备方法
技术领域
本发明涉及燃料油领域,特别是涉及一种运用多元配方组合的柴油的添加剂及其制备方法。
背景技术
我国缺油少气,煤炭资源相对丰富,煤基醇醚燃料来源广,以优势醇醚资源替代石油资源,或者使用醇醚类燃料和石油混合物来替代石油资源,有利于生态环境,促进经济的可持续发展,并可创造新的经济增长点。
很多国家曾推广乙醇汽油,乙醇在石化汽油中的添加量一般为10~15%,但由于乙醇主要来源于农作物,其推广面临着成本和粮食安全等诸多问题,故近年重点推广添加甲醇。甲醇主要来源是煤化工或很多化工的副产品,且不与粮农业争夺资源,燃烧时碳排放低,发展甲醇燃油对于解决当前的能源紧缺具有重要的意义。
众所周知市场上最紧缺的是柴油,柴油的用途广,用量大,我国石油燃料的需求缺口主要体现在柴油上,柴油成为紧缺能源中的紧缺产品,国家每年在进口原油的同时还要进口大量的成品柴油,能把甲醇与柴油以混合燃料简便应用并与化石柴油互换使用,是行业众多专家的技术梦想,但迄今尚未较好解决。
据公开资料,德国试验用的M15甲醇-柴油混合燃料中,助溶剂的体积添加量为15%,着火促进剂的体积添加量为1%,燃料的十六烷值可达45,由于助溶剂和着火促进剂的价格都很高,而且用量太大,限制了其在市场燃料中的推广使用。
申请号为201210200197.4的中国专利申请公开了一种通过多元添加剂混合甲醇基燃料与柴油混溶的技术,存在添加剂组分复杂、闪点与制造工艺、性价比难于取舍的缺点,例如甲醇基燃料采用甲醇和油酸简单混配时闪点低,而采用甲醇改性复合体混配又导致工艺复杂、成本高。在另一份申请号为201010274919.1的中国专利申请中公开了一种甲醇柴油,其表面活性剂采用非离子聚氧乙烯醚类,亲水亲油平衡值为3~6,以及其他助剂。这些配方都在一定程度可解决甲醇-柴油的互溶问题,但仍然存在着易分层、互溶度与澄明度不足等问题,或性价比低方面的缺陷。
目前市场上通常所述的生物柴油,大多是在油酸甲酯主体基础上添加助燃剂而成,存在凝点高、冷滤点高、腐蚀性强及性价比不足的缺陷,急需一种可改善其燃烧性能尤其是压燃性能、提高其综合性价比的添加剂。
发明内容
本发明的目的在于:提供一种基于正丁醇、油酸等多种常规生物原料与石化产品助剂混配的柴油的添加剂,并可视具体用途添加纯水,其可按一定比例加入到普通石化柴油、甲醇改性复合体或其混合物中使用,具有燃烧高清洁或低碳的特征,以图较大程度地实现节约石油资源、达到节能减排的技术应用目标。
为了实现该目的,本发明主要是运用胶体表面化学原理,解决了正丁醇与纯水的改性以及与油酸的低成本互溶、改性后以较大比例添加到柴油中能保持良好燃烧性状的技术难题,使多种原材料互溶成的生物燃料油体系稳定期长,利于运输储备;尤其是通过表面活性剂和改性添加剂的复合作用,使混溶柴油或生物燃料油形成稳定的油状微胶囊结构,有效地达到燃烧充分、降低碳排放量的目的。
为实现上述目的,本发明提供了一种多元配方组合而成的生物柴油的添加剂,基于100重量份,包括:
油酸5~78重量份;
正丁醇5~45重量份;
表面活性剂1~31重量份;
改性添加剂1~42重量份;
工业纯水不大于73重量份;
所述油酸(化学简式CH3(CH2)7CH=CH(CH2)7COOH)为含18个碳原子和1个双键的不饱和脂肪酸,是构成动、植物油脂的一种重要成分,不溶于水,油酸的来源同样较复杂,其结构链因来源不同而含饱和链的丰度不同,饱和链丰度太高的油酸低温流动性差,具体制造时宜选择含不饱和链较多的产品;油酸既可以视为正丁醇的乳化剂,又是将其改性为“亲油”的共聚物。
所述正丁醇化学式为CH3CH2CH2CH2OH,是一种无色、有酒气味的液体,沸点117.7°C,稍溶于水,可用于制造丙烯酸丁酯、醋酸丁酯、乙二醇丁醚以及作为有机合成中间体和生物化学药的萃取剂,还可用于制造表面活性剂。正丁醇在水的溶解度并不大,需要借助油酸的适当添加量尤其是表面活性剂的优选运用形成稳定体系。
所述的表面活性剂包括以下物质的一种或多种:司盘系列乳化剂、吐温系列乳化剂、烷基磺酸纳系列、乙醇胺、三乙醇胺、一乙醇胺、溴化十六烷基磺酸纳、二甲基甲酰胺、羧甲基纤维素钠、聚乙烯醇。使用不同的表面活性剂对最终合成的燃油性状有所不同,各种表面活性剂各有其特点,亲水亲油平衡值各有差异,即使是同一组分的表面活性剂,也会因含量、纯度不同而影响其亲水亲油平衡值;有的表面活性剂的亲水亲油平衡值较高,例如烷基磺酸纳系列中的十二烷基磺酸纳,使用前应把表面活性剂的亲水亲油平衡值调节至10~14,推荐在所述的表面活性剂中复配调节,例如使用司盘系列和吐温系列乳化剂进行复配调节。使用所述的表面活性剂可将正丁醇、水与油酸形成稳定的混合体系。使用其他的表面活性剂也可以起到类似的效果,但从综合性能方面比较检验,其他类型的表面活性剂不及所述的表面活性剂,会对产品的综合性能有一定程度的影响。
所述的改性添加剂,基于100重量份的改性添加剂,包括:
pH值缓冲剂20~50重量份;
硝酸异辛酯5~20重量份;
抗氧剂0.5~5重量份;
有机溶剂10~40重量份;
功能改性剂0~40重量份。
其中,pH值缓冲剂的作用为维持体系的pH值的稳定性,为石油磺酸钠和石油磺酸钡的复配混合物,其中石油磺酸钠占10~40重量份,石油磺酸钡占10~40重量份,复配混合物的重量不低于20重量份、不超过50重量份。可选用的pH缓冲剂必须具有如下的特征:溶于有机溶剂,并且最好是液体,对发动机无腐蚀,并且不会破坏甲醇-油相乳化体系的稳定性,有一定的缓冲能力,凡具有此特征的化合物或者其组合均可以适用于pH缓冲剂。对于本发明,优选石油磺酸钡和石油磺酸钠的组合。石油磺酸钡(T701)和石油磺酸钠(T702)为行业公知的金属表面防锈剂,分子结构中都有一个强亲水性的磺酸基与烃基相联结,这两种高级脂肪醇的硫酸酯盐的pH值均为7-8,但在溶液状态下由于同离子效应,离解的可逆平衡度不同,在足够浓度及适当比例下可组合形成理想的pH值缓冲对,溶液中的石油磺酸钠为抗酸成分、石油磺酸钡为抗碱成分;其缓冲共轭构象模型为:石油磺酸钠(R-SO2O-·Na+)的电离度或离子活度较强,在溶液状态下全部离解出Na+和SO2O;石油磺酸钡(R-SO2O-·Ba++·-OSO2-R)的电离度或离子活度相对弱,在溶液中处于结构游离趋势,主要以R-SO3Ba+和SO2O-的形式存在,缓冲剂中Na+和SO3H-的浓度较大;当燃料油混溶体系因吸收空气中的二氧化碳、酯类受氧化出现酸败等因素导致游离态H+总量增加时,SO3H-会和体系内的H+结合形成石油磺酸;反之,当燃料油混溶体系因内部组分残留的胺化盐分解或其它因素导致OH-富余时,Na+会抑制体系内游离的OH-及其它阴离子,从而使燃料油缓冲溶液的酸碱平衡度处于缓冲对的共轭保护范围,使燃料油混溶体系保持稳定。
所述硝酸异辛酯(又名硝酸2-乙基已酯或硝酸异辛酯),除了可以有效提高柴油/甲醇燃料油/甲醇柴油的十六烷值外,还可以改善燃烧性能,缩短着火时间,降低燃点,提高机车热工况动力性。在多元复合燃料油中加入0.1%-0.3%的硝酸异辛酯,一般可提高十六烷值2-9个单位。
所述抗氧剂一般选自苯三唑类(例如T406:苯三唑十八胺盐,TTAS:甲基苯并三氮唑钠盐,N-壬基氧甲基苯三唑)、噻二唑类(例如T561:2,5-双〔烷基二硫代〕噻二唑)以及硫磷型抗氧抗腐蚀剂,这类含硫、磷的抗氧剂的代表性产品为二烷基二硫代磷酸锌(ZDDP)、T504:硫化烷基酚等。本发明采用的抗氧剂,不仅着眼于削弱所调合基础燃油及添加剂配方中某些助溶剂对铜或其它金属的腐蚀力,同时要削弱添加剂配方中某些助溶剂对橡胶的腐蚀力,且具有油溶性好、还原性强的特点,达到有效提高本组合添加剂配制燃料油抗腐蚀性的目的。本发明选择的抗氧剂包括以下几类中的一种或若干种组合:胺型抗氧剂(例如N-苯基-α-萘胺或辛基/丁基混合烷基取代的二苯胺);酚型抗氧剂,例如T501:2,6-二叔丁基对甲酚、2,6-二叔丁基酚、2,4-二甲基-6-叔丁基酚、T502:混合型液体屏蔽酚,T5114,4:亚甲基双(2,6-二叔丁基酚)、T512:酚酯型抗氧剂等;酚胺型抗氧剂,其主要产品例如2,6-二叔丁基-α-二甲胺基对甲酚;硫磷型抗氧抗腐蚀剂以及二烷基二硫代氨基甲酸盐,使用其中一种或若干种抗氧剂组合,组合使用时不限制相对比例。
所述的有机溶剂应具有如下的技术特征,如熔点低、流动性好、不破坏乳化体系,无腐蚀性等;当溶剂的闪点、溶剂辛烷值或十六烷值比较高时,制备所得到的添加剂具有更多的优势。有机溶剂可选自芳烃类溶剂、酮类溶剂、酯类溶剂、醚类溶剂,也可选自石油制品溶剂油,如石蜡油、柴油,但不推荐选用对环境可能造成污染的溶剂,比如硝基类溶剂可能会产生氮氧化物的排放。芳烃类溶剂包括甲苯、二甲苯以及其他含有芳环结构的溶剂;酮类溶剂包括丙酮、丁酮以及其他酮类化合物;酯类溶剂包括乙酸乙酯、碳酸二甲酯、原碳酸四甲酯、原甲酸三乙酯等化合物;醚类溶剂则包括叔丁基甲醚、乙二醇二甲醚,以及其他具有醚结构通式的醚。
所述的功能改性剂为本领域常见的、为了改善柴油的性质而添加的一类添加剂,其可以根据用途需要灵活添加。比如磷酸三甲酚酯,又称磷酸三甲苯酯,其具有多种异构体,均可以应用于本发明,且效果类似,比如T306,分子式C21H21O4P,通常用作增塑剂,例如用于油漆中可增加漆膜的柔韧性,也用作合成橡胶、聚酯、聚烯烃和塑料的阻燃剂。T306溶于醇、苯、醚、植物油、矿物油等多有机溶剂,稳定性强,不易挥发,能赋予高聚物良好的耐磨性,也被引用作汽油和润滑油的添加剂。在本发明组合添加剂的主要角色为抗磨剂,同时充当阻燃剂,对抗磨、阻燃、提高闪点起到多重作用。又比如异丁醇通常用作增塑剂、合成橡胶和合成药物等,在石油工业通常用作添加剂,在本发明添加剂配方中的作用,不仅是扮演助溶助乳化的有机溶剂,而且充当多重角色;例如异丁醇的燃烧热为2667.7kJ/mol,沸点107℃,可助燃、增强燃料油爆发力、提高复合燃油的燃烧热,同时可提高生物燃料油的澄明度,减少燃烧时的积碳;异丁醇以及硝酸异辛酯的组合,可明显地提高复合燃油的十六烷值;异丁醇的凝固点为-107℃,与有机溶剂的组合,可以有效地降低混合燃料油的凝点和冷滤点。又比如助乳化分散剂,其功能是将本添加剂的组分有效分散至所调合的燃料油,而且可以对所配制的燃料油起到减少积碳、减少静电积聚作用,现有技术对助乳化剂已有一定的研究,而本发明所述的助乳化分散剂,可选自丁二酸酯、聚烯烃丁二酸多羟基醇酯或聚异丁烯的衍生物系列产品(例如T154A、T154B、T161A、T161B、T151、T155、T164A、T165A等)中的一种,或其中若干种组合;例如T161A是以高活性聚异丁烯(分子量为2300)为原料、采用热加合工艺制备的高分子量无灰分散剂,具有良好的烟灰、油泥的分散和增溶作用,能有效地抑制燃料油的粘度增长。实际应用中,可以根据需要灵活添加功能改性剂而不局限于上述种类的改性添加剂。
所述的工业纯水为去离子水。因普通水(例如自来水、井水)中含有不少杂质,其内所含的盐类以及pH都各不相同,这些杂质虽微量,但会严重影响燃料油长期存放的乳化稳定效果;纯水获得的工业方法已很成熟,去离子水通常用原水通过电渗析器法、离子交换器法、反渗透法而制得。
本发明配方所述的工业纯水,通过高能量处理(例如磁激共振)后的理化活性会大大增强,可以根据用途需要灵活添加。在多元配方组合的燃料油中,当适度添加的纯水在燃料油体系可达到充分互溶时,实验证明其燃烧性状更佳,在技术设计机理方面,可运用目前理论界较公允的微爆理论阐述:
1、机理:在表面活性剂和改性添加剂的作用下,正丁醇-水-油酸-柴油的互溶微结构变相为一种油包水型的微乳液,表面燃烧时,内部甲醇与水因气化而体积急剧膨胀,产生的巨大压力使油滴爆破,从而使油滴进一步微细化,在燃烧过程中形成二次雾化,使之与空气的接触面积大幅度增加,提高燃烧效率。
2、加速燃烧反应:在油包水型油滴爆破的气化过程中,多元体系中的OH基团活性大大增强,一氧化碳得到了较完全的燃烧,从而加速燃料油体系裂解所形成焦炭的燃烧,抑制了混溶燃料油燃烧时烟尘的生成,达到减排效果。
纯水尤其是能量激发至亚稳态的纯水,其空间态分布是近年理论界关注的一个重要论题,一些更新观念对表面活性剂的组合选用有利于重大技术突破。众所周知,水分子由两个氢原子和一个氧原子组成,空间呈非对称结构,因氢气可燃、氧气助燃,裂解水分子获得廉价能源成了代代传承的科学梦想。本申请人之一在发明专利(ZL200410074446.5)申请文件中提出:迄今对水的分析对象都是大量的水分子集合,在“足够小”的微观体系中是否等价存在逻辑等价漏洞。近年由于显微成像特别是数据处理技术的进步,使各国基础研究实验室均可重复地观察到纯水的纳米尺度结构,迄今已知道:纯水通常为13-18个分子团簇结构,与其理解宏观水的结构为H2O远不如理解为nH2O更接近真实;科学界已逐步认同新观点:宏观意义上的水由水分子团簇构成,团簇大小直接关联到水的物理化学特性。
目前技术直接电解水对于能源代价得不偿失,但将水用化学方法混溶至多元结构体系后,更容易通过水分子参与胶体微分散体系的空间结构重组途径,获得水分子键合态变换及其过程而产生的廉价能源。对于水的作用过程,理论认为,在小于94nm(纳米)的胶体微分散体系的团簇尺度内,水分子在外部条件作用下参与充分互溶可形成空间结构更复杂的团簇,在高温状态下,呈非对称结构的水分子,相当一部分氢原子会在燃烧过程逸出到自由程参与反应,带来了燃料油体系内部的“富氧”倾向,使之燃烧性状更理想。多元结构燃料油的团簇空间结构形成,既与主原料选材以及表面活性剂有关,同时也与制备方法相关。
所述的柴油的添加剂的制备方法包括:
1)将表面活性剂的亲水亲油平衡值调节为10~14,后与正丁醇和水充分混合均匀;或与正丁醇充分混合均匀;
2)向步骤1)得到的混合物中加入油酸,使混合物变澄明;
3)将改性添加剂和与步骤2)得到的混合物充分搅拌混合,并通过最终调节油酸和表面活性剂的比例来调节产品的澄明度。
步骤1)中加入纯水时,优选的,纯水与正丁醇的质量比为1:0.5~2.0,加入的正丁醇和油酸的质量比为1:0.5~3.0;所述步骤1)中不加入纯水时,优选的,加入的正丁醇和油酸的质量比为1:0.5~2.5。纯水在柴油添加剂的加入量,应视混合燃料油使用领域特别是对表面活性剂的掌握程度而定,还需考虑到纯水加入对所混配燃料油的燃烧性状和粘度、比重等理化指标的影响。一般而言,纯水运用得当可提高添加剂及其所混配燃料油的开口闪点,同时带来燃料油体系内部的“富氧”倾向,有利于常压下燃烧,而用于压燃机领域的燃油添加剂则需慎重,如果对表面活性剂的掌握程度较浅,可少加甚至不添加纯水。
步骤1)所述的表面活性剂,当选用单组分的亲水亲油平衡值不处于10~14范围内时,采用所述的表面活性剂的两种或多种进行复配调节。
由于正丁醇在水的溶解度并不大,因此步骤1)得到的混合物并不能充分互溶,由此需要在步骤1)后借助添加油酸形成澄明稳定的乳化体系。在步骤2)的具体操作中,由于油酸的来源复杂,并且其乳化能力与环境温度有关系,即使是同一来源油酸按同样程序操作,也会因受到低温而影响所形成混合物的澄明度和稳定性,因此本发明实施的制备方法,优选在步骤1)得到的混合物中分步加入油酸,以调节混合物的澄明度和粘度至最佳为实际添加量,例如首先加入占油酸设计量的30~70%的油酸,然后反应3~10分钟;当混合物浑浊时每1~2分钟加入占正丁醇1~3%重量比的油酸,直至混合物变澄明。对合成速率有要求的工业量产,推荐在同一温度区间混合,例如30~40℃温度区间操作。
步骤3)包括通过最终调节油酸和表面活性剂的比例来调节产品的澄明度,其中所述改性添加剂的配料来源有较多选择,其选材与步骤3)所得到混合物的闪点指标有关,当本发明的柴油添加剂作为商业用燃油中间体时,应避免选用低闪点的物料,例如甲苯、碳酸二甲酯等,以提高储存和运输的安全性;亦可以把改性添加剂中的物料分为两部分,高闪点物料在步骤3)后混入,低闪点物料拆分为配合本添加剂使用的附属助剂,助剂在混配柴油时再加入。当步骤3)得到的混合物澄明度不足或粘度太大时,可补充表面活性剂或油酸,通过调节油酸和表面活性剂的比例来调节至澄明,粘度符合要求。
为了使添加剂的酸度达到常规柴油国标值,可以向步骤3)得到的混合物中加入石油磺酸钠或石油磺酸钡或其混合物,使其酸度小于7mg KOH/100mL。
所述的制备方法可在常温常压下混合,亦可加温加压助反应,所述的搅拌或混合包括旋转式搅拌、周期性或切角随机的剪切式搅拌,以及外加磁激共振混合或反应压力混合,当使用加反应压力混合时,反应压力不超过25MPa。常规的加压反应装置容易在市场上采购得,关于磁激共振装置,在“一种液体能量激发装置”(ZL200410074446.5)中已有详述,该装置包括用金属或金属网附带成型材料的液体处理腔(波导腔),腔内沿进出液口通道以m间距交替排布的n对永磁体(m≥0.2mm,n≥2),内置或配置于腔体内具有≥1个谐振点,可使受处理液体的物理化学特性如溶解度、含氧量、渗透性、反应速率等发生较大改观。
值得特别说明,可以与所混配柴油充分互溶是所述柴油添加剂体系技术成功的前提,该技术效果可通过对所混配柴油的丁铎尔(Tyndall)现象进行检验,行业内公知,波长为400-700mm的光通过燃料油体系时,如果均匀分散的胶体粒子直径小于入射光波长会发生散射。目前的实验结论为:当分散体系的粒子直径≤94nm时,散射击光强度与波长的四次方成反比。所混配柴油的丁铎尔现象明显,说明本添加剂制作达到技术目标;反之,可检验出所制作的添加剂体系不成功。
上述制备方法是一种优选推荐,对于本领域研究较深入的人员,完全可通过优选表面活性剂及在混合过程中对亲水亲油平衡值的调节进行等同变换;例如将改性添加剂在步骤1)后加入,或拆分为在步骤1)后和步骤2)后分别加入,通过补充调整表面活性剂及油酸的相对比例使混合物变澄明。这些等同替换的制备工艺虽亦可操作,但在不同的环境温度条件下容易产生异构体,影响添加剂的燃烧性能或外观澄明度,步骤2)完成后再加入改性添加剂的产品稳定性会更佳。
在本发明的具体实施中,不同的选材组合与投料混合程序,在最终混合物稳定状态类似的前提下,可能会出现澄明度与燃烧(包括压燃)性状的矛盾,后者往往与丁铎尔现象的显态程度相关。所述柴油添加剂的主要功能是助燃烧(包括压燃),当两者不可兼得时,推荐燃烧性状最优化的配方与细化工艺。
本添加剂的明显技术优势是可以制造为一种广泛适用的燃油中间体,可以设计为高闪点商品,稳定期长,便于储存和运输,使用时可以以较大的比例添加于普通石化柴油或者甲醇改性复合体或两者的混合物中,所述的甲醇改性复合体,至少包含如下物质中的一种或多种:甲醇与醇缩合而成的醚类(例如叔丁基甲醚)、甲醇与酸缩合而成的酯类(如碳酸二乙酯、油酸甲酯),其加入可有效降低石化柴油的添加量,节省工业成本;但甲醇改性复合体的来源较复杂,其结构链因来源不同而含饱和链的丰度不同,当饱和链丰度太高时会带来燃烧排放增大,同时影响所混配柴油的低温流动性,具体制造时可酌情添加。
运用本添加剂配制出的多元生物柴油的添加剂具有以下几项优势:
1、动力性强:改性添加剂复配了提高热值、增强动力的若干种重要组分,使本添加剂混配出的多元生物柴油十六烷值普遍大于45,与同类产品相比动力性增强,主要指标可达到或者优于市售0#柴油;
2、碳排量少:组合添加剂有助燃料油互溶成油包甲醇的微胶囊结构,使燃烧时的有害排放物CO、NOx、HC含量明显降低,排放烟度下降幅度超过50%,对环境友好;
3、通用性好:可代替普通柴油直接使用,能满足发动机的要求和稳定运行,与同标号混配的成品柴油具有等同的适用范围,适用于灶炉、工业窑炉以及柴油发动机车等各种不同用途,并且无需更换柴油发动机;
4、稳定期≥6个月,适应储存、运输和销售各环节所需的时间。
具体实施方式
下面将描述本发明优选的几个实施例,但是本发明不局限于此。
首先制备用于多元生物柴油的改性添加剂,其中
改性添加剂I,包括:
pH值缓冲剂20重量份,包括石油磺酸钡和石油磺酸钠各10重量份;
硝酸异辛酯20重量份;
抗氧剂5重量份,为苯三唑类化合物或者胺类氧化剂,本领域技术人员可以根据需要灵活选用;
有机溶剂25重量份,包括甲苯20重量份,丙酮5重量份;
功能改性剂30重量份,包括异丁醇28重量份,磷酸三甲酚酯1.0重量份(可选),助乳化分散剂1.0重量份(可选)。
改性添加剂II,包括:
pH值缓冲剂50重量份,包括石油磺酸钡和石油磺酸钠各25重量份;
硝酸异辛酯5份;
抗氧剂0.5重量份,选择T502;
有机溶剂40重量份,包括甲苯35重量份,乙苯5重量份;
功能改性剂4.5重量份,包括磷酸三甲酚酯2重量份,丁二酸酯0.5重量份,异丁醇2重量份。
改性添加剂III,包括:
pH值缓冲剂50重量份,包括石油磺酸钡10重量份和石油磺酸钠40重量份,视调节酸碱度的需要,也可以将两者的比例倒置;
硝酸异辛酯6.0重量份;
抗氧剂2.0重量份,选择T502;
有机溶剂40重量份,包括甲苯35重量份,乙苯5重量份;
功能改性剂2重量份,包括磷酸三甲酚酯1.5重量份,丁二酸酯0.5重量份。
改性添加剂IV,包括:
pH值缓冲剂30重量份,包括石油磺酸钡14重量份和石油磺酸钠16重量份;
硝酸异辛酯18重量份;
抗氧剂2重量份,选择T406;
有机溶剂10重量份,选择甲苯;
功能改性剂40重量份,包括异丁醇30重量份,磷酸三甲酚酯5重量份,丁二酸酯5重量份。
改性添加剂V,包括:
pH值缓冲剂50重量份,包括包括石油磺酸钡28重量份和石油磺酸钠22重量份;
硝酸异辛酯20重量份;
抗氧剂5重量份,选择TTAS、ZDDP、T504等比例混合;
有机溶剂25重量份,选择甲苯、乙酸乙酯和叔丁基甲醚的3:1:1的混合物。
所述改性添加剂可以通过将原料直接混合得到,也可以按如下方法制备:
1)将抗氧剂剂用有机溶剂溶解完以后加入硝酸异辛酯;
2)将pH值缓冲剂和功能改性剂混合均匀后加入步骤1)中的混合物中制得改性添加剂。
表面活性剂,选择以下物质的一种或多种组合:司盘系列乳化剂、吐温系列乳化剂、烷基磺酸纳系列、乙醇胺、三乙醇胺、一乙醇胺、溴化十六烷基磺酸纳、二甲基甲酰胺、羧甲基纤维素钠、聚乙烯醇。使用前将表面活性剂的亲水亲油平衡值调节至10~14,当选用的单一组分表面活性剂不符合亲水亲油平衡值要求时,优选采用上述的表面活性剂复配调节至10~14。
所述的柴油添加剂的优选制备方法如下:
1)将表面活性剂的亲水亲油平衡值调节为10~14,后与正丁醇和水充分混合均匀;或与正丁醇充分混合均匀;
2)向步骤1)得到的混合物中加入油酸使混合物变澄明;
3)向步骤2)得到的混合物中加入改性添加剂,充分搅拌混合均匀,制得柴油添加剂。
可选的,向步骤3)得到的柴油添加剂中加入石油磺酸钠或石油磺酸钡,使最终得到的柴油添加剂的酸度小于7mg KOH/100mL。
此外步骤3)中的添加剂也可在步骤1后加入,或者拆开分别在步骤1和步骤2后加入,其不影响制得的产品性状。
实施例1、
柴油添加剂1包括以下组分:
油酸33重量份;
正丁醇28重量份;
表面活性剂6重量份
改性添加剂I12重量份;
工业纯水21重量份。
上述原料共100重量份。按上述方法操作,最后得到一棕色的油状液体,测得用户关心的几项主要技术指标如表1a所示。
表1a实施例1中柴油添加剂的理化数据
闪点,℃ 52
密度kg/m3 874.1
粘度,mm2/s 4.26
凝点,℃ 0
冷滤点,℃ 4
将该棕色的油状添加剂与常规0#石化柴油和甲醇改性复合体按10:12:8的重量比例混配,测得用户关心的几项主要技术指标如表1b所示。
表1b实施例1混配多元生物柴油的理化数据
闪点,℃ 52
密度kg/m3 859.4
粘度,mm2/s 3.97
凝点,℃ 1
冷滤点,℃ 5
十六烷值 45.5
将本实施例混配所得的棕色的油状液体用于燃烧,相对于0#石化柴油的燃烧性状,送风量相对可减少一半以上,从火焰形状可明显判别本实施例混配制得的多元生物柴油含氧量充足,燃烧充分,碳排放较低。
实施例2
柴油添加剂2包括以下组分:
油酸50重量份;
正丁醇20重量份;
表面活性剂12重量份;
改性添加剂ⅳ18重量份。
上述原料共100重量份,本实施例不含水。按上述方法操作,最后得到一棕色的油状液体,测得用户关心的几项主要技术指标如表2所示。
表2实施例2中添加剂的理化数据
闪点,℃ 31
密度kg/m3 846.5
粘度,mm2/s 3.87
凝点,℃ -6
冷滤点,℃ -1
十六烷值 49.2
将本实施例所得的棕色的油状液体作添加剂加入柴油中(占柴油体积比30%),用于常规柴油机,压燃工况稳定,黑烟排放少。
实施例3
柴油添加剂3包括以下组分:
油酸35重量份;
正丁醇20重量份;
表面活性剂6重量份;
改性添加剂I9重量份;
工业纯水30重量份。
上述原料共100重量份。按前述方法操作,最后得到一棕色的油状液体,将其加入至0#柴油内(加入量为柴油体积的25%),在常压下的燃烧性状与实施例1类似,用于常规柴油机的压燃工况与实施例2类似。
实施例4
柴油添加剂4包括以下组分:
油酸78重量份;
正丁醇5重量份;
表面活性剂4重量份;
改性添加剂ⅲ8重量份;
工业纯水5重量份。
上述原料共100重量份。按前述方法操作,最后得到一棕色的油状液体,按35%加入到柴油中,同样可取得与实施例2类似的柴油机压燃工况效果。
实施例5
柴油添加剂5包括以下组分:
油酸33重量份;
正丁醇45重量份;
表面活性剂8重量份;
改性添加剂ⅳ12重量份;
工业纯水2重量份。
上述原料共100重量份。按前述方法操作,最后得到一棕色的油状液体,按50%加入柴油中同样可取得与实施例1类似的燃烧效果。
实施例6
柴油添加剂7包括以下组分:
油酸20重量份;
正丁醇12重量份;
表面活性剂6重量份;
改性添加剂II42重量份;
工业纯水20重量份。
上述原料共100重量份。按前述方法操作,最后得到一棕色的油状液体,按20%重量比加入柴油中,其燃烧性状与实施例5类似。
实施例7、
柴油添加剂8包括如下组分:
油酸10重量份;
正丁醇5重量份;
表面活性剂31重量份;
改性添加剂I8重量份;
工业纯水46重量份。
上述原料共100重量份。按上述方法操作,最后得到一棕色的油状液体,按15%重量比加入油酸甲酯中的燃烧性状与实施例1类似,用于常规柴油机的压燃工况与实施例2类似。
实施例8、
柴油添加剂8包括如下组分:
油酸31重量份;
正丁醇28重量份;
表面活性剂12重量份;
改性添加剂I18重量份;
工业纯水11重量份。
上述原料共100重量份。按上述方法操作,最后得到一棕色的油状液体,按15%重量比加入油酸甲酯中的燃烧性状与实施例2类似,用于常规柴油机的压燃工况与实施例2类似。
实施例9、
柴油添加剂8包括如下组分:
油酸5重量份;
正丁醇5重量份;
表面活性剂8重量份;
改性添加剂I9重量份;
工业纯水73重量份。
上述原料共100重量份。按上述方法操作,最后得到一棕色的油状液体,按10%重量比加入油酸甲酯中的燃烧性状与实施例2类似,用于常规柴油机的压燃工况与实施例2类似。
实施例10、
柴油添加剂10包括如下组分:
油酸48重量份;
正丁醇40重量份;
表面活性剂1重量份;
改性添加剂I1重量份;
工业纯水10重量份。
上述原料共100重量份。按上述方法操作,最后得到一棕色的油状液体,按10%重量比加入油酸甲酯中的燃烧性状与实施例6类似。
实施例11、
多元生物柴油1包括以下组分:
实施例8制得的添加剂20重量份,0#柴油45重量份,油酸甲酯35重量份。
上述原料共100重量份,混合后得到一棕色的油状液体,其燃烧性状与实施例1类似,用于常规柴油机的压燃工况与实施例2类似。
实施例12、
多元生物柴油2包括以下组分:
实施例6制得的添加剂10重量份,油酸甲酯90重量份。
上述原料共100重量份,混合后得到一棕色的油状液体,其燃烧性状与实施例1类似,用于常规柴油机的压燃工况与实施例2类似。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种多元配方组合的生物柴油的添加剂,其特征在于,基于100重量份的添加剂,包括:
油酸5~78重量份;
正丁醇5~45重量份;
表面活性剂1~31重量份;
改性添加剂1~42重量份;
工业纯水不大于73重量份;
所述的工业纯水为去离子水。
2.根据权利要求1所述的添加剂,其特征在于,所述的表面活性剂包括以下物质的一种或多种:司盘系列乳化剂、吐温系列乳化剂、烷基磺酸纳、二乙醇胺、三乙醇胺、一乙醇胺、二甲基甲酰胺、羧甲基纤维素钠、聚乙烯醇。
3.根据权利要求1所述的添加剂,其特征在于,所述工业纯水含量不为0重量份时,所述工业纯水与正丁醇的质量比为1:0.5~2.0,所述正丁醇与所述的油酸的质量比为1:0.5~3.0;所述生物柴油不包含工业纯水时,所述的正丁醇和所述的油酸的质量比为1:0.5~2.5。
4.根据权利要求1所述的添加剂,其特征在于,所述的改性添加剂,基于100重量份包括:
pH值缓冲剂20~50重量份;
硝酸异辛酯5~20重量份;
抗氧剂0.5~5重量份;
有机溶剂10~40重量份;
功能改性剂0~40重量份;
所述pH值缓冲剂为石油磺酸钠和石油磺酸钡的复配混合物,所述石油磺酸钠占10~40重量份,所述石油磺酸钡占10~40重量份,所述复配混合物的重量不低于20重量份,不超过50重量份;
所述的抗氧剂包括如下物质中的一种或多种:胺型抗氧剂、酚型抗氧剂、酚胺型抗氧剂、硫磷型抗氧抗腐蚀剂、二烷基二硫代氨基甲酸盐、苯三唑类化合物和噻二唑类化合物;
所述的有机溶剂包括以下溶剂中的一种或多种:芳烃类溶剂、酮类溶剂、酯类溶剂、醚类溶剂以及石油制品类溶剂油,所述石油制品类溶剂油包括石蜡油、柴油;
所述的功能改性剂包括以下物质的一种或多种:磷酸三甲酚酯0~15重量份、助乳化分散剂0~5重量份、异丁醇0~30重量份。
5.根据权利要求1所述的生物柴油,其特征在于,所述的工业纯水使用磁激共振处理。
6.一种制备权利要求1~5任一所述的柴油添加剂的方法,包括:
1)将表面活性剂的亲水亲油平衡值调节为10~14,后与正丁醇和水充分混合均匀;或与正丁醇充分混合均匀;
2)向步骤1)得到的混合物中加入油酸和改性添加剂,制得柴油添加剂。
7.根据权利要求6所述的方法,其特征在于,所述的步骤2)还包括通过调节油酸和表面活性剂的比例来调节产品的澄明度。
8.根据权利要求6所述的方法,其特征在于,所述的方法还包括向柴油添加剂中加入石油磺酸钠、石油磺酸钡或其混合物,使其酸度小于7mg KOH/100mL。
9.根据权利要求6所述的方法,其特征在于,所述的步骤1)和步骤2)中的混合采用常温常压下混合或加温加压助反应;所述的搅拌或混合包括旋转式搅拌、周期性或切角随机的剪切式搅拌以及外加磁激共振混合或反应压力混合;当使用加反应压力混合时,反应压力不超过25MPa。
10.含有权利要求1~5任一所述的柴油添加剂的常规石化柴油、甲醇改性复合体或其混合物,所述的甲醇改性复合体,至少包含甲醇与醇缩合而成的醚类、甲醇与酸缩合而成的酯类的一种或多种。
CN201310008013.9A 2013-01-09 2013-01-09 一种多元配方组合的生物柴油的添加剂及其制备方法 Expired - Fee Related CN103911193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310008013.9A CN103911193B (zh) 2013-01-09 2013-01-09 一种多元配方组合的生物柴油的添加剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310008013.9A CN103911193B (zh) 2013-01-09 2013-01-09 一种多元配方组合的生物柴油的添加剂及其制备方法

Publications (2)

Publication Number Publication Date
CN103911193A true CN103911193A (zh) 2014-07-09
CN103911193B CN103911193B (zh) 2016-01-20

Family

ID=51037204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310008013.9A Expired - Fee Related CN103911193B (zh) 2013-01-09 2013-01-09 一种多元配方组合的生物柴油的添加剂及其制备方法

Country Status (1)

Country Link
CN (1) CN103911193B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106479580A (zh) * 2016-11-15 2017-03-08 中国石油天然气集团公司 一种高寒地区应用的甲醇汽油添加剂及其制备甲醇汽油的方法
CN106978225A (zh) * 2017-04-25 2017-07-25 上海应用技术大学 一种聚甲基丙烯酸酯/石墨烯纳米复合聚合物降凝剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1778458A (zh) * 2004-11-24 2006-05-31 赵耀棠 多元耐温柴油乳化剂
CN101633858A (zh) * 2009-08-26 2010-01-27 黑龙江中合再生能源科技发展有限公司 生物柴油复合剂
CN102399607A (zh) * 2011-10-18 2012-04-04 陈伟 一种实用微乳化环保节能柴油及其配制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1778458A (zh) * 2004-11-24 2006-05-31 赵耀棠 多元耐温柴油乳化剂
CN101633858A (zh) * 2009-08-26 2010-01-27 黑龙江中合再生能源科技发展有限公司 生物柴油复合剂
CN102399607A (zh) * 2011-10-18 2012-04-04 陈伟 一种实用微乳化环保节能柴油及其配制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106479580A (zh) * 2016-11-15 2017-03-08 中国石油天然气集团公司 一种高寒地区应用的甲醇汽油添加剂及其制备甲醇汽油的方法
CN106978225A (zh) * 2017-04-25 2017-07-25 上海应用技术大学 一种聚甲基丙烯酸酯/石墨烯纳米复合聚合物降凝剂及其制备方法
CN106978225B (zh) * 2017-04-25 2018-08-17 上海应用技术大学 一种聚甲基丙烯酸酯/石墨烯纳米复合聚合物降凝剂及其制备方法

Also Published As

Publication number Publication date
CN103911193B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103911191B (zh) 一种柴油的添加剂及其制备方法
CN103484172B (zh) 一种低碳燃料油及其制备方法
CN103509615B (zh) 一种调合燃料油的添加剂及其制备方法
CN1637121B (zh) 用于烃类燃料燃烧系统的混和金属催化剂添加剂和方法
CN103911182A (zh) 一种多元配方组合的生物燃料油及其制备方法
CN100591747C (zh) 一种m80~m90、e80~e90醇基车用燃料添加剂的制备方法
CN103911183B (zh) 一种多元配方组合的生物柴油及其制备方法
JP6428994B2 (ja) 清澄で高効率且つ環境に優しいガソリンおよび燃料製品
CN103509611B (zh) 一种生物柴油及其制备方法
CN101649228B (zh) 一种含有微乳热值剂的高含水微乳化柴油
CN103980964B (zh) 一种电气石燃油活化剂的制备方法
CN103911193B (zh) 一种多元配方组合的生物柴油的添加剂及其制备方法
CN105296023A (zh) 一种燃油添加剂及其制备方法
CN105296022A (zh) 一种燃油添加剂及其制备方法
CN103911190B (zh) 一种多元配方组合的生物燃油及其制备方法
CN107118814B (zh) 草酸酯类新型含氧燃油或燃油添加剂及其应用
WO2007112456A2 (en) Fuel additives
CN103911184B (zh) 一种多元配方组合的生物柴油及其制备方法
US20170260466A1 (en) Enhanced fuel and method of producing enhanced fuel for operating internal combustion engine
CN103627456B (zh) 一种环保复合燃料油添加剂及其制备方法
CN102719284A (zh) 地沟再生燃料油
CN107099347B (zh) 一种清洁环保的醚基柴油及其制备方法
CN101962583A (zh) 一种大比例甲醇催化燃烧剂
CN104726148B (zh) 一种新型复合燃油
CN108546574A (zh) 生物醇基燃油动力热值剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20190109