CN103895832B - 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法 - Google Patents

一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法 Download PDF

Info

Publication number
CN103895832B
CN103895832B CN201410098422.7A CN201410098422A CN103895832B CN 103895832 B CN103895832 B CN 103895832B CN 201410098422 A CN201410098422 A CN 201410098422A CN 103895832 B CN103895832 B CN 103895832B
Authority
CN
China
Prior art keywords
fin
controller
wing
angle
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410098422.7A
Other languages
English (en)
Other versions
CN103895832A (zh
Inventor
宋颖慧
刘胜
李冰
张兰勇
王宇超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410098422.7A priority Critical patent/CN103895832B/zh
Publication of CN103895832A publication Critical patent/CN103895832A/zh
Application granted granted Critical
Publication of CN103895832B publication Critical patent/CN103895832B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明涉及一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法,横摇检测装置检测横摇角,并通过状态估计器估计系统的横摇角及横摇角速度,与给定值作差送入反馈线性化控制器;采用基于模糊树的自适应控制器修正反馈线性化控制器的输出,得到所需的横摇扶正力矩;修正后的输出信号即减横摇控制器的输出信号送入鳍角、翼鳍角智能优化器,前述的减横摇控制器由反馈线性化控制器、基于模糊树的自适应控制器和误差观测器组成;鳍角、翼鳍角智能优化器进行角度分配,给出实时的鳍角、翼鳍角指令送入鳍、翼鳍电伺服系统;鳍、翼鳍电伺服系统基于矢量控制,驱动鳍、翼鳍转动,产生所需的扶正力矩,实现对船舶减横摇控制。

Description

一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法
技术领域
本发明涉及一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法。
背景技术
船舶在航行时容易受到海浪、海风等环境因素的影响,从而产生剧烈的横摇运动。船舶的横摇直接影响到船舶的适航性,产生诸多不利影响,更有甚者能够危及船舶的航行安全。最为有效的主动减横摇装置是减摇鳍,早期的减摇鳍多采用整体鳍,由于展弦比较小,使得鳍角受到升力失速和空泡的限制,而且对于采用两对鳍的船舶,后鳍受前鳍引起的下洗流影响,使后鳍升力下降,两鳍间的干扰直接影响了减横摇效果。
目前,船舶减摇鳍的控制一般采用电-液伺服控制,使得机械结构繁琐,制造成本大,重量体积大,而且控制维护过程复杂;而采用电伺服系统控制却能很好的解决这些缺点,并且具有很高的精度和可靠性、可维护性等特点,考虑到船舶剧烈横摇时鳍/翼鳍伺服系统需要进行平滑的调速,以满足鳍/翼鳍升力变化的需要。另外,由于电伺服系统力矩一般都不大,必须利用减速器减小伺服系统速度达到增加力矩的目的。因此,对电伺服驱动的鳍/翼鳍进行矢量控制研究十分必要。
现有的对船舶鳍/翼鳍的研究多为结构设计以及与舵/翼舵的联合控制方法方面,并未给出电伺服驱动鳍/翼鳍的矢量控制方法,而且减横摇智能控制算法有待改进。专利申请号为200710071664.7,名称为“船舶翼鳍、翼舵综合协调控制装置”的专利申请文件中公开一种翼鳍/翼舵综合协调控制装置;专利申请号为200910071807.3,名为“船舶舵/翼舵一鳍/翼鳍联合控制方法”的专利申请文件中公开了一种联合控制方法,但都未给出电驱动鳍/翼鳍的矢量控制方法,而且减横摇算法应用也存在一定的限制。
发明内容
本发明目的在于提供一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法,实现有效改善船舶横摇减摇效果的智能控制。
实现本发明目的技术方案:
一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法,其特征在于:
步骤1:横摇检测装置检测横摇角,并通过状态估计器估计系统的横摇角及横摇角速度,与给定值作差送入反馈线性化控制器;
步骤2:采用基于模糊树的自适应控制器修正反馈线性化控制器的输出,得到所需的横摇扶正力矩;修正后的输出信号即减横摇控制器的输出信号u送入鳍角、翼鳍角智能优化器,前述的减横摇控制器由反馈线性化控制器、基于模糊树的自适应控制器和误差观测器组成;
步骤3:鳍角、翼鳍角智能优化器进行角度分配,给出实时的鳍角、翼鳍角指令送入鳍、翼鳍电伺服系统;
步骤4:鳍、翼鳍电伺服系统基于矢量控制,驱动鳍、翼鳍转动,产生所需的扶正力矩,实现对船舶减横摇控制。
步骤2中,采用基于模糊树的自适应控制器修正反馈线性化控制器的输出,通过如下方法实现,
步骤2.1:建立船舶横向运动控制系统的数学模型,并给出其非线性系统状态空间表示;
x · = f ( x ) + g ( x ) u y = h ( x )
式中,u=Fθ,Fθ为鳍、翼鳍产生的横摇扶正力矩,y=h(x)=θ为系统输出量,f(x)、g(x)为非线性函数;
步骤2.2:根据船舶横向运动控制系统的性能指标,建立期望输出的参考模型,并给出系统动态误差状态空间表示;
x · = A m E + b ( Δ - u d ) e = C m E
式中,Δ为实际系统建模和随机海浪等外界干扰所引起的误差,ud为自适应模糊树控制器输出,e为实际系统误差;Am、Cm、b为矩阵参数;
步骤2.3:建立基于模糊树的自适应控制器;减横摇控制器的输出信号u表示为,
u=uc+ud
uc为反馈线性化控制器的输出,ud为自适应模糊树控制器输出;
步骤4中,鳍、翼鳍电伺服系统采用永磁同步电机,鳍、翼鳍电伺服系统的控制部分包括位置控制器、速度控制器和电流控制器,鳍、翼鳍电伺服系统通过如下方法实现矢量控制,
建立dq坐标系下数学模型,经Clarke变换和Park变换,将永磁同步电机的定子三相电流转换成两个不存在耦合关系的直流量id和iq,使id保持为零、iq实时跟踪速度控制器的控制量。
步骤4中,采用鳍、翼鳍伺服系统位置传感器测量得到的位置信号确定电流的方向,对鳍、翼鳍伺服系统功率开关死区效应进行补偿,
当0<ψ<π时,ia>0,A相补偿正向电压;反之补偿反向电压;
当2π/3<ψ<5π/3时,ib>0,B相补偿正向电压;反之补偿反向电压;
当-2π/3<ψ<π/3时,ic>0,C相补偿正向电压;反之补偿反向电压;
式中,ψ为永磁同步电机磁极的位置角度;
补偿电压的幅值采用如下公式进行计算:
式中,为调整系数,Vd为直流母线电压,Td为死区时间,Tperiod伺服周期。
步骤2.3中,通过如下方法建立基于模糊树的自适应控制器,
步骤2.3.1:给出L个终节点的模糊树模型的输入输出关系,根据横摇运动控制系统状态空间形式,采用模糊树模型逼近步骤2.1中的非线性函数fi(x)和gi(x);
步骤2.3.2:根据船舶横摇系统要求及误差方程,选择参数ki、Mi1、Mi2选择一个正定阵Qi,求解Lyapunov方程得到矩阵Pi
步骤2.3.3:根据获得的样本数据,利用模糊树模型离线辨识横摇控制系统中的非线性函数fi(x)和gi(x),建立初始基本控制器及监督控制器;
步骤2.3.4:确定参数Mi1、Mi2、γi1及γi2;根据实际系统情况假设Mi1≥||θi1(0)||2及Mi2≥||θi2(0)||2,利用自适应调节律在线调节模糊树模型的参数;
其中,ki使得全部特征值都有负实部,γi1>0,γi2>0为学习率,Mi1、Mi2为模糊树模型寻优空间的界,为设计参数,规定了实际控制系统内部状态的界。
本发明具有的有益效果:
本发明针对船舶鳍、翼鳍减横摇控制系统为多输入多输出非线性系统,采用反馈线性化进行系统控制器设计,其中横摇角及横摇角速度通过状态估计器得到。本发明鳍翼鳍采用电伺服控制系统,能够改善电液伺服系统的缺点,并具有较好的低速性能,平稳的输出转矩,较宽的调速范围,较好的启动和制动性能.。本发明采用基于模糊树的自适应控制器修正了横向运动的线性反馈控制器,能够补偿数学建模不准确、参数不确定和船舶受到的随机海浪等外界干扰所引起的误差,进一步改善控制效果。本发明鳍、翼鳍电伺服系统基于矢量控制,并且对鳍、翼鳍伺服系统功率开关死区效应进行补偿,经过补偿后实际电流能够很好地跟踪给定电流,实现了鳍、翼鳍电伺服系统的精确控制。
附图说明
图1为船舶横向运动鳍、翼鳍智能矢量控制原理结构图;
图2为基于模糊树模型的任意模型参考自适应控制结构图;
图3为鳍/翼鳍电伺服系统闭环控制系统结构原理图;
图4为逆变器死区效应中延时时间对输出电压的影响图;
图5为基于矢量控制的鳍/翼鳍电伺服系统位置控制原理图。
具体实施方式
如图1所示,系统包括减横摇控制器、鳍角/翼鳍角智能优化器、两套鳍/翼鳍电伺服系统、参考模型、横摇角检测装置以及状态估计器等,其中减横摇控制器由反馈线性化控制器、基于模糊树的自适应控制器、误差观测器三部分构成。
步骤1:横摇检测装置检测横摇角,并通过状态估计器估计系统的横摇角及横摇角速度,与给定值作差送入反馈线性化控制器;
步骤2:针对系统存在不确定定性时,反馈线性化控制器存在较大误差,采用基于模糊树的自适应控制器修正反馈线性化控制器的输出,得到所需的横摇扶正力矩;修正后的输出信号即减横摇控制器的输出信号送入鳍角、翼鳍角智能优化器;
步骤3:鳍角、翼鳍角智能优化器进行角度分配,给出实时的鳍角、翼鳍角指令送入鳍、翼鳍电伺服系统;
步骤4:鳍、翼鳍电伺服系统基于矢量控制,驱动鳍、翼鳍转动,产生所需的扶正力矩,实现对船舶减横摇控制,有效的改善了系统的减摇性能。
步骤2中,如图2所示,采用基于模糊树的自适应控制器修正反馈线性化控制器的输出,通过如下方法实现,
步骤2.1:建立船舶横向运动控制系统的数学模型,并给出其非线性系统状态空间描述形式:
x &CenterDot; = f ( x ) + g ( x ) u y = h ( x ) - - - ( 1 )
其中:u=Fθ,Fθ为鳍/翼鳍产生的横摇扶正力矩,y=h(x)=θ为系统输出量,其横摇角速度由状态估计器得到,通过反馈线性化设计系统控制器,得到横摇控制扶正力矩的控制量。
步骤2.2:根据船舶横向运动控制系统的性能指标,设计一个满足全部所希望性能指标的参考模型(期望输出),并给出系统动态误差状态空间表示。
参考模型表示成输入输出的形式为
y m ( n ) ( t ) = - &Sigma; i = 0 n - 1 a mi y m ( i ) ( t ) + by ref ( t ) - - - ( 2 )
其中:yref为系统参考输入,ym为参考模型输出。
写成状态方程的形式为
x &CenterDot; m ( t ) = A m x m ( t ) + b m y ref y m ( t ) = C m x m ( t ) - - ( 3 )
船舶横向运动控制系统动态输出可表示为
y ( n ) ( t ) = h ( x , u ) = - &Sigma; i = 0 n - 1 a mi y ( i ) ( t ) + b ( y ref + u d - &Delta; ) - - - ( 4 )
其中:h(x,u)为线性反馈化后的系统输出线性化形式,Δ为实际系统建模和随机海浪等外界干扰所引起的误差,ud为自适应模糊树控制器。
定义实际系统误差e=ym-y,根据式(1)和(3)得实际系统的动态误差为
e &CenterDot; = - &Sigma; i = 0 n - 1 a mi e ( i ) ( t ) + b ( &Delta; - u d ) - - - ( 5 )
写成状态空间的形式为:
x &CenterDot; = A m E + b ( &Delta; - u d ) e = C m E - - - ( 6 )
步骤2.3:通过如下方法建立基于模糊树的自适应控制器,
步骤2.3.1:给出L个终节点的模糊树模型的输入输出关系,根据横摇运动控制系统状态空间形式,采用模糊树模型逼近系统式(1)中的非线性函数fi(x)和gi(x);
步骤2.3.2:根据船舶横摇系统要求及误差方程,选择参数ki、Mi1、Mi2选择一个正定阵Qi,求解Lyapunov方程得到矩阵Pi
步骤2.3.3:根据获得的样本数据,利用模糊树模型离线辨识横摇控制系统中的非线性函数fi(x)和gi(x),建立初始基本控制器及监督控制器;
步骤2.3.4:确定参数Mi1、Mi2、γi1及γi2。根据实际系统情况假设Mi1≥||θi1(0)||2及Mi2≥||θi2(0)||2,利用自适应调节律在线调节模糊树模型的参数。
其中:ki使得全部特征值都有负实部,γi1>0,γi2>0为学习率,Mi1、Mi2为模糊树模型寻优空间的界,为设计参数,规定了实际控制系统内部状态的界。
设计的基于模糊树的自适应控制器用于修正横向运动控制系统反馈线性化控制器,从而补偿数学建模不准确、参数不确定和船舶受到的随机海浪等外界干扰所引起的误差Δ的目的。使得减横摇控制器的输出u可表示为:
u=uc+ud (7)
uc为反馈线性化控制器的输出,ud为自适应模糊树控制器输出;
步骤4中,如图3所示,鳍、翼鳍电伺服系统采用永磁同步电机(PMSM),鳍、翼鳍电伺服系统的控制部分包括位置控制器、速度控制器和电流控制器。采用矢量控制策略对鳍/翼鳍电伺服系统中永磁同步电机(PMSM)进行调速控制,首先应建立控制对象精确的数学模型,然后通过调节永磁同步电机电枢电流来调节输出电磁力矩。电流环调节PMSM的电枢电流能够实时地跟踪给定值,保证了鳍/翼鳍系统对电磁力矩的需要。转子位置实时地调节PMSM实际电流输出,以使PMSM电流产生的电枢磁场与转子d轴正交,实际q轴电流等于鳍/翼鳍伺服系统给定q轴电流,伺服系统满足鳍/翼鳍的力矩需要,保证了PMSM所产生的电磁力矩输出稳定,较好的低速性能与较宽的调速范围等。当PMSM启动和制动时,所有的电流都用来产生电磁转矩,使PMSM具有十分出色的启动和制动性能。
如图5所示,给出了基于矢量控制的鳍/翼鳍电伺服系统位置控制原理图,通过如下步骤实现矢量控制。
鳍/翼鳍电伺服系统的伺服电机采用面帖式永磁同步电机,对于永磁同步电机一般采用dq坐标系下的数学模型,采用这种模型可以分析伺服电机的稳态性能,也可以分析伺服电机的瞬态性能,由于伺服电机定子绕组的自感、互感系数数为常数,d轴、q轴定子绕组之间不存在耦合,因此能够获得出色的伺服电机控制性能。在满足一定假设的前提下,对于面贴式永磁同步电机,有Ld=Lq,建立如下的数学模型:
u q = R s i q + L q di q dt + &omega; L d i d + &omega;&psi; f - - - ( 9 )
u d = R s i d + L d di d dt - &omega; L q i q - - - ( 10 )
Te=Pnψfiq (11)
T e = J d ( &omega; / P n ) dt + R &Omega; &omega; P n + T l - - - ( 12 )
其中:ud、uq分别为dq轴下d轴和q轴电压,Rs为定子绕组电阻,id、iq分别为在dq轴下d轴和q轴电流,Ld、Lq分别为伺服电机d轴和q轴同步电感,ω为伺服电机电角速度,ψf为永磁体磁链,Te为伺服电机电磁转矩,Pn为定子绕组极对数,J为伺服电机转动惯量,RΩ为阻尼系数,Tl为负载转矩。
选择永磁同步电机电机的d轴、q轴电流及转速为状态变量,根据式(1)~(4),可以得到如下形式的状态方程:
x &CenterDot; = Ax + Bu + B 0 T l - - - ( 13 )
其中:
A = R s L &omega; 0 - &omega; - R s L - P n &psi; f 9.55 L 0 9.55 P n &psi; f J - R &Omega; J , B = 1 L 0 0 1 L 0 0 , B 0 0 0 - 9.55 J , u = u d u q , x = i d i q n
根据上述模型,对定子绕组电流进行控制就能实现鳍/翼鳍电伺服系统的转矩控制。矢量控制策略的基本思想是控制定子绕组电流的空间矢量相位和幅值。Clarke变换和Park变换两种坐标变化是进行矢量控制策略的前提。
Clarke变换是从三相静止坐标系转换(a、b、c坐标系)到两相静止坐标系(α、β坐标系),其形式如下:
iα=ia (14)
i &beta; = 1 3 i a + 2 3 i b - - - ( 15 )
ia+ib+ic=0(16)
Park变换是从两相静止坐标系(α、β坐标系)到dq坐标系,其形式如下:
i d i q = cos &theta; sin &theta; - sin &theta; cos &theta; i &alpha; i &beta; - - - ( 17 )
经Clarke变换和Park变换,三相电流转换成两个不存在耦合关系的直流量id和iq,矢量控制策略的目的在于使id保持为零、iq实时跟踪速度控制器的控制量。进一步给出基于矢量控制的鳍/翼鳍电伺服系统位置控制系统由位置环、速度环和电流环构成,三环控制器都用PI调节器实现。
如图4所示,给出逆变器死区效应中延时时间对输出电压的影响图,可见采用电伺服系统控制鳍/翼鳍,由于功率开关死区效应导致逆变器输出电压波形发生非线性畸变,使输出电压波形产生交越失真,提出采用基于位置的死区效应补偿策略。
根据电流矢量与永磁同步电机转子位置的联系,采用鳍/翼鳍伺服系统位置传感器测量得到的位置信号确定电流的方向,对死区效应进行补偿。考虑磁极的位置角度ψ与电流的相位关系固定,采用如下的位置变化规律对死区效应进行电压补偿:
当0<ψ<π时,ia>0,A相补偿正向电压;反之补偿反向电压。
当2π/3<ψ<5π/3时,ib>0,B相补偿正向电压;反之补偿反向电压。
当-2π/3<ψ<π/3时,ic>0,C相补偿正向电压;反之补偿反向电压。
补偿电压的幅值采用如下公式进行计算:
其中:为调整系数,通常取0.7,Vd为直流母线电压,Td为死区时间,Tperiod伺服周期。

Claims (1)

1.一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法,其特征在于:
步骤1:横摇检测装置检测横摇角,并通过状态估计器估计系统的横摇角及横摇角速度,与给定值作差送入反馈线性化控制器;
步骤2:采用基于模糊树的自适应控制器修正反馈线性化控制器的输出,得到所需的横摇扶正力矩;修正后的输出信号即减横摇控制器的输出信号u送入鳍角、翼鳍角智能优化器,前述的减横摇控制器由反馈线性化控制器、基于模糊树的自适应控制器和误差观测器组成;
所述采用基于模糊树的自适应控制器修正反馈线性化控制器的输出,通过如下方法实现,
步骤2.1:建立船舶横向运动控制系统的数学模型,并给出其非线性系统状态空间表示;
x &CenterDot; = f ( x ) + g ( x ) u y = h ( x )
式中,u=Fθ,Fθ为鳍、翼鳍产生的横摇扶正力矩,y=h(x)=θ为系统输出量,f(x)、g(x)为非线性函数;
步骤2.2:根据船舶横向运动控制系统的性能指标,建立期望输出的参考模型,并给出系统动态误差状态空间表示;
E &CenterDot; = A m E + b ( &Delta; - u d ) e = C m E
式中,Δ为实际系统建模和随机海浪等外界干扰所引起的误差,ud为自适应模糊树控制器输出,e为实际系统误差;Am、Cm、b为矩阵参数;
步骤2.3:建立基于模糊树的自适应控制器;减横摇控制器的输出信号u表示为,
u=uc+ud
uc为反馈线性化控制器的输出,ud为自适应模糊树控制器输出;
通过如下方法建立基于模糊树的自适应控制器,
步骤2.3.1:给出L个终节点的模糊树模型的输入输出关系,根据横摇运动控制系统状态空间形式,采用模糊树模型逼近步骤2.1中的非线性函数fi(x)和gi(x);
步骤2.3.2:根据船舶横摇系统要求及误差方程,选择参数ki、Mi1、Mi2选择一个正定阵Qi,求解Lyapunov方程得到矩阵Pi
步骤2.3.3:根据获得的样本数据,利用模糊树模型离线辨识横摇控制系统中的非线性函数fi(x)和gi(x),建立初始基本控制器及监督控制器;
步骤2.3.4:确定参数Mi1、Mi2、γi1及γi2;根据实际系统情况假设Mi1≥||θi1(0)||2及Mi2≥||θi2(0)||2,利用自适应调节律在线调节模糊树模型的参数;
其中,ki使得全部特征值都有负实部,γi1>0,γi2>0为学习率,Mi1、Mi2为模糊树模型寻优空间的界,为设计参数,规定了实际控制系统内部状态的界;
步骤3:鳍角、翼鳍角智能优化器进行角度分配,给出实时的鳍角、翼鳍角指令送入鳍、翼鳍电伺服系统;
步骤4:鳍、翼鳍电伺服系统基于矢量控制,驱动鳍、翼鳍转动,产生所需的扶正力矩,实现对船舶减横摇控制;
鳍、翼鳍电伺服系统采用永磁同步电机,鳍、翼鳍电伺服系统的控制部分包括位置控制器、速度控制器和电流控制器,鳍、翼鳍电伺服系统通过如下方法实现矢量控制,
建立dq坐标系下数学模型,经Clarke变换和Park变换,将永磁同步电机的定子三相电流转换成两个不存在耦合关系的直流量id和iq,使id保持为零、iq实时跟踪速度控制器的控制量;
采用鳍、翼鳍伺服系统位置传感器测量得到的位置信号确定电流的方向,对鳍、翼鳍伺服系统功率开关死区效应进行补偿,
当0<ψ<π时,ia>0,A相补偿正向电压;反之补偿反向电压;
当2π/3<ψ<5π/3时,ib>0,B相补偿正向电压;反之补偿反向电压;
当-2π/3<ψ<π/3时,ic>0,C相补偿正向电压;反之补偿反向电压;
式中,ψ为永磁同步电机磁极的位置角度;
补偿电压的幅值采用如下公式进行计算:
式中,为调整系数,Vd为直流母线电压,Td为死区时间,Tperiod伺服周期。
CN201410098422.7A 2014-03-18 2014-03-18 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法 Expired - Fee Related CN103895832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410098422.7A CN103895832B (zh) 2014-03-18 2014-03-18 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410098422.7A CN103895832B (zh) 2014-03-18 2014-03-18 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法

Publications (2)

Publication Number Publication Date
CN103895832A CN103895832A (zh) 2014-07-02
CN103895832B true CN103895832B (zh) 2017-01-04

Family

ID=50987488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410098422.7A Expired - Fee Related CN103895832B (zh) 2014-03-18 2014-03-18 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法

Country Status (1)

Country Link
CN (1) CN103895832B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106828819A (zh) * 2017-01-23 2017-06-13 哈尔滨工程大学 船舶减摇鳍与翼鳍矢量控制方法
CN106585915B (zh) * 2017-01-23 2018-08-17 哈尔滨工程大学 基于鳍与翼鳍矢量控制的船舶减横摇系统双环控制方法
CN107140110B (zh) * 2017-03-21 2019-07-09 山东省科学院海洋仪器仪表研究所 一种船舶大幅横摇运动非线性阻尼系数识别方法
CN108762083B (zh) * 2018-06-13 2021-04-02 长春萨米特光电科技有限公司 一种基于加速度观测器的自动控制系统
CN108931986B (zh) * 2018-06-19 2021-07-20 福建海源自动化机械股份有限公司 一种两轮汽车自平衡控制方法、装置及存储介质
CN110045612B (zh) * 2019-04-28 2021-10-08 哈尔滨理工大学 一种减摇鳍液压伺服模拟实验台的反步自适应控制方法
CN110466707B (zh) * 2019-08-07 2021-07-23 武汉理工大学 一种应用于小型高速船的随动减摇装置
CN113022828B (zh) * 2021-04-12 2022-03-04 白城师范学院 一种自调适用型水下机器人的推进器
CN113602464A (zh) * 2021-06-25 2021-11-05 武汉理工大学 基于扑翼的船舶举升与推进装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960161A (zh) * 2006-11-17 2007-05-09 清华大学 一种异频供电永磁同步电动机矢量控制系统
CN102060096A (zh) * 2010-12-20 2011-05-18 庞志森 电动船舶的永磁同步电动机矢量控制无齿轮箱推进装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174222B2 (en) * 2009-10-12 2012-05-08 GM Global Technology Operations LLC Methods, systems and apparatus for dynamically controlling an electric motor that drives an oil pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960161A (zh) * 2006-11-17 2007-05-09 清华大学 一种异频供电永磁同步电动机矢量控制系统
CN102060096A (zh) * 2010-12-20 2011-05-18 庞志森 电动船舶的永磁同步电动机矢量控制无齿轮箱推进装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PMSM伺服系统中的开关死区补偿技术;王宏等;《第12届全国电气自动化与电控系统学术年会论文集》;20041031;140页右栏倒数1-3段,141页左栏1-3段 *
基于模糊树模型的间接自适应模糊控制;丁海山等;《自动化学报》;20080630;第34卷(第6期);678页左栏倒数第1段,右栏1-3段,679页第1、2段 *
舵鳍联合系统的简捷非线性鲁棒控制;王新屏;《工程科技II辑》;20091230(第10期);14页倒数第1段,参见77页第1段-78页最后1段,78页4.1.2节第1段 *
船舶减摇鳍电驱动系统设计研究;庞强;《工程科技II辑》;20070916(第5期);第7页倒数第2段,15页2.3.3节,21页倒数第3段,34页第2段,41页-48页3.2.1-3.2.3, 70页倒数第2段,附图2.1,附图3.5 *

Also Published As

Publication number Publication date
CN103895832A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN103895832B (zh) 一种船舶电伺服鳍、翼鳍减横摇智能矢量控制方法
Yang et al. Adaptive exponential sliding mode control for a bearingless induction motor based on a disturbance observer
CN108233781B (zh) 基于干扰观测器的直流电机自适应反演滑模控制方法
CN103647490B (zh) 一种永磁电机的滑模控制策略
CN104242769B (zh) 基于连续终端滑模技术的永磁同步电机速度复合控制方法
CN106330038B (zh) 一种基于自适应增益滑模观测器的pmlsm无传感器控制方法
CN103701386B (zh) 基于观测磁链误差的异步电机无速度传感器的全阶磁链观测器的获取方法
CN108768232B (zh) 一种半潜船动力定位系统推进电机控制方法及系统
CN105227017A (zh) 一种针对船舶吊舱ssp推进器的高阶mfac的方法及系统
CN105871282A (zh) 一种基于电机转动惯量的控制器pi参数整定方法
CN102647134B (zh) 一种永磁同步电机无角度传感器的效率优化控制方法
CN106026835A (zh) 一种基于模糊控制和滑模观测器的无速度传感器优化方法
CN110345013B (zh) 基于神经网络模型预测控制的磁悬浮垂直轴风电机组控制方法
CN110401378B (zh) 基于神经网络-模型预测控制的磁悬浮偏航电机控制方法
CN103116281B (zh) 轴向混合磁轴承无模型自适应控制系统及其控制方法
CN103997269B (zh) 一种电力机器人驱动系统的控制方法
CN104953916A (zh) 一种基于永磁同步电机调速系统的新型速度控制器
CN106849809A (zh) 一种基于磁链误差矢量法的svm‑dtc电机控制算法
CN106849790A (zh) 一种不匹配受扰圆筒容错永磁直线电机系统的新型滑模控制方法
CN110784144B (zh) 内置式永磁同步电机的改进控制方法
CN109116727B (zh) 一种基于低通滤波器的pid型一阶全格式无模型自适应航速控制算法
CN103825520A (zh) 一种异步电机最优转差频率控制方法
CN101383573B (zh) 永磁型无轴承电机直接悬浮力控制方法
CN103762925B (zh) 采用免疫算法的永磁同步电机的h∞转速估计方法
CN117055582A (zh) 一种具有预设性能的船舶助航风帆终端滑模控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104