CN103889376B - 生物相容性电极部件及其制造方法 - Google Patents

生物相容性电极部件及其制造方法 Download PDF

Info

Publication number
CN103889376B
CN103889376B CN201280044596.4A CN201280044596A CN103889376B CN 103889376 B CN103889376 B CN 103889376B CN 201280044596 A CN201280044596 A CN 201280044596A CN 103889376 B CN103889376 B CN 103889376B
Authority
CN
China
Prior art keywords
electrode
electrode assembly
assembly part
carrier material
manufacturing electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280044596.4A
Other languages
English (en)
Other versions
CN103889376A (zh
Inventor
C.纽博德
S.梅根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hear Ip Pty Ltd
Original Assignee
Hear Ip Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2011903731A external-priority patent/AU2011903731A0/en
Application filed by Hear Ip Pty Ltd filed Critical Hear Ip Pty Ltd
Publication of CN103889376A publication Critical patent/CN103889376A/zh
Application granted granted Critical
Publication of CN103889376B publication Critical patent/CN103889376B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0541Cochlear electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F11/00Methods or devices for treatment of the ears or hearing sense; Non-electric hearing aids; Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense; Protective devices for the ears, carried on the body or in the hand
    • A61F11/04Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense, e.g. through the touch sense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/18Internal ear or nose parts, e.g. ear-drums
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/18Internal ear or nose parts, e.g. ear-drums
    • A61F2002/183Ear parts

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Cardiology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Neurology (AREA)
  • Pulmonology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Biophysics (AREA)
  • Psychology (AREA)
  • Neurosurgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明提供了用于制造电极装置部件的方法,该方法包括步骤:(i)提供生物相容性载体材料,和(ii)对生物相容性载体材料执行消融法,以形成凹部,该凹部能够接受生物相容性电极材料。如此制造的部件可用作用于生物电极的载体,所述生物电极例如耳蜗电极和神经袖套电极。

Description

生物相容性电极部件及其制造方法
技术领域
本发明一般涉及电极及其制造方法。特别地,本发明涉及可用于在生物组织中提供电刺激或感测电活动的电极。
背景技术
电信号是许多生物系统中的重要介质,并且在动物的神经系统中尤其如此。例如,骨骼肌收缩由中枢神经系统起源细胞的去极化促成,所述去极化一直传播到与肌肉电通讯的外周神经膜。
重要的感觉功能取决于从外周神经到中枢神经系统的电流分程传递。例如,眼中感光细胞的刺激激活视神经的神经元,所述视神经的神经元依次激活脑中的视觉皮层细胞。类似地,声波机械刺激耳蜗的毛细胞,所述耳蜗的毛细胞将声波转换为电信号,所述电信号被传送到脑的听觉皮层以提供听力。
存在许多导致生物系统中的电信号分程传递受损的获得性病症和遗传缺陷。此类缺陷可导致瘫痪、失明或耳聋。生物医学工程领域已尝试通过使用多种类型的可植入电极人为刺激多种生物组织来补救此类缺陷。一个非常成功的应用是使用耳蜗电极植入物治疗耳聋。
除了用电流刺激组织外,还必须感测体内的电活动。在某些研究领域(例如神经科学)中,期望监控关于生物组织的电活动,目的在于理解潜在电生理机制。这个目的可通过将电极植入组织内实现,以测量跨越细胞、组织、器官或甚至整个生物的电势差。
如应当理解的,用于在生物应用中使用的电极必须精确制造,并且通常以极小尺寸制造,以便特异性接触靶标组织。例如,耳蜗电极阵列必须能够插入迷路的受限空间内,并且还呈现与器官的音质组构(tonotopical organization)一致的电极。
现有技术公开了许多用于制造在生物背景下使用的电极的方法。广泛使用的方法依赖复杂光刻法,以铺设最终接受导电电极材料的通道。
这些方法依赖毒性物质例如光致抗蚀剂化合物、溶剂和显影剂的使用。考虑到本申请的电极对象可植入人内,显然需要在使用前去除所有此类化合物,这需要制造过程中的另外步骤。此外,在光刻法中使用的化合物中的一些可与电极的某些部件反应,导致不利的化学、结构或功能变化。此类化合物还对涉及电极制造的个人提供明显的职业卫生与安全危险。
许多用于制造耳蜗电极的非光刻法也需要在制造过程中的一个或多个步骤时使用化学品。例如,有机溶剂例如氯仿用于在制造过程中沉积和/或去除来自电极的材料。此类溶剂是有问题的,因为残留物可保留在电极上。
残留物的存在是医疗装置制造中的重大问题。特别地,必须选择残留物检测方法,选出抽样法,设定残留物验收标准,提供残留物去除验证方法和执行回收研究,制备相应用于去除和培训机构工作人员的书面程序。所需要的更多监管工作是大量的,并且可对医疗装置的开发添加成本。在一些情况下,甚至可能无法将残留物去除至可接受水平。上文描述的职业卫生与安全问题也是有关的。
用于制造的光刻法还可导致具有实际缺点的电极。例如,这些方法一般能够提供仅有限厚度的电极膜,导致在某些应用中的不足够导电性。另一个缺陷是电极可显示出有限的表面积,因此需要大于期望的电极垫以实现对组织的给定刺激水平。更大电极的使用在耳蜗植入物中是禁忌的,因为需要刺激耳蜗内的极小的特异性面积。
本发明的一个方面通过提供用于制造可用于生物应用的电极的替代或改良方法,克服或减轻了现有技术的问题。进一步方面提供了替代或改良的电极本身。
文件、动作、材料、装置、物品等的讨论包括在本说明书中仅用于提供本发明的背景的目的。不提示或表示这些内容的任何或全部构成现有技术基础的部分或是本发明相关领域的普通一般知识,因为它在本申请的每个权利要求的优先权日期前存在。
发明内容
在第一个方面,本发明提供了用于制造电极装置部件的方法,该方法包括步骤:(i)提供生物相容性载体材料,和(ii)对生物相容性载体材料执行消融法,以形成凹部,该凹部能够接受生物相容性电极材料。
在一个实施例中,消融法不需要载体材料暴露于某些化合物,且特别是 在现有技术光刻法或显微构造方法中使用的毒性化合物中的任一种,例如光致抗蚀剂、显影剂、去除剂、剥离剂、稀释剂、EBR、粘附促进剂和辅助化学品、蚀刻剂和溶剂。
在另一个实施例中,消融法不需要载体材料暴露于在载体材料上沉积的保护层的施加和/或去除中使用的溶液。溶液的溶剂可以是有机溶剂包括氯仿。
在一个实施例中,消融法依赖加热载体材料,并且可以是激光消融法。特别地,激光消融法可包括准分子激光的使用。
在一个实施例中,通过消融法形成的凹部具有足够深度,以允许沉积约1-25微米厚度的电极膜。在一个实施例中,通过消融法形成的凹部具有足够深度,以便允许沉积至少约1微米厚度的电极膜。
在该方法的一个实施例中,生物相容性载体材料具有保护层,或与保护层一起提供。相应地,该方法可包括在提供载体材料的步骤后和在执行消融法的步骤前,对载体材料施加保护层的步骤。施加步骤可无需使用溶剂且特别是有机溶剂例如氯仿而实现。
保护层可以是膜,并且在一个实施例中,具有小于约10微米且特别是约5-7微米的厚度。在一个实施例中,膜是预先形成的,并且施加于生物相容性载体。膜可具有粘合剂,以有利于膜与载体的附接。膜可以是聚合物膜例如聚酰亚胺。
在一个实施例中,该方法包括在执行消融法后去除保护层的步骤。保护层可无需使用溶剂且特别是有机溶剂例如氯仿而去除。
在另一个实施例中,该方法包括将导电材料沉积到载体材料的凹部内的步骤。导电材料可使用蒸汽沉积法例如溅射法进行沉积。
该方法的进一步实施例包括在导电材料沉积前掩蔽载体材料的步骤。该方法可包括在电极材料沉积前对载体材料施加荫罩(shadow mask)的步骤。荫罩可具有约25一约75微米的厚度,并且在某些实施例中,由激光可加工材料制造。
在第二个方面,本发明提供了包括电极材料部分和载体材料部分的电极部件,其中所述载体材料部分具有一体构造。
在第三个方面,本发明提供了包括电极材料部分和载体材料部分的电极部件,其中相对于通过光致抗蚀剂法产生的相似电极的糙度水平,所述电极材料部分的表面具有增加的糙度水平。
在第四个方面,本发明提供了用于在耳蜗植入物中使用的多电极阵列,该阵列包括约22-32个电极。
在第五个方面,本发明提供了包括电极材料部分和载体材料部分的电极部件,其中所述电极材料部分具有小于约0.03mm2、0.0299mm2、0.02298mm2、0.02297mm2、0.02296mm2或0.02295mm2的几何表面积。
在第六个方面,本发明提供了用于在耳蜗植入物中使用的多电极阵列,该阵列包括多个电极垫,两个垫之间的距离小于约0.7mm。
在第七个方面,本发明提供了包括电极材料部分和载体材料部分的电极部件,其中所述电极材料部分具有约1-20微米的厚度。
在第八个方面,本发明提供了通过如本文描述的方法产生的电极部件。在本发明的一些实施例中,电极部件具有下述性质中的一种或多种:载体材料部分具有一体构造,相对于通过光致抗蚀剂法产生的相似电极的糙度水平,电极材料部分的表面具有增加的糙度水平,电极材料部分具有小于约0.03mm2的几何表面积,电极材料部分具有约1-20微米的厚度。
在第九个方面,本发明提供了通过如本文描述的方法产生的多电极阵列。在本发明的一些实施例中,多电极阵列具有下述性质中的一种或两种:阵列包括约22-32个电极,阵列包括多个电极垫,两个垫之间的距离小于约0.7mm。
在第十个方面,本发明提供了包括如本文描述的电极部件、或如本文描述的多电极阵列的可植入电极装置。在一个实施例中,可植入电极装置是耳蜗植入物。
在第十一个方面,本发明提供了治疗、预防或改善与组织的异常电刺激相关的病症的方法,该方法包括下述步骤:将如本文描述的电极部件、如本文描述的多电极阵列、或如本文描述的可植入电极装置植入有此需要的动物内。在该方法的一个实施例中,与组织的异常电刺激相关的病症是耳聋。
附图说明
图1是本发明的优选方法的图解。白色区域代表硅酮弹性体,黑色区域代表玻璃基底,向前倾斜的阴影代表KaptonTM胶带,向后倾斜的阴影代表黄铜掩模。
图2是关于三类电极的电势瞬变的图形比较。黑线代表并非激光加工的电极,粉线代表激光加工的电极(指定为“设计A”),红线代表激光加工的 电极(指定为“设计B”),而绿线代表豚鼠电极。
图3是在连续刺激8周前和后,激光加工的正方形垫(指定为“电极8”)的电势瞬变的图形表示。菱形数据点代表阴极Va,正方形数据点代表阴极Vt,三角形数据点代表阳极Va。十字形数据点代表阳极Vt。
图4是关于在玻璃基底上使用光刻法制备的薄膜电极(蓝色图示)和采用硅酮激光加工的厚膜电极(粉色图示)的双相电势瞬变测量的图形比较。
图5是显示在硅酮基底上的5个电极垫和轨道的电子显微照片。
图6是图5中所示上层电极垫的高倍放大,证实厚膜的表面糙度。
图7是显示具有一些硅酮暴露的电极垫边缘的电子显微照片,显示当在硅酮基底上沉积时,激光加工的硅酮和铂膜的外形。
图8是显示由铂厚膜覆盖的电极垫边缘的电子显微照片。激光加工的硅酮基底的一些是暴露的。
图9是图8中所示铂厚膜中的隆起的高倍放大。
图10是显示电极垫和轨道的电子显微照片,其中激光加工基底的一些区域未由厚膜覆盖。明亮区域代表铂,而围绕垫的更暗的边显示暴露的激光加工的硅酮基底。
图11是显示具有约59微米宽度的轨道的电子显微照片。
图12是显示在玻璃基底上沉积的铂膜的电子显微照片。
图13是显示在激光加工的硅酮基底上沉积的铂膜的电子显微照片。
图14是显示在并非激光加工的硅酮基底上沉积的铂膜的电子显微照片。
图15是显示在硅酮基底上沉积的铂膜横截面的电子显微照片。
具体实施方式
在考虑本说明书后,对本领域技术人员显而易见的是,本发明如何在多个替代实施例和替代应用中实现。然而,尽管本文描述了本发明的多个实施例,但应当理解这些实施例仅呈现作为例子,而不是限制。像这样,多个替代实施例的这个详细描述不应解释为限制本发明的范围或宽度。此外,优点或其他方面的陈述适用于特异性示例性实施例,但不一定适用于由权利要求涵盖的所有实施例。本发明的多个实施例和优点将主要通过参考用于在耳蜗电极阵列中使用的电极进行描述,然而,应当理解此类公开内容不是限制性的,并且适用于考虑的其他类型的电极装置。
除非有相反的意思表示,否则呈现为本发明的优选或替代形式的特点可如单独或彼此任何组合公开的本发明中的任一种呈现。
本说明书的描述和权利要求自始至终,单词“包括”及其变化不预期排除其他添加剂、部件、整数或步骤。
本发明至少部分基于申请人的发现:电极装置部件可使用消融技术制造,并且此类技术为目前方法和电极提供替代物,并且在一些情况下,提供超过在本申请提交日期时已知那些的优点。
在第一个方面,本发明提供了用于制造电极装置部件的方法,该方法包括步骤:(i)提供生物相容性载体材料,和(ii)对生物相容性载体材料执行消融法,以形成凹部,该凹部能够接受生物相容性电极材料。
申请人的直接且有效的直接在载体材料上形成凹部的方法显著违背现有技术方法。如本文描述的消融法的使用可在制造过程中提供一个或多个优点。例如,明确的是本方法更不复杂且更经济,需要显著更少的劳力和消耗性化学品。
本方法降低的复杂性还为制造过程的自动化或半自动化提供顺应性。如本领域技术人员应当理解的,许多类型的可植入电极的制造在洁净室环境中在很大程度上通过手工实现。
该方法的一些实施例的优点是消融法不需要载体材料暴露于某些化合物。如提及的,用于显微构造和平板印刷的现有技术方法通常需要使用毒性化学品。此类化学品包括光致抗蚀剂、显影剂、去除剂、剥离剂、稀释剂、EBR、粘附促进剂和辅助化学品、蚀刻剂和溶剂(例如丙酮和甲苯)。本方法不依赖于其的示例性化学品通过参考由MicroChemicalsGmbH,Schillerstrasse18,D-89077Ulm,德国使用的商品名称提及,并且包括: MicroChemicalsTI35E、MicroChemicals TI35ES、MicroChemicals TI xLift、MicroChemicals TIPlating、MicroChemicals TI Prime、MicroChemicals TI Spray。
一些现有技术方法需要在制造过程的一些阶段时对生物相容性载体施加和/或去除保护层。此类保护层通过施加溶液在载体表面上原位形成,其中溶剂的蒸发在载体表面上留下溶质沉积作为保护层。参考Dupas-Bruzek等 人;J.Appl.Phys.106,074913(2009)的方法,由此将聚(甲基丙烯酸甲酯)的氯仿溶液喷射到聚二甲基硅氧烷基底上。在制造过程后期,通过在氯仿中洗涤基底来溶解聚(甲基丙烯酸甲酯)(PMMA)层。本方法避免基底暴露于溶剂例如氯仿的需要。
氯仿在皮肤和眼上接触时是危险的。它是已证明的致癌物:由NIOSH分类为+(已证明);由ACGIH分类为A3(对于动物证明),由IARC分类为2B(可能对于人);由NTP分类为2(一些证据)。如在哺乳动物体细胞、细菌和/或酵母中所示,氯仿具有一些诱变效应。该物质可能对肾、肝、心脏是有毒的。对该物质的反复或延长暴露可产生靶标器官损害。
类似地,已知PMMA引起皮肤刺激和眼刺激。PMMA作为吸入危险列出,并且还具有靶向肝、肾、膀胱和脑的能力。该化合物由RTECS作为可疑致瘤的列出。
因此,在避免使生物相容性载体暴露于对电极接受者可能具有不利作用的化合物的需要方面,本发明提供了显著优点。本发明的更多优点在考虑下文的更多公开内容后将变得显而易见。
在一个实施例中,该方法缺乏对消融表面执行表面修饰的步骤。在现有技术的一些方法中,必须特异性修饰凹部的表面,以便有利于导电材料例如金属的附接。本文描述的消融法(任选与本文描述的沉积法组合)允许更简单的电极制造过程,所述电极制造过程不需要任何不连续的表面修饰步骤。
本方法可用于制造电极装置部件。如技术人员容易理解的,完全有功能的电极装置一般由许多部件组成,所述部件包括与生物组织形成电连接的生物相容性电极材料,以及辅助部件例如支持导电电极垫的载体结构、线、外壳等。
上文描述的方法涉及基本上非导电载体结构的制造,以支持导电生物相容性电极材料。在这个能力中,载体材料可作用于使电极相对于彼此适当定向,或相对于电极装置的一些其他部分例如外壳适当定向。在耳蜗植入物的多电极阵列中电极垫的正确位置和间隔在确保刺激耳蜗的正确区域中是重要的,这依次导致更准确的声重现。
作为另外一种选择或除了作为支持结构的作用外,载体还可充当形成生物相容性电极材料的模,所述生物相容性电极材料在后续步骤中施加于载体结构。电极材料可沉积到载体材料中形成的凹部内,在所述凹部中,它与载体材料键合。一般地,凹部具有宽且浅的配置,使得电极材料在其中的沉积 提供平面结构例如垫。然而,应当理解,凹部可以其他方式成形,使得其他导电结构例如线、连接末端等顺应根据本方法的制造。
在阅读本说明书的整个公开内容后将变得显而易见的是,本方法可包括提供功能电极装置所需的更多步骤。特别地,如下文更多描述的,该方法的一些实施例包括对载体结构施加导电材料所需的一个或多个步骤。然而,应当理解在一个实施例中,该方法仅涉及具有凹部的载体结构的制造。
可用于本方法中的合适载体材料包括生物相容性聚合物例如硅酮、聚酰亚胺、聚偏氟乙烯、聚苯基砜、聚(对苯二甲基)聚合物等。在硅酮中,示例性类别是硅橡胶类型,且特别是MDX4-4210、MED4830、MED4860类型。合适的聚(对苯二甲基)聚合物是在Paralyne(ParaTech Coating Inc,AlisoViejo,CA)的商品名称下出售的那些。技术人员熟悉适合于在本发明中使用的许多其他生物相容性载体材料,其中所有均包括在本申请的范围内。
如本文使用的,术语“生物相容性”意指材料能够接触生物组织,而不以任何实质方式负面影响该组织(或事实上整个生物)的功能。关于生物相容性的特别需求当然将根据有关应用而改变。例如,设计仅用于短期使用的电极部件(例如在介入性心脏学的背景下)可能不需要负责宿主排斥的可能性。然而,此类应答对于预期用于长期植入的部件可能是重大问题,所述部件例如耳蜗植入物或在深部脑刺激中使用的电极。
针对在电极部件制造中使用的已知光致抗蚀剂法的背景,申请人提出发散方法。已发现用于导电电极材料的载体的生物相容性材料(例如硅酮)可通过消融法形成,由此直接在载体材料内形成凹部。随后将导电电极材料后续沉积到如此形成的凹部内。
如本文使用的,术语“消融法”意指任何方法,所述方法能够以控制方式去除生物相容性载体材料的一部分,导致具有预定尺寸的凹部。消融法的使用与充分公认且使用的光刻法形成直接对比,所述光刻法依赖光致抗蚀剂化合物形成以壁围绕的结构,所述以壁围绕的结构延伸超出载体材料的表面。在导电电极材料沉积到模式化载体材料上之后,去除由光致抗蚀剂形成的以壁围绕的结构,以暴露沉积的导电材料。如应当理解的,沉积的导电材料位于载体表面的凸出部,并且因此更多的载体材料必须围绕导电材料塑模,以保护电极边缘。过量的更多载体材料必须在分开的过程步骤中去除,以留下适当暴露的电极表面。相比之下,本方法通过需要单个消融步骤以便生成导电材料在其内沉积的凹部而明显更简化。
在本发明的背景下有用的消融法一般依赖侵蚀过程,例如使载体材料汽化、转换为等离子体、熔化、燃烧、冷冻、剁碎、蚀刻、溶解、研磨或升华,以形成凹部。
在本发明的优选实施例中,消融法不需要载体材料对任何化学品(且特别是任何毒性化学品)的暴露。这类消融的例子是汽化,由此载体材料的极端加热导致材料转换为蒸汽或气体。
在一个实施例中,消融法是激光消融法。考虑到由激光束提供的高控制水平,已发现激光消融特别适合于本方法。当通过基于激光的技术消融时,可提供关于凹部位置和尺寸的相当大的准确度。可密切控制激光能量吸收的深度和因此通过单个激光脉冲去除的材料量。
对于以低激光通量执行的一些激光消融法,载体材料通过吸收的激光能量加热且蒸发或升华。在高激光通量时,材料可转换为等离子体。
在该方法的优选形式中,在消融法中使用的激光发出以基本上不加热生物相容性载体材料的频率的光能。作为另外一种选择或另外地,激光在这样的条件下操作,使得生物相容性材料基本上不被加热。
在该方法的一种形式中,激光发出紫外线范围中的光能。特别优选的激光是准分子激光(也称为复合受激态激光)。来自准分子激光的光由许多生物相容性载体材料良好吸收,所述生物相容性载体材料可用于本发明的背景下。代替燃烧或切割生物相容性载体材料,准分子激光发出足够的光能以破坏载体材料表面的分子键。载体材料以控制方式有效崩解,其中崩解材料被推进到周围环境内。准分子激光可特别用于本方法中,因为它们能够去除精细层载体表面材料,伴随对非靶标材料的最低限度的加热或其他变化,所述非靶标材料基本上保持完整。
准分子激光的波长依赖使用的配偶体准分子。在该方法的某些形式中,准分子选自Ar2(126nm)、Kr2(146nm)、Xe2(172、175nm)、ArF(193nm)、KrF(248nm)、XeBr(282nm)、XeCl(308nm)、XeF(351nm)和KrCl(222nm)。
在该方法的优选形式中,激光是ArF准分子激光。这个激光在193nm的波长下操作,并且特别适合于硅酮载体材料的消融。
虽然可能需要一些例行实验以最佳化消融法,但技术人员能够基于载体材料的光学性质选择合适激光(和激光波长)。
激光消融可包括用脉冲激光或连续波激光束去除载体材料。当使用脉冲激光时,脉冲时间可在激光的可操作范围上常规改变,以实现具有所需尺寸的凹部。
在该方法的一个实施例中,通过消融法形成的凹部具有足够深度,以便允许沉积至少约1微米厚度的电极膜,并且优选沉积至少约2、3、4、5、6、7、8、9、10、11、12、13、14、l5、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50微米厚度的电极膜。在一个实施例中,凹部具有约2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50微米的深度。对于许多应用,深度约10微米的凹部用于提供10微米的电极膜厚度。
凹部的形状可根据载体材料的最终功能或掺入载体材料的任何电极装置而改变。一般地,凹部的壁和底部在几何形状中将是基本上平面的,然而,应当理解一些应用可能需要弯曲几何形状,或甚至可能不规则形态。例如,考虑到耳蜗鼓阶的几何形状,具有弯曲几何形状的底部在掺入耳蜗植入物内的电极阵列制造中可能是有利的。
与本方法形成对比,现有技术光刻法可实际用于允许仅高达1微米厚度的薄膜沉积。为了在光刻法中达到可接受的结果,光致抗蚀剂层的厚度必须显著大于沉积电极膜的厚度。因此,为了甚至获得电极膜厚度中的适度增加,必须显著增加抗蚀层的厚度。极厚光致抗蚀剂层的铺设在技术上是非常困难的且通常是不成功的。相比之下,消融法允许在载体材料中形成相对深的凹部。这允许沉积厚得多的电极膜,并且本发明的优点还在下文讨论。
在本发明的一个实施例中,生物相容性载体材料具有保护层,或与保护层一起提供。如本文使用的,术语“保护层”意欲包括任何材料层,所述材料能够(i)粘附至载体材料的表面,并且在消融步骤过程中保持粘附;和(ii)阻止通过消融法产生的任何污染物(例如碎片、飞溅或其他副产物)落回到载体材料表面。应当理解此类污染物可能是毒性的,或可能不利影响载体材料的物理或化学性质。
如显而易见的,保护层将具有允许下层材料消融的厚度和组成。因此,当消融法是例如基于激光的时,保护层必须顺应激光消融,允许下层载体材料的消融。
保护层可在材料制备过程中掺入载体材料内,或事实上可以是载体材料固有的。在一个实施例中,保护层仅是载体的外部区域,并且是与载体的剩余部分在化学和物理上不易区别的和连续的。在这种情况下,保护层通过任何合适方法包括通过使用切片机与下层载体材料去除。
保护层可具有与载体材料相同的材料,并且在载体制备过程中掺入。例如,当制造载体材料时,分割元件(例如薄聚合物膜)可嵌入材料内以限定外部保护层。在激光消融后,分割元件上升,带走保护层(连同任何污染物),留下未被污染的载体表面。
代替如上所述的物理分割元件,载体材料可制造为包含具有结构性弱点的平面。在这种情况下,在激光消融后,具有结构性弱点的平面用于使上层保护层与下层主体载体材料分离。
作为另外一种选择,载体材料可在两个不同层中制造,其中薄保护层在预先形成的下层载体材料主体上制造。在这个实施例中,保护层可由与下层主体载体材料相同的材料组成,或可由完全不同的材料组成。
在一个实施例中,将保护层以与载体材料制备完全不同的方式施加于载体材料。其中可实现该目的的一种方式是通过在制备后将薄膜施加于载体材料。薄膜可通过任何方法粘附到载体材料,所述任何方法包括粘合剂或物理力(例如范德华力或静电吸引)。使用的任何薄膜和粘合剂当然均必须顺应通过所述消融法的去除。此外,任何粘合剂均必须提供足够的粘附水平,以阻止从载体材料上升,但不如此粘附,使得膜难以去除,或在去除后对载体材料引起严重损害。任何粘合剂的更多期望性质是它在去除后在载体材料上留下很少的残留物或不留下残留物。在由此粘附残留物保留的该方法的实施例中,在超声波浴和异丙醇中清洁30分钟可能足以去除。用棉签的机械去除也可能是有用的。在一个实施例中,清洁方法不需要使用化学品,或毒性化学品(例如有机溶剂例如氯仿)。
在该方法的一个实施例中,粘合剂是旋转涂布到载体材料表面上的硅酮粘合剂,其中薄膜保护层施加到粘合剂上。
在该方法的一个实施例中,用作保护层的薄膜是具有小于约10、9、8、7、6、5、4、3、2或1微米厚度的聚合物膜或胶带。特别合适的膜或胶带是 具有约5-7微米且优选约6微米厚度的聚酰亚胺。在该方法的高度优选形式中,保护层是商购可得的包括粘合衬底的聚酰亚胺胶带。此类胶带在KaptonTM的商品名称下出售,所述KaptonTM是由DuPont开发的聚酰亚胺膜。KaptonTM胶带由RS components Pty Ltd,Smithfield,New South Wales,澳大利亚;库存号383-3960供应。这个特异性KaptonTM胶带具有约30-40微米厚度的硅酮粘合剂,其中聚酰亚胺层也是约30-40微米厚。
上文提供的本发明方法导致电极部件的形成,所述电极部件包括具有限定尺寸的凹部的生物相容性载体结构。如应指出的,此类部件缺乏导电材料。相应地,在某些实施例中,本方法包括将导电材料沉积到载体材料凹部内的步骤。
技术人员能够选择合适的电极材料用于电极部件的预期应用。技术人员非常熟悉此类材料,并且它们包括铂、铱、钛、金、银、氧化铱、铑、氧化铑、钽、氮化钛、铌及其任何合金。还考虑了复合电极例如组合铂和铱的电极。
技术人员熟悉许多用于将金属电极材料沉积到生物相容性载体材料上的方法。例如,可用于将金属沉积到基底上的物理蒸汽沉积法(例如溅射技术)是技术人员众所周知的,如通过下述出版物举例说明的,所述出版物的内容通过引用并入本文:D.M.Mattox,Handbook ofphysical vapour deposition (PVD)processing,(1998)NoyesPublication,New Jersey T.Stieglitz,Electrode Materials for recording andstimulation,编辑Kenneth W Horch和Gurpreet S Dhillon,NeuroprostheticsTheoryand Practice,Series of Bioengineering &Biomedical Engineering第2卷,World Scientific,2004,New Jersey。
申请人提出通过在电极例如耳蜗电极制造过程中使用溅射法提供优点。此类方法导致具有基本上重现性结构的致密膜的沉积,和最低限度孔的形成或无孔的形成。至少就铂而言,沉积的膜具有极高纯度。此外,在厚度方向中的膜硬度与由主体铂所示的膜硬度相同或更大(如通过纳米压痕测量表征的)。
溅射涂层也是针对腐蚀抗性的,这在一般潮湿和含盐的生物环境中是重要的。
在消融表面上沉积的溅射涂层有利地提供可在本方法中控制的表面糙度。糙度是重要参数,因为它直接涉及在电极/组织界面处交换电子可用的表面积。控制有效电极面积是在人接受者中安全使用电极的关键需求。
考虑到上述出版物、本领域的其他相似出版物和技术人员的知识,通过不超过例行实验能够得到合适的溅射法。在该方法的一个实施例中,使用磁控直流溅射。可能必须改变在其中使用硅酮的标准参数,以阻止沉积金属膜的降解或龟裂。例如,可能需要在比通常更低的温度、更低的偏压和更高的压力下涂布,以提供在膜上的最佳沉积。
许多公司提供在有偿服务基础上的物理蒸汽沉积服务,并且能够对任何给定应用执行任何常规最佳化研究。一个例子是Teer Coatings Limited,West Stone House,BerryHill Industrial Estate,Droitwich,Worcestershire WR99AS,英国。这个公司使用众所周知的PLASMAGTM磁控管为公众提供磁控溅射服务。Teer Coatings Limited执行在本文公开的所有实例中的电极部件、和图5到15的电子显微照片中所示的电极部件中的载体材料上的铂磁控溅射。
在一个实施例中,磁控管配置是四极、平面或圆柱形配置。溅射可以是直流或射频的,以约220W到约400W的功率。偏压可以是约-60V到约-140V。气压(一般为氩)可以是约2mTorr到约50mTorr。一般地,沉积温度小于约300摄氏度。
其他沉积法可用于本发明的背景下。例如,蒸发方法例如电子束蒸发、热蒸发、闪蒸和电阻蒸发可以是适用的。在这些方法中,来源材料在真空中蒸发。真空允许蒸汽颗粒直接传播到靶标物体(基底),在所述靶标物体中,颗粒冷凝回固态。
当待沉积更厚的电极材料膜时,闪蒸技术可以是特别适用的。
在一个实施例中,沉积法不依赖沉积金属的自催化。在自催化敷金属(也称为无电电镀)中,金属从用于自催化反应的包含电解质、还原剂和反应物的浴沉积。自催化涂层具有与下述有关的问题:沉积金属的杂质、结构不规则、由于孔和包括外源物质(例如用于无电镀沉积的电解质和化学品)的更低密度、和比主体材料更低的导电性。此外,自催化涂层需要修饰基底或提供种子层,以有利于反应产物与基底的附接。
避免自催化方法的更多优点是避免基底暴露于敷金属浴(以及激活浴)中的反应物。在这些浴中使用的溶液包括诸如盐酸羟胺、氨和一水合肼的物质。
盐酸羟胺在皮肤接触(刺激物)、眼接触(刺激物)、摄食、吸入的情况下是非常危险的。在皮肤接触(腐蚀剂、致敏剂)、眼接触(腐蚀剂)的情况下轻微危险。组织损伤量取决于接触长度。眼接触可导致角膜损伤或失 明。皮肤接触可产生炎症和起泡。粉尘的吸入将对胃肠道或呼吸道产生刺激,特征在于烧伤、喷嚏和咳嗽。严重过度暴露可产生肺损伤、窒息、无意识或死亡。已知这种化合物对于哺乳动物体细胞是诱变的。
就氨而言,温和的浓度引起结膜炎。与更高浓度的产物接触将引起眼和损害的肿胀,伴随可能的视力丧失。温和浓度的产物将引起皮炎,而更高浓度引起腐蚀样皮肤烧伤和炎症。毒性水平的暴露可引起皮肤损害,导致早期坏死和疤痕。氨对上呼吸系统和所有粘膜型组织均为腐蚀性和刺激性的。如果它进入肺深部,则产生肺水肿。肺水肿和化学性肺炎是潜在致命病症。
一水合肼引起严重眼刺激,在一些情况下,导致不可逆的眼损伤。皮肤刺激、皮肤致敏在轻度暴露中可见,其中液体的接触引起重度烧伤和溃疡。胃肠道效应在摄食时可见,其中注意到恶心、呕吐和腹泻症状。在更严重的发作中,跟着发生伴随立即疼痛的消化道烧伤、咽喉肿胀、抽搐和可能的昏迷。该化合物可引起肝和肾损害、贫血及其他血液异常。延长或反复暴露可引起不利重现性效应和胎儿效应。根据动物研究,一水合肼可引起癌症。
尽管不是必需的,但在该方法的一些实施例中,凹部在沉积步骤前由底层涂布。底层的使用可克服或改善起于底物表面化学的任何潜在粘附问题。因此,更少的考虑需要给予用作基底的硅酮的表面化学。底层可以是金属,并且特别是具有低密度、强和耐蚀金属。过渡金属例如钛是特别合适的。
一般期望避免用电极材料涂布在载体材料中形成的凹部外的区域,并且因此在优选实施例中,该方法包括在导电材料沉积前掩蔽载体材料的步骤。技术人员已知的任何合适的掩蔽法均可用于这个背景下,然而,优选掩蔽法包括在电极材料沉积前对载体材料施加荫罩。荫罩的功能是提供通过其沉积金属电极材料的型板。下述出版物(其内容通过引用并入本文)还描述了荫罩的使用:Ruediger Grundwald,Thin film Mirco-Optics,Elsevier2007,Amsterdam;Dobal L.Smith,Thin filmdeposition-Principles andPractice,McGraw-Hill,1995。
在该方法的优选实施例中,掩模具有约25-75微米、更优选约30-70微米、更优选约35-65微米、更优选约40-60微米、更优选约45-55微米、最优选约50微米的厚度。
掩模可由任何合适材料组成,但优选是激光可加工的。在该方法的某些实施例中,掩模由金属且更优选由黄铜制造。如应当理解的,掩模优选由基 本上平坦的模板制造,以避免掩模和载体材料之间的任何间隔,所述间隔将允许导电材料在沉积过程中的进入。
期望掩模中的孔洞与载体材料上的凹部密切对准,并且因此孔洞一般使用精确方法例如激光加工切割。事实上,载体材料的激光消融和掩模的激光加工的使用允许使用相同计算机可读模式用于两个过程。这个一致性导致在凹部和掩模孔洞之间的高水平对准。事实上,掩模在载体材料上的放置可在立体显微镜下执行,以进一步改善掩蔽准确度。当载体材料是硅酮时,表面的胶粘性帮助保留掩模。在掩模放置后,在掩模和载体材料之间的任何空气间隔通过紧紧按压去除。
在电极材料沉积到载体材料上和冷却至室温后,去除掩模。黄铜掩模的冷却可导致弯曲,在所述弯曲的情况下,它不能再使用且必须弃去。
在一些实施例中,荫罩可以是在激光加工过程中使用的KaptonTM胶带,所述KaptonTM胶带可在加工完成后留在硅酮上的原处。在厚膜电极材料的溅射沉积后,去除胶带。在一些实施例中,去除可用甲基硅氧烷得到促进。在那些情况下,当完全浸入时,缓慢去除胶带,因此帮助对硅酮载体上沉积的铂垫或轨道的损害降到最低。
在电极材料沉积和任何掩模去除后,包括与电极材料键合的载体材料的电极部件完成。电极部件可掺入外壳或技术人员已知的其他设计内,或与其他电硬件例如线、回路等结合。在本发明的某些实施例中,将电极部件与技术人员众所周知的其他部件组合,以提供临床上有用的装置例如耳蜗植入物或刺激神经套。考虑到通过本方法产生的电极的相对机械弹性,本发明为袖套电极提供了特别优点。相对于通过一些或全部现有技术产生的电极,可达到的更厚的金属垫和轨道导致具有改善抗张强度的电极。
通过上述方法提供的电极部件可具有新型性质,所述新型性质提供现有技术电极的替代物或提供超过现有技术电极的优点。在进一步方面,本发明提供了包括电极材料部分和载体材料部分的电极部件,其中所述载体材料部分具有一体构造。具有由单块材料(并且因此缺乏连接)制造的载体材料部分的电极未由光刻制造法提供。现有技术方法需要在沉积的电极材料周围添加更多载体材料,以便提供齐平表面。如上文讨论的,光致抗蚀剂的去除留下置于载体材料表面上方的凸出部的电极材料。使电极材料的边缘暴露于电势用于损害,因此需要填充通过去除载体材料上的抗蚀剂留下的区域。
通过现有技术方法制备的电极部件中存在的连接或界面区别于通过本方法制造的那些,其中差异通过肉眼或显微镜检查可见。
对具有载体或整体构造的电极赋予的实际优点是它们具有更大的总体机械稳定性且对变形更有弹性。生物电极通常需要是弹性的,以便适当植入。此外,电极可在植入后保留在屈曲位多年,因此对任何连接施加更多应激。缺乏连接的载体结构明显具有更少的失败概率,并且因此是本发明的优选实施例。
根据本方法产生的电极的另一个新型性质涉及电极材料的糙度。在再进一步方面,本发明提供了包括电极材料部分和载体材料部分的电极部件,其中相对于通过光致抗蚀剂法产生的相似电极的糙度水平,所述电极材料部分的表面具有增加的糙度水平。通过激光消融法在载体材料上引起的表面修饰导致表面糙度的增加。这违背对于溅射膜典型的光滑电极表面。
具有实际重要性,这个增加的糙度可转变为电极材料表面积的增加。表面积的增加依次允许更小尺寸的电极垫,和因此在多电极阵列例如耳蜗植入物中必需的多电极阵列中实现更高电极密度的能力。因此,在进一步方面,本发明提供了用于在耳蜗植入物中使用的多电极阵列,该阵列包括至少约22、23、24、25、26、27、28、29、30、31或32个电极。
不提电极密度中的优点,耳蜗植入物中的更小电极可以是有利的,因为植入物的总体大小很小。本发明的进一步方面因此提供了包括电极材料部分和载体材料部分的电极部件,其中所述电极材料部分具有小于约0.03mm2、0.0299mm2、0.02298mm2、0.02297mm2、0.02296mm2或0.02295mm2的几何表面积。
如本文使用的,术语“几何表面积”意指如根据表面是完全平面的假设计算的表面积。例如,如果电极是矩形的,则几何表面积将通过简单地将长度乘以宽度进行计算。
更小的电极可有利于植入物的更大插入深度。人耳蜗的长度为33-36mm,其中当插入时,一些植入物不能到达顶部尖端。这个物理局限性可意指它不能刺激在耳蜗顶部尖端周围的更高频率。
更小的电极还能够更准确的组织空间刺激。耳蜗植入物中的问题是电信号趋于从电极向外成扇形散开。这可导致耳蜗的一些区域接收错误刺激或接收重叠信号。更小的电极可更紧密地放置在一起,提供降低信号重叠的潜在利益。在进一步方面,本发明提供了用于在耳蜗植入物中使用的多电极阵列, 该阵列包括多个电极垫,两个垫之间的距离小于约0.7、0.6、0.5、0.4、0.3、0.2或0.1mm。
如上文提及的,本方法超过现有技术光刻法的优点是可沉积更厚的电极材料膜。相应地,本发明的进一步方面因此提供了包括电极材料部分和载体材料部分的电极部件,其中所述电极材料部分具有大于约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20微米的厚度。所以提出本方法首次允许厚电极膜与生物相容性载体材料的组合。在一些实施例中,本发明的更厚膜具有更大的机械稳定性和更高水平的可加工性的实际优点。
本发明具有更多优点,因为电极垫以及轨道可在基底上形成。一些现有技术方法仅适合于形成轨道,所述轨道将主要电极垫与其他部件例如连接工具连接。在单个步骤中制造轨道和垫的能力在制造简单性和成本方面具有明确优点。
本发明还提供了根据本文描述的方法中任一种产生的电极部件。在另一个方面,本发明提供了包括如本文描述的电极部件或多电极阵列的电极装置。
本发明的进一步方面提供了治疗、预防或改善与组织的异常电刺激相关的病症的方法,该方法包括将电极部件、多电极阵列或可植入电极装置植入有此需要的动物内的步骤。许多此类病症是医学和兽医学中已知的,然而,该方法的一个实施例提供了耳聋的治疗,所述耳聋的治疗已通过耳蜗电极阵列的植入成功地完成。
本发明目前将通过参考下述非限制性实例更充分地描述。
实例
实例1:使用硅酮作为载体和铂作为导电材料的电极部件的制造
将硅酮弹性体MED 4860混合,在旋转涂布到玻璃晶片上之前,在按重量计40%的庚烷中稀释(图1A)。
将一片基底置于旋转涂布机的卡盘上,并且使用吸管用硅酮覆盖基底表面。
将旋转涂布率和持续时间调整至硅酮的粘度,以获得所需约15-20微米的厚度。对于用40%庚烷稀释的MED4860硅酮,使用下述条件:2000rpm共20秒以获得15微米厚的层。在旋转涂布后,立即将样品置于设为100℃ 的电炉上,并且静置20分钟以蒸发溶剂,所述20分钟足以获得固化硅酮膜。当需要时,旋转涂布可重复几次,以建立更厚的膜。
当达到所需膜厚度时,从基底剥离硅酮膜。然而,该膜需要坚固基底用于更多处理,并且因此再附接到它旋转涂布到其上的玻璃晶片。这个再附接由于硅酮的胶粘性而实现,所述胶粘性可在处理后容易去除。
在硅酮膜再附接到基底后立即将KaptonTM胶带放到硅酮顶部表面上的表面上。用轻轻按压去除任何气泡。
随后使用具有193nm波长的ArF准分子激光来激光加工基底-硅酮-胶带复合物。激光加工从复合物顶部执行,并且通过KaptonTM胶带保护层,导致在硅酮内形成的凹部,该凹部具有10微米的深度。在激光加工后,剥去KaptonTM胶带。
覆盖硅酮的荫罩通过激光加工具有50微米厚度的黄铜箔进行制造。掩模具有与在硅酮载体中的凹部加工中使用的模式相同的模式。
掩模的激光加工使用具有266nm波长的Nd:YAG激光的第4谐波执行。激光脉冲的持续时间为15ns。用5x物镜使束达到集中于靶标基底,产生6μm的斑点大小。用500Hz的重复率和50mW的相应平均功率产生黄铜掩模。处理条件的概括显示于下表1中。
表1:用于黄铜荫罩的激光加工参数
如提及的,黄铜掩模和激光加工的硅酮载体共享相同模式化。相应地,将掩模置于激光加工的硅酮上,使得掩模的孔洞与硅酮凹部一致。为了准确度,放置在立体显微镜下手工完成。一旦掩模与硅酮中的激光加工模式对准,就将掩模紧紧按压到硅酮上,以去除掩模和硅酮之间的任何气泡或间隙。
随后将掩蔽的硅酮装载到磁控溅射设备的腔室内。为了沉积厚膜,首先由TeerCoatings Ltd(英国)将约50nm的薄钛粘附层溅射沉积到掩蔽的硅酮上。无需使掩蔽的硅酮暴露于空气,沉积10微米厚的铂层。从腔室中取 出溅射且掩蔽的硅酮,并且静置以冷却至室温。在冷却过程中,掩模由于热应力而弯曲,并且从掩蔽的硅酮处分离以暴露铂模式。
该方法的图解表示显示于图1中:a)由硅酮涂布的玻璃具有(b)粘附到硅酮的KaptonTM胶带。(c)将KaptonTM胶带和硅酮激光加工,和(d)随后去除胶带且替换为(e)黄铜掩模。(f)随后通过溅射法用铂(Pt)涂布暴露的硅酮和黄铜表面。去除黄铜和Pt的最上层。
实例2:使用硅酮作为载体和铂作为导电材料的电极部件制造的第一替代方法 (“设计A”)
这个实例中的电极部件以与实例1中公开的方式相似的方式制备,除了硅酮载体由硅酮溶液溶剂铸造外。模由特氟隆制造,将硅酮溶液倾入所述模内。溶液以与通常用于旋转涂布的粘度相比较更低的粘度制备。
在铸造后,使任何溶剂蒸发且使硅酮固化。固化通过加热至90℃得到加速,在所述条件下,固化通过30分钟实现。在固化和冷却后,从模中剥去片层。
在这个实例中产生的电极部件中的更多差异是使用硅酮保护层代替KaptonTM胶带,并且使用硅酮掩模代替实例1中公开的黄铜箔。
薄硅酮保护层通过旋转涂布形成,并且具有约70微米的厚度,尽管更薄的层将是可操作的。还应当指出铸造法可用于代替旋转涂布。当将保护片层置于硅酮基底之上时,发现异丙醇膜是可用的,因为它使两个片层能够相对于彼此滑动。作为另外一种选择,可使用100%乙醇。
硅酮荫罩通过使用具有266nm波长的Nd:YAG激光的第4谐波的激光加工进行制造。激光脉冲的持续时间为15ns。用5x物镜使束达到集中于靶标基底,产生6μm的斑点大小。使用2000Hz的脉冲重复率与50mW的平均激光功率制造硅酮掩模。
表2:用于所有硅酮掩模制造的激光加工参数
为了阻止掩模过度屈曲,将约50nm厚度的薄金膜溅射涂布到硅酮掩模上。这个膜提供了更结实的掩模。使用异丙醇将掩模在靶标上对准,以允许两个硅酮片层能够相对于彼此滑动,其中硅酮侧与硅酮基底接触。
实例3:使用硅酮作为载体和铂作为导电材料的电极部件制造的第二替代方法 (“设计B”)。
除了实例1和2中所述的方法外,可通过硅酮的激光加工修饰硅酮基底以产生更高的表面积。在这个实例中,硅酮中的熔凝石英含量增加。作为另外一种选择,任何其他有机或无机(非金属)纳米颗粒或微粒可用作填充剂。填充剂的制剂和馏分这样调整,使得硅酮保留所需弹性。颗粒在基质内均匀分布,并且当激光加工硅酮时,这些颗粒不被激光消融。因此,在硅酮载体中形成拱顶。因为颗粒并非紧紧嵌入硅酮基质内,所以它们被洗掉,使得仅硅酮保留在表面上。这些拱顶增加基底的表面积,所述基底的表面积在铂溅射后保留或进一步增加。
实例4:金属电极材料的绝缘。
可能需要轨道的绝缘和铂垫边缘的绝缘,以阻止在边缘处的高密度放电。为了实现这点,将进一步的薄硅酮层旋转涂布到根据实例1制备的硅酮-金属复合物的表面上。施加这个进一步层,以实现约25微米的厚度(10-40微米的厚度是一般接受的)。
通过进一步的准分子激光加工步骤暴露电极垫。在激光加工前,将KaptonTM胶带保护层置于进一步的硅酮层之上。随后仅在电极垫之上执行激光加工,直至进一步的硅酮层的整个厚度被去除,留下暴露的铂电极垫。
实例5:具有厚铂膜的电极装置测试
用于耳蜗植入物的典型测试是电势瞬变测量,这代表在特异性电流脉冲施加于电极后,在体外的电极电压应答。图2显示了施加于三个不同类型电极的双相电压脉冲:豚鼠测试电极(这对应于常规耳蜗植入物电极)、沉积到并非激光加工的基底上的厚铂膜,和沉积到在沉积铂厚膜前根据本方法激光加工的两个样品上的厚铂膜。
数据显示激光加工的电极一般比豚鼠电极表现更佳(与粉色曲线相比较的绿色曲线)。比较红色曲线与黑色曲线显示表面糙度(如激光加工的样品中可见的)提供超过具有低表面糙度的光滑厚膜样品的优良表现。
图3中的数据在一个激光加工的电极上收集,所述激光加工的电极用1.75mA的电流、25微秒脉冲持续时间和每秒600次脉冲的速率进行刺激。 施加电荷平衡双相脉冲和单极刺激。电解质是磷酸盐缓冲盐水。由数据可见电压经过刺激期保持基本上稳定,指出厚膜的高化学稳定性。
实例6:厚膜电极与薄膜电极的功能比较。
根据图1中所示方法制造的厚膜电极与在玻璃基底上用光刻模式化制备的薄膜电极相比较。与厚膜电极的0.03cm2相比较,薄膜电极具有0.0045cm2的几何面积。因此,薄膜电极的几何面积比厚膜的几何面积高50%。然而,表面糙度对于其中Ra约4nm的薄膜电极是极低的。相比之下,厚膜电极具有高表面糙度,这导致厚膜电极更高的实际表面积且依次导致厚膜电极的更佳性能。对于厚膜电极,可在脉冲结束的更低电压时测量到更佳性能。这还暗示极化阻抗对于厚膜电极是更低的,因为厚膜的波形看起来更平坦。
实例7:铂厚膜电极通过扫描电子显微镜检查的结构表征。
这个实例中所示的载体/电极材料复合物通过如本文图1中所示的方法产生,除了将电极材料沉积到玻璃上以外。这个实例中的所有铂厚膜均通过由Teer CoatingsLimited(英国)执行的磁控溅射沉积到硅酮载体(或当所示时,玻璃)上。
(i)外形表征。
图5显示了其中硅酮基底进行激光加工的厚膜样品。显示了五个接触垫,伴随几个结合的轨道。接触垫之一的放大呈现于图6中,显示厚膜的表面。
应当指出铂厚膜的表面证实糙度。表面糙度可分成两类。一类涉及由于激光加工的硅酮基底的粗糙化,所述激光加工导致粗糙铂膜。
另一类涉及隆起的存在(在图7、8和9中更明确显示),所述隆起是残留KaptonTM胶合胶带存在的结果。尽管隆起还涉及激光加工过程,但其起源是由于加工KaptonTM胶带中的过错,硅酮基底自身则没有那么多。这些隆起在样品边缘周围尤其大,在所述样品边缘中,它们的密度对于这个样品是最大的。
在垫的中心部分,观察到具有更小直径和更低高度的隆起。此外,不含隆起的膜区域在图6中可明确鉴定为波状和粗糙的。
关于隆起是KaptonTM胶带粘胶残余的更多证据显示于图7中。该图显示垫之一的边缘,在所述垫中膜未溅射到整个激光加工凹部内。图像的更暗区域代表硅酮,而图像的明亮区域显示铂厚膜。与更远离激光加工位点的光滑硅酮相比较,在图7中可见粗糙激光加工的硅酮基底。这是在激光加工位 点边缘周围的一些KaptonTM胶带粘胶。激光加工硅酮区域中的几个隆起是可见的。相同形状和相似大小的隆起可在由铂膜覆盖的表面到处观察到。
图8呈现了不同样品区域的另一图像,显示其中硅酮中的一些是暴露的垫边缘和在边缘周围更强的隆起。由铂膜覆盖的隆起的放大显示于图9中,显示隆起的分形样表面。
在这个实例中激光加工的硅酮的暴露是由于荫罩的未对准。掩模未对准约50微米,并且激光加工的硅酮垫的部分未由厚膜溅射,图10。
图11显示了具有约59微米的铂溅射宽度的轨道(箭头)以及在轨道周围存在的凸起硅酮和粘胶。
(ii)横截面表征。
使用聚焦离子束(FEI Nova Dual束)切割多种载体/电极材料复合物的横截面。选择三种样品:
-在玻璃基底上的铂膜(图12)
-在激光加工的基底上的铂膜(图13),和
-在并非激光加工的基底上的铂膜(图14)。
所有样品均具有使用离子束沉积的保护性Pt涂层。该层的厚度为约2μm,并且Pt厚膜和保护性Pt涂层之间的反差通过保护涂层中的杂质。
所有横截面图像均显示不含任何孔的致密厚膜。基底-膜界面在样品之间不同。对于在并非激光加工的玻璃(图12)和硅酮(图14)上沉积的铂,铂和基底之间的界面如预期的非常光滑和平坦。相比之下,如果膜沉积到激光加工的硅酮(图13)上,则界面是粗糙的且具有一些曲率。此外,一些孔可在硅酮中观察到,最可能是由于激光加工。基底的曲率在微观尺度上,因此可能曲率也是由于激光加工。
膜厚度的测量已导致不同结果。在来自相同分批(在硅酮上沉积的膜)的样品之间,厚度测量范围为6.9μm-8.6μm。一些厚度变化在激光加工的基底上沉积的膜横截面中观察到。如图13中可见的,膜厚度并不均匀并且可局部不同。Pt/硅酮界面的轮廓在铂表面中并未反映。在横截面中心,厚度略微低于在研磨横截面的边缘处。溅射膜通常适合基底且获得遍及膜的均匀厚度。然而,这个性质仅在激光加工的硅酮上发现,并且如果Pt沉积到并非激光加工的硅酮上,则未发现。因此,在激光加工的基底上不均匀的膜厚度也可与基底的激光加工联系。
关于在一个分批中沉积的样品之间的厚度变化的其他原因可能是溅射过程自身的不均匀性。例如在4”晶片上,可能涂布层的厚度在晶片中心和基片边缘之间可相差高达10%。尽管所有样品均保证具有均匀涂层,但对于在腔室中具有不同位置的样品的厚度可能轻微改变,使得在样品之间的1μm差异是可能的。
图15中呈现了横截面的放大图像,显示了某种程度上的微晶(或细粒)。图像中的反差源于细粒的不同定向。溅射膜通常证实许多缺陷,并且可能定向和微晶大小可依赖晶格中的缺陷而改变。尽管X射线衍射(XRD)已显示薄膜是高度(111)定向的,并且因此具有柱状纹理,但该柱可围绕其轴转动,并且在横截面中导致不同反差。此外,如图15中可见的,柱超过1微米高是不太可能的。为了举例说明,在薄膜中,通常柱状显微结构与从底部界面运行到顶部界面的柱相关。然而,对于极厚的膜,情况不是这样。
由横截面图像提出孔可能不负责膜中的机械性质的深度轮廓。细粒大小分布或薄氧化物层更可能负责机械性质的深度轮廓。
最后,应当理解无需背离如本文概述的本发明的精神,即可作出多种其他修饰和/或变化。

Claims (19)

1.一种用于制造电极装置部件的方法,所述方法包括步骤:
(i)提供生物相容性载体材料,
(ii)提供聚合物胶带,以及将所述聚合物胶带施加到生物相容性载体材料;
(iii)对所述生物相容性载体材料以及施加的聚合物胶带执行消融法,以在所述生物相容性载体材料中形成凹部,所述凹部能够接受生物相容性导电材料;
(iv)在执行所述消融法后去除所述聚合物胶带;
(v)对所述消融的生物相容性载体材料施加荫罩,所述荫罩经设置为使凹部暴露但是覆盖围绕的生物相容性载体材料,以及
(vi)将导电材料施加到所述消融的生物相容性载体材料以及施加的荫罩以将所述导电材料沉积在所述凹部中,
其中所述方法步骤按顺序(i)、(ii)、(iii)、(iv)、(v)和(vi)进行。
2.根据权利要求1所述的用于制造电极装置部件的方法,其中所述消融法不需要所述载体材料暴露于化合物。
3.根据权利要求2所述的用于制造电极装置部件的方法,其中所述化合物是毒性化合物。
4.根据权利要求3所述的用于制造电极装置部件的方法,其中所述毒性化合物是光刻法或显微构造方法中所需的毒性化合物。
5.根据权利要求4所述的用于制造电极装置部件的方法,其中所述光刻法或显微构造方法中所需的毒性化合物选自光致抗蚀剂、显影剂、去除剂、剥离剂、稀释剂、EBR、粘附促进剂、辅助化学品、蚀刻剂和溶剂。
6.根据权利要求2所述的用于制造电极装置部件的方法,其中所述化合物是在所述载体材料上沉积的保护层的施加和/或去除中使用的溶剂。
7.根据权利要求1–6中任一项所述的用于制造电极装置部件的方法,其中所述消融法依赖加热所述载体材料。
8.根据权利要求1所述的用于制造电极装置部件的方法,其中所述消融法是激光消融法。
9.根据权利要求8所述的用于制造电极装置部件的方法,其中所述激光消融法包括准分子激光的使用。
10.根据权利要求1所述的用于制造电极装置部件的方法,其中通过所述消融法形成的所述凹部具有足够深度,以允许沉积1至25微米厚度的电极膜。
11.根据权利要求1所述的用于制造电极装置部件的方法,其中通过所述消融法形成的所述凹部具有足够深度,以便允许沉积至少1微米厚度的电极膜。
12.根据权利要求11所述的用于制造电极装置部件的方法,所述方法包括在提供所述载体材料的步骤后和在执行所述消融法的步骤前,对所述载体材料施加保护层的步骤。
13.根据权利要求12所述的用于制造电极装置部件的方法,其中所述膜具有小于10微米的厚度。
14.根据权利要求13所述的用于制造电极装置部件的方法,其中所述膜具有5至7微米的厚度。
15.根据权利要求1所述的用于制造电极装置部件的方法,其中所述聚合物胶带为聚酰亚胺。
16.根据权利要求1所述的用于制造电极装置部件的方法,其中所述导电材料使用蒸汽沉积法进行沉积。
17.根据权利要求16所述的用于制造电极装置部件的方法,其中所述蒸汽沉积法是溅射法。
18.根据权利要求1所述的用于制造电极装置部件的方法,其中所述荫罩具有25至75微米的厚度。
19.根据权利要求1或权利要求18所述的用于制造电极装置部件的方法,其中所述荫罩由激光可加工材料制造。
CN201280044596.4A 2011-09-13 2012-09-11 生物相容性电极部件及其制造方法 Expired - Fee Related CN103889376B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161533910P 2011-09-13 2011-09-13
AU2011903731A AU2011903731A0 (en) 2011-09-13 Biocompatible Electrode Component and Method for Fabrication thereof
US61/533910 2011-09-13
US61/533,910 2011-09-13
AU2011903731 2011-09-13
PCT/AU2012/001083 WO2013036988A1 (en) 2011-09-13 2012-09-11 Biocompatible electrode component and method for fabrication thereof

Publications (2)

Publication Number Publication Date
CN103889376A CN103889376A (zh) 2014-06-25
CN103889376B true CN103889376B (zh) 2017-12-08

Family

ID=47882438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280044596.4A Expired - Fee Related CN103889376B (zh) 2011-09-13 2012-09-11 生物相容性电极部件及其制造方法

Country Status (6)

Country Link
US (1) US20150032194A1 (zh)
EP (1) EP2755617B1 (zh)
KR (1) KR20140069144A (zh)
CN (1) CN103889376B (zh)
AU (2) AU2012308087A1 (zh)
WO (1) WO2013036988A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10827936B2 (en) 2013-08-15 2020-11-10 Advanced Bionics Ag Surface modified electrodes
CN103932822B (zh) * 2014-04-28 2017-01-11 中国科学院声学研究所 电极阵列的制作方法
CN107405481A (zh) * 2014-08-27 2017-11-28 加利福尼亚大学董事会 制造用于脊髓硬膜外刺激的多电极阵列的方法
EP3017842A1 (en) * 2014-11-07 2016-05-11 Oticon Medical A/S An electrode array for a transmodiolar implant and a manufacturing method
EP3302683B1 (en) * 2015-05-28 2023-12-20 Koninklijke Philips N.V. Dry electrode for bio-potential and skin impedance sensing
US10603486B2 (en) 2016-06-13 2020-03-31 Galvani Bioelectronics Limited Neural interface fabrication
WO2018031025A1 (en) 2016-08-11 2018-02-15 Advanced Bionics Ag Cochlear implants including electrode arrays and methods of making the same
CN108294741B (zh) * 2017-01-12 2023-01-20 国家纳米科学中心 一种微型柔性生物电极阵列及其制备方法
CN108681166B (zh) * 2018-05-16 2021-01-26 京东方科技集团股份有限公司 一种显示用基板的制备方法、显示用基板及显示装置
US11452865B2 (en) 2019-10-10 2022-09-27 Advanced Bionics Ag Apparatus and methods for making cochlear implant electrode arrays
US11471668B2 (en) 2019-12-21 2022-10-18 Advanced Bionics Ag Apparatus and methods for making cochlear implant electrode arrays
CN111840783A (zh) * 2020-07-22 2020-10-30 山东大学 一种表面超疏水的织构化套管电极、其制备系统及制备方法
EP4188221A4 (en) * 2020-08-03 2024-07-31 Neuroone Medical Tech Corporation METHODS OF MANUFACTURING PROBING DEVICES AND ASSOCIATED DEVICES
KR20220030678A (ko) 2020-09-03 2022-03-11 이종범 화장액 용기의 분사장치
KR20220053239A (ko) 2020-10-22 2022-04-29 이종범 화장액 용기의 펌프
KR20220120169A (ko) 2021-02-23 2022-08-30 이종범 자바라 구조의 펌프가 구비된 화장액 용기
CN113125540B (zh) * 2021-04-09 2022-12-02 南方科技大学 一种利用聚焦离子束加工纳米双极电极阵列的方法及用途
KR20240063377A (ko) 2022-11-03 2024-05-10 이성구 스틱형 화장품 용기

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103033A (en) * 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6546292B1 (en) * 1998-11-04 2003-04-08 Gore Enterprise Holdings, Inc. High impedance, low polarization cardiac electrode
US7877866B1 (en) * 2005-10-26 2011-02-01 Second Sight Medical Products, Inc. Flexible circuit electrode array and method of manufacturing the same
WO2007146082A2 (en) * 2006-06-06 2007-12-21 Second Sight Medical Products, Inc. Molded polymer comprising silicone and at least one metal trace and a process of manufacturing the same
AU2008272808B2 (en) * 2007-07-05 2013-09-19 Second Sight Medical Products Return electrode for a flexible circuit electrode array
US8954158B2 (en) * 2009-02-05 2015-02-10 Cochlear Limited Multi-electrode channel configurations
US20100305673A1 (en) * 2009-05-27 2010-12-02 Med-El Elektromedizinische Geraete Gmbh Ink Jet Printing of Implantable Electrodes
JP2011097024A (ja) * 2009-09-29 2011-05-12 Jsr Corp 光半導体素子の製造方法、及び、光半導体素子保護層形成用組成物
US9054436B2 (en) * 2009-09-30 2015-06-09 Advanced Neuromodulation Systems, Inc. Method of fabricating stimulation lead for applying electrical stimulation to tissue of a patient
US20110130815A1 (en) * 2009-12-01 2011-06-02 Peter Gibson Contoured electrode contact surfaces
JP5656049B2 (ja) * 2010-05-26 2015-01-21 ソニー株式会社 薄膜トランジスタの製造方法

Also Published As

Publication number Publication date
CN103889376A (zh) 2014-06-25
AU2012308087A1 (en) 2014-03-06
US20150032194A1 (en) 2015-01-29
EP2755617A4 (en) 2015-04-22
EP2755617A1 (en) 2014-07-23
AU2017204569A1 (en) 2017-07-27
KR20140069144A (ko) 2014-06-09
WO2013036988A1 (en) 2013-03-21
EP2755617B1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
CN103889376B (zh) 生物相容性电极部件及其制造方法
US7326649B2 (en) Parylene-based flexible multi-electrode arrays for neuronal stimulation and recording and methods for manufacturing the same
Schuettler et al. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil
US7937153B2 (en) Electrode with increased stability and method of manufacturing the same
US7181287B2 (en) Implantable drug delivery device
EP2936578B1 (en) Biocompatible carbon based electrode and its preparation process
Bergonzo et al. 3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: The MEDINAS project
Clark et al. A multiple-electrode array for a cochlear implant
US20210106429A1 (en) Device and method for generating an electric current in a conductor for removal of biofilm
US10639472B2 (en) Process for manufacturing an implant for focal electrical stimulation of a nervous structure
WO2014176643A1 (en) Surface structuring of metals
JP2005177508A (ja) 電極構造体、その製造方法および使用
Sonn et al. A prototype flexible microelectrode array for implant-prosthesis applications
US9974945B2 (en) Transmodiolar electrode array and a manufacturing method
CN109414657A (zh) 细胞捕捉用过滤器、细胞捕捉用过滤器的制造方法、以及细胞捕捉用过滤器的劣化判定方法
van der Puije et al. Cylindrical cochlear electrode array for use in humans
White et al. Thin film electrodes for an artificial ear
Wilfinger Fabrication of full soft diamond implants for functional rehabilitation
Rousseau et al. Soft 3D retinal implants with diamond electrode a way for focal stimulation
MacCarthy et al. A laser release method for producing prototype flexible retinal implant devices
Lawand et al. Silicon probes for cochlear auditory nerve stimulation and measurement
Martin Development of electrochemical sensors for sensing of Dopamine
Liu MEMS Micro-coils for Magnetic Stimulation of Brain Tissue
Tso Development of honeycomb-type retinal prosthesis devices integrating a smart CMOS system and chemically-derived iridium oxide electrodes
WO2022069713A1 (de) Aktives implantierbares medizinprodukt und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171208

Termination date: 20180911