CN103885026B - 电能表校表方法 - Google Patents

电能表校表方法 Download PDF

Info

Publication number
CN103885026B
CN103885026B CN201410091156.5A CN201410091156A CN103885026B CN 103885026 B CN103885026 B CN 103885026B CN 201410091156 A CN201410091156 A CN 201410091156A CN 103885026 B CN103885026 B CN 103885026B
Authority
CN
China
Prior art keywords
calibration
stage body
value
electric energy
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410091156.5A
Other languages
English (en)
Other versions
CN103885026A (zh
Inventor
刘建福
马亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wasion Group Co Ltd
Original Assignee
Wasion Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wasion Group Co Ltd filed Critical Wasion Group Co Ltd
Priority to CN201410091156.5A priority Critical patent/CN103885026B/zh
Publication of CN103885026A publication Critical patent/CN103885026A/zh
Application granted granted Critical
Publication of CN103885026B publication Critical patent/CN103885026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

本发明公开了一种电能表校表方法,首先获取电能表检定台体的电参数的源值;并对被校表复位校表系数;然后人工切换该台体到下一个校表点;再根据被校表的当前实测值以及该台体的源值,判定台体的稳定性;若该台体不稳定,则等待其稳定;然后判断该台体的当前状态并自动为被校表选择校表点;再根据被校表的当前实测值、滤波值以及该台体的源值,得到被校表的精度;然后按照设定的公式分别获取被校表的校表系数;最后设置、保存校表系数。本发明不需485总线通道、不需要相关上位机软件及设备支持,可智能判别电能表检定台体的台体状态和电能表状态,完成全部校表最快只需几十秒钟。

Description

电能表校表方法
技术领域
本发明涉及一种电能表校表方法。
背景技术
目前在电能表校表领域,国内多采取通过专用上位机软件走485总线发校表命令的方法。此方法有几个缺陷:1、一轮校表完成需半小时至几个小时,时间长。2、必须有485总线及专用的软件和设备支持。3、上位机校表软件占用资源大,且算法、流程复杂,不易移植到采用单片机系统的电能表中。这些缺陷造成了制作成本的增加。
发明内容
本发明的目的是提供一种能显著降低校表时间且通用性很强的电能表校表方法。
本发明提供的这种电能表校表方法,该方法包括如下步骤:
步骤1,获取电能表检定台体的电参数的源值;并对被校表复位校表系数;
步骤2,人工切换电能表检定台体到下一个校表点;
步骤3,获取被校表的电参数的实测值,根据当前所述实测值以及所述台体的源值,判定台体的稳定性;若所述台体不稳定,则等待该台体稳定;
步骤4,根据被校表电参数的实测值以及所述台体的源值,判断该台体当前的台体状态;
步骤5,自动为被校表选择校表点;若该校表点与步骤4的所述台体状态一致,则转下一步;否则跳转至步骤2;
步骤6,获取被校表的电参数的实测值和滤波值,根据当前所述实测值、滤波值以及所述台体的源值,得到被校表的精度;若该精度不符合控制要求且校表次数超过M次,则退出校表状态并显示报错;若该精度不符合控制要求,但未超过校表次数M次,则转至步骤7;若该精度符合控制要求,表示当前校表点已经校表完成,则显示当前校表点校表成功,并提示所述台体切换至下一个校表点,跳转至步骤2;若所有校表点均已校表完成,则退出校表并显示所有校表点均校正成功;M为正整数;
步骤7,按照下列公式分别获取被校表的校表系数;
被校表的电压、电流或功率的增益系数按式(1)获得,
(1)
其中,Z2是当前电压、电流或功率的增益系数,O是当前电压、电流或功率的偏置,X是所述台体当前的电压、电流或功率的源值,Y是被校表当前的实测电压、电流、功率的滤波值,Z1是上一次的电压、电流或功率的增益系数;
被校表的相角偏差按式(2)获得,
(2)
其中,ω是当前的相角偏差,P1是被校表当前的实测有功功率的滤波值,P2是所述台体的当前有功功率值,β是上一次的相角偏差,K1是工程常数,C是逼近系数因子;
被校表的电压、电流或功率的偏置按式(3)获得,
(3)
其中,Ο是被校表当前的电压、电流或功率的偏置,X1是被校表当前的实测电压、电流或功率的滤波值,X2是所述台体当前的电压、电流、功率的源值,K2是工程常数;
步骤8,设置、保存校表系数;跳转至步骤3。
所述步骤2与所述步骤3之间还包括计算总运行时间步骤,若计时超过该总运行时间,则执行超时退出并报错。
所述电能表检定台体的电参数的源值采用所述台体的理论值或者通过按键输入的输入值。
所述步骤1中复位校表系数是对所述被校表写入缺省的工程经验校表系数值,该工程经验校表系数值把表计的电参数调整到实际值的附近。
所述校表点包括1.0的IB点、0.5L的IB点、1.0的2%IB点的若干校表点,校表时进行顺序依次执行,或者通过按键选择只执行其中某个或某几个所述校表点;所述1.0的IB点用于校正电能表的电压、电流以及功率的增益,所述0.5L的IB点用于校正电能表的角度,所述1.0的2%IB点用于校正电压、电流、以及功率的偏置。
所述台体稳定的判断采用先等待i个运行周期,然后判断所述步骤3获取被校表的电参数的实测值是否稳定,若该数据的最大值与最小值的误差在控制范围内,则认为台体已经稳定。
所述滤波值采用电能表实测值的存储滤波算法获取:首先将获取待校表计的N-1次的实测值存入EEPROM;然后当获得该表计的第N次数据时,再将之前的N-1次实测值全部读出,并按大小顺序排序;再去掉k个最大值和m个最小值;最后对剩下的N-k-m个实测值取平均值,从而获得该表计的滤波值;N、k和m均为自然数,且k<N,m<N。
所述台体状态是指当前所述台体的校表点是在1.0的IB点、0.5L的IB点或1.0的2%IB点。
该方法还包含通讯校表步骤:先将通讯总线抽象化;当从通讯缓冲数据区解析到校表命令帧后,返回校表消息;再按收到的校表消息类型调用所述步骤8进行校表系数的保存与设置,最后返回校表命令结果;所述校表消息类型包含参数初始化,写ABC三相的电压、电流、功率增益,写ABC三相的电压、电流、功率偏置,写ABC三相的角差。
所述通讯总线包括485总线通讯、红外通讯和载波通讯。
本发明与现有技术相比具有如下优点:
1、与现有的485总线通讯校表方式需半小时到几个小时相比,本发明不需485总线通道、不需要相关上位机软件及设备支持,集成在电能表的单片机系统中,可智能判别电能表检定台体的台体状态和电能表状态,其运行周期与电参数更新周期同步,算法效率高,完成全部校表只需几分钟,对于不需进行偏置和角差校正的平台,最快只需几十秒钟。
2、本发明还包含了通讯校表方式,此方式兼容现有的485总线通讯校表方式,且脱离了具体的通讯总线形式,其与本发明的自校表方式均可调用校表系数的保存与设置步骤,节省资源;本发明可根据需要任选一种校表方式(自校表方式、通讯校表方式)。
3、本发明采用存储滤波算法获取各电参量的滤波值,将临时电参数值存储在EEPROM中,到了校表系数计算时刻才读出参与滤波运算处理;参与台体稳定和状态判断的电参量实测值也基于同样的原理(临时存储在EEPROM中,到运算时才读出),这样可降低数据飘动带来的影响,并显著节省RAM空间。
附图说明
图1是本发明的原理示意图。
图2是本发明的自校表流程图。
图3是本发明的存储滤波算法流程图。
图4是本发明的通信校表流程图。
具体实施方式
在具体实施时,本发明以一个独立子程序模块的方式嵌入到电能表的总程序中,本发明既包含了由按键触发的自校准方式(按键触发自校表单元),也包含了传统的发通讯命令校表的方式(通讯校表单元)。
如图1所示,根据模块化思想本发明划分为若干功能单元,包括按键触发自校表单元和通讯校表单元。
如图2所示,按键触发校表单元包括按键输入单元和校表自运行单元。
按键输入单元包括台体源值输入、复位缺省校表参数、设置校表系数、厂内状态判断、校表触发。
校表自运行单元包括校表总时间判断、智能等待台体稳定、智能判断台体状态、智能选择校表点、获取表计实测值并滤波、精度计算、校表系数计算、设置保存校表系数。
本发明的按键触发自校表单元在无通讯总线的情况下,在电能表单片机系统中实现了自校表功能,其基本原理为:假设被校表为一个已知的固定规格(如220V、1.5(6)A),电能表检定台体的各项电参数也已调整到了此固定规格的理论值(如220V、1.5(6)A,也可用外部按键输入的台体值代替),在系统运行初期写入一个校表系数的工程经验值,通过对比台体理论值与被校表的实测值,可以得到台体、被校表的当前状态,通过逐次逼近和余弦曲线在60°点时近似为直线的公式得到新的校表系数,通过人工切换或按键选择来切换台体校表点,然后本单元自动完成1.0的IB点(校U、I、P的增益)、0.5L的IB点(校角度Φ)、1.0的2%IB点(校U、I、P的偏置)各校表点的校正。参与运算的表计实测值临时存储到EEPROM中,采集到一定量的数据后再读出并作滤波运算。
本发明采用的存储滤波算法的原理是:以电参量为电压为例,首先本单元运行N次,获取了N个电压的实测值,对这N个数值按大小排序;然后从这N个数值中去掉k个最大值、m次个最小值;再对剩下的N-k-m个数据取平均值。N、k和m均为自然数,且k<N,m<N。其他电参量均按此方法求取其平均值。由于需保存N次的电压、电流、功率、相角值,占用的RAM空间很大,而电能表的单片机资源非常有限,所以本单元采取以下存储算法:把0~N-1次的数据临时存储到EEPROM中,等到第N次时再读出之前存入的全部N-1次数据,最后再进行滤波运算。本存储滤波算法可降低数据飘动带来的影响,并显著节省RAM空间。
首先进行按键输入单元的相关操作:第一步为判断厂内状态,如为厂内校表状态则显示校表操作界面。第二步为执行复位校表系数,本步骤会写入一个缺省的工程经验值。该工程经验值会把被校表的各电参数调整到其实际值的附近。这样做的目的是为了降低自动校表的执行次数并提高精度。第三步为按照需求输入电能表检定台体的台体源值。由于实际使用中的电能表检定台体很稳定,所以可以简化为直接用台体理论值代替,这样做的好处是可以显著降低校表步骤,进而降低操作时间。第四步为触发自动校表。
按键输入单元具有菜单选择功能,本发明还可以直接通过按键选择直接设置校表系数,并通过按键输入台体源值。
然后校表自运行单元接收到按键输入单元的数据(包括校表系数的缺省值以及电能表检定台体的台体源值)和触发事件后,校表自运行单元开始自动运行。该单元按照校增益、校角差、校偏置的顺序自动进行,也可在按键菜单选项中只选择某些项进行校表(实际使用中,角差和偏置写入一个工程经验值后,只需校增益就可完全满足精度要求,这种简化方式可显著降低校表时间)。在校增益时,可分别自动对ABC三相的电压、电流、功率的增益进行校正;校角差时,可自动对ABC三相的角差进行校正;校偏置时,可分别自动对ABC三相的电压、电流、功率偏置进行校正。
校表自运行单元的运行周期与电能表的电参数更新周期同步(电能表一般为每秒更新一次)。台体源值可采用电能表检定台体的电压、电流、功率、角度的理论值,或采用按键输入的电压、电流、功率、角度台体值。
校表自运行单元的具体步骤如下:
第一步,人工切换台体到下一个校表点;一般按照1.0的IB点、0.5L的IB点、1.0的2%IB点顺序进行。
第二步,计算总运行时间,并进行超时退出与报错。出现这种问题主要是表计硬件错误及台体错误。
第三步,获取被校表各电参数的实测值,并存入EEPROM中。
第四步,等待台体稳定。
由于电能表检定台体刚启动时非常不稳定,开始一段时间会有从零到有的过程,然后会有一段时间的上下飘动稳定的过程,基于此,本单元每次检测到台体状态发生变化时(IB和2%IB点之间的切换,1.0和0.5L点之间的切换),首先等待i次运行周期(i工程上一般取10次,也就是10秒,如果没有进行人工切换台体状态的操作则不需等待。),然后判断第三步中获取的EEPROM中的n次数据是否稳定,如果其某电参量的最大值和最小值的误差在控制范围内,则认为该台体已经稳定。如该台体稳定则进入下一步,不稳定则退回到第二步。
第五步,智能判断台体状态。将电能表检定台体的电压、电流、功率、角度的理论值与第四步中获得的被校表的实测值进行对比。由于按键输入单元的第二步已经执行了复位校表系数的步骤,被校表的实测值与电能表检定台体的理论值会相差较小,而IB点和2%IB点、1.0和0.5L点的电流、功率、功率因数都相差很大,所以很容易判断当前电能表检定台体是在IB点还是2%IB点、在1.0点还是0.5L点。
第六步,智能地为被校表选择校表点(1.0的IB点、0.5L的IB点或1.0的2%IB点),从第五步已经得知电能表检定台体当前的校表点,被校表当前校表到哪个校表点也是已知的,且校表顺序之前也有设定,因此本单元可以实现校表点的智能选择。
假设1.0的IB点的增益已经校完,则被校表会自动选择0.5L的IB点进行角差校正;若电能表检定台体现在也刚好在0.5L的IB点的台体状态,则校表自动开始,否则返回第一步等待台体由人工切换到对应的校表点。
第七步,获取当前被校表各电参数的实测值和滤波值(获取的电参数实测值包含第四步中台体稳定后的数据)。该步骤采用存储滤波算法实现。
如图3所示,该算法的具体实施步骤是:首先将获取的被校表的N-1次的实测值存入EEPROM;然后当获得该表计的第N次数据时,将之前的N-1次实测值全部读出,并按大小顺序排序;再去掉k个最大值和m个最小值;最后对剩下的N-k-m个实测值取平均值,从而获得该表计的滤波值。一般取N等于12,k和m均等于2。
第八步,精度计算。精度由电能表检定台体的电压、电流、功率、角度理论值(或按键输入值)与被校表的实测值进行对比计算得到。如精度不好且校表次数超过N0次(N0一般取5),则退出校表状态并显示报错;如没有超过上述次数,则进入下一步,进行校表系数计算模块。如精度符合控制要求,则表示当前点已经校表完成,本单元会显示当前点校表成功、提示电能表检定台体需切换到下一个校表点,跳转至第一步,并且本单元会自动选择下一个校表点继续进行校表(按1.0的IB、0.5L的IB点、1.0的2%IB点的顺序依次进行)。如果所有校表点校表均完成校正,则退出校表状态并显示所有点校正成功。
第九步,计算校表系数。本单元根据不同的校表点调用对应的校表系数公式,完成校表系数的计算。
本发明包括电压、电流、功率增益系数通用计算公式、角差计算公式以及电压、电流、功率偏置通用计算公式(3),校表自运行单元按照当前的校表点调用对应的计算公式。
本发明的电压、电流、功率增益系数通用计算公式见式(1)。
(1)
其中,Z2是当前电压、电流或功率的增益系数,O是当前电压、电流或功率的偏置(在一些特定场合,O可以简化为零),X是电能表检定台体当前的电压、电流或功率的源值,Y是被校表当前的实测电压、电流、功率的滤波值,Z1是上一次的电压、电流或功率的增益系数;
本发明的角差计算公式见式(2)。
(2)
其中,ω是当前的相角偏差,P1是表计当前实测有功功率的滤波值,P2是电能表检定台体的当前有功功率值,β是上一次的相角偏差,K1是工程常数,C是逼近系数因子。
电能表是在0.5L(即ω为60°)点时通过调整角差β来带动有功功率的调整从而实现相角偏差校正的,其中功率公式:P=cos(ω+β)×S,P为有功功率,S为视在功率。在余弦曲线的60°点时,功率与角度近似为线性关系,即P2=cosω可以近似为P2=K1ω+M,其中K1、M为常数,那么当角度ω增加β时,则功率变成了P1=K1(ω+β)+M,两式结合可得β=(P1-P2)/K1。由于功率与角度并不完全为线性关系,一次校正的精度并不高,为了提高精度和可靠性,提出了如式(2)所示的逐次逼近的公式。式(2)中的C为逼近因子,一般取值为0.5;β为上一次得到的角差,按图2所示的流程每运行一个周期,角差就更加接近实际值。
本发明的电压、电流、功率偏置通用计算公式见式(3)。
(3)
其中,Ο是被校表当前的电压、电流或功率的偏置,X1是被校表当前的实测电压、电流或功率的滤波值,X2是电能表检定台体当前的电压、电流、功率的源值,K2是工程常数。
第十步,设置、保存校表系数,再跳转至步骤二。
本步骤接收到第九步得到的校表系数后,将该校表系数保存到EEPROM中,并对电能表的数据采集、电能管理等相关模块进行设置、复位,然后继续按图2流程循环运行。
如图4所示,通讯校表单元包括通讯物理层、通讯缓冲、厂内校表状态判断、命令解析。本单元通过解析各通讯物理层的通讯缓冲,提取通用校表命令,然后调用共用的校表参数设置模块进行操作。
通讯校表单元中的各通讯总线单独运行并遵循相同的校表命令格式。通讯物理层把485、红外、载波等通讯总线抽象化。当从通讯缓冲数据区解析到校表命令帧后,返回校表消息,通讯校表单元按收到的校表消息类型调用上述第十步的校表参数设置模块,并进行相关操作,然后返回校表命令结果。校表消息类型包含参数初始化,写ABC三相的电压、电流、功率增益、写ABC三相的电压、电流、功率偏置,写ABC三相的角差等。
本单元与按键触发自校表单元共用校表参数设置模块,节省ROM和RAM资源。本单元与按键触发自校表单元在同一时刻只运行一种。
下面为DSSD332/DTSD342三相三线/三相四线电子式多功能电能表的一个实施例。
由于表计的硬件方案定下来后不变,所以在调试过程中可以得到增益、角差、偏置的一个相对固定的工程经验值:该型号电能表增益的工程经验值为0x4000、其角差的工程经验值为0、其偏置的工程经验值为0。校表过程如下:
1、把各被校表计安装到标准台体上并上电(校表台体一般为6表位或12表位),通过表计按键菜单选择自校表开始,此时被校表会写入一个校表系数的工程经验值。
2、人工切换台体到下一个校表点;一般按照1.0的IB点、0.5L的IB点、1.0的2%IB点顺序进行。
3、获取表计的16次电参数值,每次的值都临时存储到EEPROM中,前10次的值丢弃,判断后6次的值是否稳定,如稳定则判断台体状态。如果没有进行人工切换台体状态的操作则不需进行前10次的等待。
4、根据台体状态、被校表状态智能地为被校表选择校表点。如果状态不一致则返回第2步。
5、继续获取当前被校表各电参数的实测值,到12次(包含前面的6次)后按图3所示获取其对应的滤波值。
6、由电能表检定台体的电压、电流、功率、角度理论值与被校表的滤波值进行对比计算精度,如精度好则退出当前校表点、进入下一个校表点流程,全部校表点校完时退出整个校表流程。
7、精度不好则按公式(1)、公式(2)、公式(3)计算新的校表系数。
8、设置、保存校表系数,再跳转至第3步。
结果:对于1.0级电能表只需进行1次增益校正就能满足精度要求(不需进行角差、偏置校正),使用时间只需34秒(10+12+12)。对于0.5S、0.2S级电能表只需进行1次增益校正、3次角差校正就能满足精度要求(不需进行偏置校正),使用时间只需增益34秒(10+12+12)、角差58秒(10+12+12+12+12),总计为92秒。所以对照常规通讯校表方式校表至少需0.5小时,本发明效果非常显著。

Claims (10)

1.一种电能表校表方法,其特征在于,该方法包括如下步骤:
步骤1,获取电能表检定台体的电参数的源值;并对被校表复位校表系数;
步骤2,人工切换电能表检定台体到下一个校表点;
步骤3,获取被校表的电参数的实测值,根据当前所述实测值以及所述台体的源值,判定台体的稳定性;若所述台体不稳定,则等待该台体稳定;
步骤4,根据被校表电参数的实测值以及所述台体的源值,判断该台体当前的台体状态;
步骤5,自动为被校表选择校表点;若该校表点与步骤4的所述台体状态一致,则转下一步;否则跳转至步骤2;
步骤6,获取被校表的电参数的实测值和滤波值,根据当前所述实测值、滤波值以及所述台体的源值,得到被校表的精度;若该精度不符合控制要求且校表次数超过M次,则退出校表状态并显示报错;若该精度不符合控制要求,但未超过校表次数M次,则转至步骤7;若该精度符合控制要求,表示当前校表点已经校表完成,则显示当前校表点校表成功,并提示所述台体切换至下一个校表点,跳转至步骤2;若所有校表点均已校表完成,则退出校表并显示所有校表点均校正成功;M为正整数;
步骤7,按照下列公式分别获取被校表的校表系数;
被校表的电压、电流或功率的增益系数按式(1)获得,
Z 2 = ( X - O ) ( Y - O ) Z 1 - - - ( 1 )
其中,Z2是当前电压、电流或功率的增益系数,O是当前电压、电流或功率的偏置,X是所述台体当前的电压、电流或功率的源值,Y是被校表当前的实测电压、电流、功率的滤波值,Z1是上一次的电压、电流或功率的增益系数;
被校表的相角偏差按式(2)获得,
ω = ( P 1 - P 2 ) K 1 C + β - - - ( 2 )
其中,ω是当前的相角偏差,P1是被校表当前的实测有功功率的滤波值,P2是所述台体的当前有功功率值,β是上一次的相角偏差,K1是工程常数,C是逼近系数因子;
被校表的电压、电流或功率的偏置按式(3)获得,
O = ( X 1 - X 2 ) K 2 - - - ( 3 )
其中,Ο是被校表当前的电压、电流或功率的偏置,X1是被校表当前的实测电压、电流或功率的滤波值,X2是所述台体当前的电压、电流、功率的源值,K2是工程常数;
步骤8,设置、保存校表系数;跳转至步骤3。
2.根据权利要求1所述的电能表校表方法,其特征在于,所述步骤2与所述步骤3之间还包括计算总运行时间步骤,若计时超过该总运行时间,则执行超时退出并报错。
3.根据权利要求1所述的电能表校表方法,其特征在于,所述电能表检定台体的电参数的源值采用所述台体的理论值或者通过按键输入的输入值。
4.根据权利要求1所述的电能表校表方法,其特征在于,所述步骤1中复位校表系数是对所述被校表写入缺省的工程经验校表系数值,该工程经验校表系数值把被校表的电参数调整到实际值的附近。
5.根据权利要求1所述的电能表校表方法,其特征在于,所述校表点包括1.0的IB点、0.5L的IB点、1.0的2%IB点的若干校表点,校表时进行顺序依次执行,或者通过按键选择只执行其中某个或某几个所述校表点;所述1.0的IB点用于校正电能表的电压、电流以及功率的增益,所述0.5L的IB点用于校正电能表的角度,所述1.0的2%IB点用于校正电压、电流、以及功率的偏置。
6.根据权利要求1所述的电能表校表方法,其特征在于,所述台体稳定的判断采用先等待i个运行周期,然后判断所述步骤3获取被校表的电参数的实测值是否稳定,若该实测值的最大值与最小值的误差在控制范围内,则认为台体已经稳定。
7.根据权利要求1所述的电能表校表方法,其特征在于,所述滤波值采用电能表实测值的存储滤波算法获取:首先将获取被校表的N-1次的实测值存入EEPROM;然后当获得该被校表的第N次数据时,再将之前的N-1次实测值全部读出,并按大小顺序排序;再去掉k个最大值和m个最小值;最后对剩下的N-k-m个实测值取平均值,从而获得该被校表的滤波值;N、k和m均为自然数,且k<N,m<N。
8.根据权利要求1所述的电能表校表方法,其特征在于,所述台体状态是指当前所述台体的校表点是在1.0的IB点、0.5L的IB点或1.0的2%IB点。
9.根据权利要求1所述的电能表校表方法,其特征在于,该方法还包含通讯校表步骤:先将通讯总线抽象化;当从通讯缓冲数据区解析到校表命令帧后,返回校表消息;再按收到的校表消息类型调用所述步骤8进行校表系数的保存与设置,最后返回校表命令结果;所述校表消息类型包含参数初始化,写入ABC三相的电压增益、电流增益和功率增益,写入ABC三相的电压偏置、电流偏置和功率偏置,写ABC三相的角差。
10.根据权利要求9所述的电能表校表方法,其特征在于,所述通讯总线包括485总线通讯、红外通讯和载波通讯。
CN201410091156.5A 2014-03-13 2014-03-13 电能表校表方法 Active CN103885026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410091156.5A CN103885026B (zh) 2014-03-13 2014-03-13 电能表校表方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410091156.5A CN103885026B (zh) 2014-03-13 2014-03-13 电能表校表方法

Publications (2)

Publication Number Publication Date
CN103885026A CN103885026A (zh) 2014-06-25
CN103885026B true CN103885026B (zh) 2016-07-13

Family

ID=50954024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410091156.5A Active CN103885026B (zh) 2014-03-13 2014-03-13 电能表校表方法

Country Status (1)

Country Link
CN (1) CN103885026B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223416B (zh) * 2015-09-17 2018-05-15 杭州海兴电力科技股份有限公司 一种提高智能电表计量精度的方法
CN105425197B (zh) * 2015-11-10 2018-09-21 深圳市科陆电子科技股份有限公司 直流电能表校表方法和系统
CN106597355A (zh) * 2016-11-22 2017-04-26 积成电子股份有限公司 一种基于查表法的电能计量装置校准系数计算方法
CN106526313B (zh) * 2016-12-05 2019-05-28 威胜信息技术股份有限公司 一种直流计量方法
CN106814342A (zh) * 2017-01-12 2017-06-09 华立科技股份有限公司 电能表快速校准方法
CN109557496A (zh) * 2017-09-27 2019-04-02 宁波三星医疗电气股份有限公司 一种电能表的校表方法
CN108594160A (zh) * 2018-04-28 2018-09-28 宁波三星医疗电气股份有限公司 一种电能表的校表方法
CN108710100B (zh) * 2018-06-20 2021-03-09 宁波三星智能电气有限公司 一种计度器电能表的校表方法
CN109738847B (zh) * 2019-01-25 2021-02-19 杭州海兴电力科技股份有限公司 基于表计主动自校的校表方法
CN109738846B (zh) * 2019-01-25 2021-02-19 杭州海兴电力科技股份有限公司 一种基于表计主动自校的校表方法
CN113064114B (zh) * 2020-03-30 2022-09-20 深圳友讯达科技股份有限公司 一种多芯电能表的高精度快速校表方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136522A1 (de) * 2001-07-26 2003-02-06 Kahmann Martin Anordnung zur Bestimmung der Winkelfehler von Pegelwandlern für Energie- und Leistungsmessgeräte
CN101915903A (zh) * 2010-09-08 2010-12-15 珠海中慧微电子有限公司 智能电表的功率校表系统及方法
CN102230959A (zh) * 2011-04-21 2011-11-02 深圳市锐能微科技有限公司 一种电能表的校正方法、系统及电能表
CN102338865A (zh) * 2011-06-17 2012-02-01 杭州炬华科技股份有限公司 用于三相智能电能表的误差快速校准方法
CN102520386A (zh) * 2011-12-12 2012-06-27 宁夏隆基宁光仪表有限公司 三相电能表的调校方法
CN103487782A (zh) * 2013-07-16 2014-01-01 深圳市航天泰瑞捷电子有限公司 一种电表校准方法及自动校准系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327764A (ja) * 2006-06-06 2007-12-20 Tokyo Keiki Kogyo Kk 電力量計の器差測定システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136522A1 (de) * 2001-07-26 2003-02-06 Kahmann Martin Anordnung zur Bestimmung der Winkelfehler von Pegelwandlern für Energie- und Leistungsmessgeräte
CN101915903A (zh) * 2010-09-08 2010-12-15 珠海中慧微电子有限公司 智能电表的功率校表系统及方法
CN102230959A (zh) * 2011-04-21 2011-11-02 深圳市锐能微科技有限公司 一种电能表的校正方法、系统及电能表
CN102338865A (zh) * 2011-06-17 2012-02-01 杭州炬华科技股份有限公司 用于三相智能电能表的误差快速校准方法
CN102520386A (zh) * 2011-12-12 2012-06-27 宁夏隆基宁光仪表有限公司 三相电能表的调校方法
CN103487782A (zh) * 2013-07-16 2014-01-01 深圳市航天泰瑞捷电子有限公司 一种电表校准方法及自动校准系统

Also Published As

Publication number Publication date
CN103885026A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
CN103885026B (zh) 电能表校表方法
CN107690585B (zh) 用于确定锂硫电池组的健康状况和充电状态的方法和装置
CN101236236B (zh) 电池残余电量预测装置
CN102590784B (zh) 单相智能电能表分布式校表方法
CN107016489A (zh) 一种电力系统抗差状态估计方法和装置
EP2851700B1 (en) Method and terminal for displaying capacity of battery
US11215672B2 (en) Battery detection method
JP6973488B2 (ja) 劣化状態演算方法及び劣化状態演算装置
CN108475935A (zh) 一种电池充电管理方法和终端
CN103033758A (zh) 一种显示电量值的校准方法及装置
CN107422292A (zh) 用于智能电表的校表方法
CN105388445A (zh) 一种单相电能表的自动校表方法
CN107907850B (zh) 三相电能表时钟校准和误差校准方法
CN103091550B (zh) 一种宽电压与大电流同步隔离采样直流功率计
CN103678798A (zh) 一种用于含分布式电源配电网的电磁暂态实时仿真方法
CN108344952B (zh) 电池电量计算方法及其装置
CN112595346A (zh) 一种液浮陀螺温度循环自动化测试方法、系统及控制装置
CN108802628A (zh) 电池电量计量方法、装置及设备
CN106250623B (zh) 一种基于状态平稳切换的半物理快速仿真方法
CN107682569A (zh) 时间信息更新方法、装置、移动终端及可读存储介质
CN102695273B (zh) 一种集成无线定位的处理方法
CN105634473A (zh) 移动终端的频率调整方法及装置
CN104730993A (zh) 智能仪表分区升级方法及智能仪表
CN206389373U (zh) 一种基于arm的多源逻辑切换授时模块
CN115389938A (zh) 电池剩余容量的预测方法、系统、电子设备和介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant