CN103867451B - 一种螺杆式空压机高温余热回收机及工艺 - Google Patents

一种螺杆式空压机高温余热回收机及工艺 Download PDF

Info

Publication number
CN103867451B
CN103867451B CN201410125996.9A CN201410125996A CN103867451B CN 103867451 B CN103867451 B CN 103867451B CN 201410125996 A CN201410125996 A CN 201410125996A CN 103867451 B CN103867451 B CN 103867451B
Authority
CN
China
Prior art keywords
pipe
heat exchanger
tap water
screw
air compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410125996.9A
Other languages
English (en)
Other versions
CN103867451A (zh
Inventor
袁世俊
陈克明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU KAIJIA ENERGY SAVING SCIENCE & TECHNOLOGY Co Ltd
Original Assignee
HANGZHOU KAIJIA ENERGY SAVING SCIENCE & TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU KAIJIA ENERGY SAVING SCIENCE & TECHNOLOGY Co Ltd filed Critical HANGZHOU KAIJIA ENERGY SAVING SCIENCE & TECHNOLOGY Co Ltd
Priority to CN201410125996.9A priority Critical patent/CN103867451B/zh
Publication of CN103867451A publication Critical patent/CN103867451A/zh
Application granted granted Critical
Publication of CN103867451B publication Critical patent/CN103867451B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明属于余热回收技术领域,涉及一种螺杆式空压机高温余热回收机及工艺。提出的一种螺杆式空压机高温余热回收机具有与螺杆式空压机(23)连接的管热交换器;管热交换器具有由同轴设置的内管(2)和外管(3)构成的复合管;复合管由下向上呈盘式螺旋状设置形成阶梯状升温盘管,且上下相邻两层盘管之间具有间隙;内管(2)与外管(3)之间的间隙构成自来水换热通道,内管(2)的内腔形成高温导热油换热通道;所述高温导热油换热通道内的导热油与自来水换热通道内的自来水相互逆向流动进行换热。本发明满足了螺杆式空压机的高质量散热要求,在提高了空压机效能的同时可用废热高效制造超过85度高品质热水。

Description

一种螺杆式空压机高温余热回收机及工艺
技术领域
  本发明属于余热回收技术领域,涉及一种螺杆式空压机高温余热回收机及工艺。
背景技术
螺杆式空压机余热回收是一项重要的节能环保领域,目前,现有的余热回收设备多采用传统的热交换技术,由于传统换热器及应用方法的原因,利用余热回收加工热水,最高温度一般都低于摄氏70度,有时甚至还达不到生活用水的温度,品质及效率低,严重影响螺杆式空压机余热回收的推广利用。
发明内容
为克服现有技术的不足,本发明的目的是提出一种螺杆式空压机高温余热回收机及工艺。
本发明为实现上述发明目的采用如下技术方案:
一种螺杆式空压机高温余热回收机,所述的余热回收机具有与螺杆式空压机连接的管热交换器;所述的管热交换器具有由同轴设置的内管和外管构成的复合管;所述的复合管由下向上呈盘式螺旋状设置且上下相邻两层盘管间具有间隙,形成阶梯状升温盘管;所述内管与外管之间的间隙构成自来水换热通道,所述内管的内腔形成高温导热油换热通道;内管与外管之间的自来水换热通道的下端与自来水进口连通;内管与外管之间所具有自来水换热通道的上端连接热水出口;所述高温导热油换热通道的上端通过高温导热油进口与螺杆式空压机的高温导热油出口连通,所述高温导热油换热通道的下端连接冷却油出口,经管热交换器换热冷却后导热油通过冷却油出口与螺杆式空压机冷却油回油端相连;所述高温导热油换热通道内的导热油与自来水换热通道内的自来水互为逆向流动进行换热。
上下相邻两层盘管之间所具有的间隙内填充有保温材料,所述的保温材料套置在外管上,套置在外管上的保温材料使上下相邻两层盘管之间形成保温间隔。
所述外管的内壁面上具有多个向内凸起的支撑点,用以支撑内管并使内管与外管同轴设置,并增加自来水在流动中的局部湍流效应,从而增加热交换效果。
所述管热交换器的自来水进口可直接与自来水管连通。
所述的管热交换器的自来水进口通过气液热交换器Ⅰ与自来水管连通;所述的气液热交换器Ⅰ用以使螺杆式空压机的高温压缩空气与自来水进行热交换,对自来水进行预热;所述的气液热交换器Ⅰ包括有换热气罐体、导向内筒和内盘管;所述的导向内筒位于换热器罐体内,并与换热器罐体同轴设置;所述导向内筒与换热器罐体之间的间隙构成换热腔体;所述的内盘管位于导向内筒与换热器罐体之间的换热腔体内;所述导向内筒的内腔构成压缩空气通道,压缩空气通道的上端设置有与螺杆式空压机相连的压缩空气进口;压缩空气通道的下端与换热腔体相连通,所述换热腔体的上端连通压缩空气出口,使压缩空气通过压缩空气通道后进入换热腔体,对内盘管内的自来水进行一次换热;所述内盘管的下端与自来水管相连通,所述内盘管上端的预热水出口与管热交换器自来水换热通道的自来水进口相连通,使经过气液热交换器Ⅰ进行换热后的自来水进入管热交换器进行再次换热。
所述气液热交换器Ⅰ设置在管热交换器的中心位置。
所述气液热交换器Ⅰ设置在管热交换器的前端。
所述管热交换器通过螺杆式空压机自身具有的气液热交换器Ⅱ与自来水管相连通,所述气液热交换器Ⅱ冷却水管的进口与自来水管相连通,所述气液热交换器Ⅱ的冷却水管的出口与管热交换器的自来水进口连通。
所述自来水管的输入端设置有自力式温控阀,所述的自力式温控阀包括有进水温度传感器、进油温度传感器、热水温度传感器和输出油温度传感器;所述的进水温度传感器设置的自来水进口管内,所述的进油温度传感器设置在高温导热油进口管内;所述的热水温度传感器设置在热水出口管内;所述的输出油温度传感器设置在冷却油出口管内;所述的自力式温控阀由输出油温度传感器测得的温控能量直接控制,保持空压机冷却油恒温散热所需的自来水流量;输出油温的温度为73—75度;通过进油温度传感器、输出油温度传感器,向自力式温控阀的控制器及屏显提供智能控制信号和观测数据信号。
所述自力式温控阀为带控制器的单片机温控阀,或选用分水器各分路带控制器的电控阀代替自力式温控阀,多级并联分级控制水流量。
所述的外管为高导热金属材料制成的金属管,如铜管或铝管;或,所述的外管为非金属管;或,所述的外管为金属与塑料结合的铝塑管。
所述的内管为高导热金属材料料制成的金属管,如铜管或铝管,所述的金属管为波纹管或螺旋突起的金属管。
所述管热交换器的两端分别设置有三通,所述三通的一端通过内外封口连接头与内管的外壁密封连接,与其相对的一端与外管密封连接,与其相邻的一端与自来水换热通道连通。
若干个管热交换器的高温油换热通道之间、自来水换热通道之间分别以串联或并联或串并联结合的方式构成阶梯式温升油水热交换器。
一种螺杆式空压机高温余热回收机的余热回收工艺,采用具有阶梯状升温盘管的管热交换器使自来水与螺杆式空压机的高温导热油进行热交换,得到高质量的热水;其步骤如下:
自来水通过管热交换器的自来水进口直接进入管热交换器自来水换热通道内;或,自来水通过气液热交换器Ⅰ进行换热后进入管热交换器;即自来水通过气液热交换器Ⅰ内盘管的下端进入内盘管内,螺杆式空压机通过管道将高温压缩空气送入导向内筒的压缩空气通道内,高温压缩空气从压缩空气通道的下端进入换热腔体,高温压缩空气在换热腔体内由下向上流动与内盘管内的自来水进行热交换,使自来水得到一次加热;与内盘管内的自来水换热后的高温压缩空气降温后通过压缩空气出口排出,经过换热后的自来水升温后通过管热交换器的自来水进口进入管热交换器的自来水换热通道内;或,自来水进入螺杆式空压机自身设计的气液热交换器Ⅱ,气液热交换器Ⅱ内的自来水与螺杆式空压机的高温压缩空气进行热交换,使自来水得到一次加热;螺杆式空压机的高温导热油通过管道进入管热交换器的内管的内腔所形成的高温导热油换热通道内,进入高温导热油换热通道内的高温导热油与管热交换器自来水换热通道内的自来水互为逆向流动进行热交换;使自来水通过阶梯状升温盘管的阶梯式连续升温后得到高质量的热水,并通过热水出口输出至外置保温储水箱;经阶梯状升温盘管阶梯式换热降温后的导热油通过冷却油出口返回至螺杆式空压机内进行重复利用,至此,完成了自来水与螺杆式空压机的热交换,得到高质量的热水。
由于采用如上所述的技术方案,本发明具有如下优越性:
1、本发明采用具有阶梯状升温盘管的管热交换器使自来水与螺杆式空压机的高温导热油进行热交换,得到高质量的热水,为了提高热水的温度,并使螺杆式空压机的余热得到充分利用,在自来水与螺杆式空压机的高温导热油进行热交换之前,利用气液交换器与螺杆式空压机的高温压缩空气进行热交换,使自来水得到第一次加热。
2、在管热交换器输出高质量热水的同时还可以通过自力式温控阀控制高温导热油降温后的温度,使冷却油回油温智能控制在73度—75度,对螺杆式空压机的进行了有效保护并具有高效节能的特点。
3、本发明保持了非混合式散热器的最高热转换效率,阶梯式的温度储存能力可产生高温热水,超过85度的商品级热水大大扩展了热水的使用空间;
4、高质量的饮用水管材,保证了产生高质量的生活用热水。
5、结构合理,工艺简单,安全可靠。
综上所述,本发明可提供超过85度的高质量生活及工业用热水,并满足了螺杆式空压机的高质量散热要求,在提高了螺杆式空压机效能的同时有效地给空压机提供了更有效的保护;具有全热回收的效果。
附图说明
图1是本发明中管热交换器的结构示意图。
图2是本发明的使用状态图。
图中:1、冷却油出口;2、内管;3、外管;4、三通;5、高温导热油进口;6、内外封口连接头;7、热水出口;8、支撑点;9、保温间隔层;10、自来水进口;11、内盘管的自来水进口;12、进水温度传感器;13、自力式温控阀;14、内盘管;15、导向内筒;16、输出油温度传感器;17、底座;18、压缩空气进口;19、热水温度传感器;20、进油温度传感器;21、压缩空气出口;22、换热气罐体;23、螺杆式空压机。
具体实施方式
结合附图和具体实施例本发明加以说明:
实施例1
如图1所示,一种螺杆式空压机高温余热回收机,所述的余热回收机具有与螺杆式空压机连接的管热交换器;所述的管热交换器具有由同轴设置的内管2和外管3构成的复合管;该实施例中,所述的内管2为采用高导热金属材料的紫铜管,呈螺旋状;所述的外管3采用直径大于内管的铝塑管,首先将作为内管的紫铜管和作为外管的铝塑管制成等同的盘状螺旋管,所述的外管的内壁面上具有多个向内凸起的支撑点8,用以支撑内管并使内管与外管同轴设置,并增加自来水在流动中的局部湍流效应,从而增加热交换效果;然后用手工或盘管机将紫铜管旋装入作为外管的铝塑管之中,外管的外壁套有保温材料,在盘状螺旋管的盘层之间安装保温间隔层9,管热交换器的每个保温间隔层构成阶梯升温盘管换热层;所述内管2与外管3之间的间隙构成自来水换热通道,所述内管2的内腔形成高温导热油换热通道;内管3与外管3之间的自来水换热通道下端与自来水进口10连通,该实施例中,所述管热交换器的自来水进口直接与自来水管连通;内管2与外管3之间所具有自来水换热通道的上端连接热水出口7;所述高温导热油换热通道的上端通过高温导热油进口5与螺杆式空压机23的高温导热油出口连通,所述高温导热油换热通道的下端连接冷却油出口1,经管热交换器换热冷却后导热油通过冷却油出口1与螺杆式空压机冷却油回油端相连;所述高温导热油换热通道内的导热油与自来水换热通道内的自来水互为逆向流动进行换热。
所述管热交换器的两端分别设置有三通4,三通部位的内管2伸出外管3,三通4的一端通过内外封口连接头6与内管2的外壁密封连接,与其相对的一端与外管3密封连接,与其相邻的一端与自来水换热通道连通。
所述的外管为高导热金属材料制成的金属管,如铜管或铝管;或,所述的外管为非金属管;或,所述的外管为金属与塑料结合的铝塑管。
所述的内管为高导热金属材料料制成的金属管,如铜管或铝管;所述的金属管为波纹管或螺旋突起的金属管。
一种螺杆式空压机高温余热回收机的余热回收工艺,采用具有阶梯状升温盘管的管热交换器对螺杆式空压机的余热进行回收,其步骤如下:自来水通过管热交换器的自来水进口10直接进入管热交换器自来水换热通道内;螺杆式空压机的高温导热油通过管道进入管热交换器的内管2的内腔所形成的高温导热油换热通道内,进入高温导热油换热通道内的高温导热油与管热交换器自来水换热通道内的自来水互为逆向流动进行换热;使自来水通过阶梯状升温盘管的阶梯式连续升温后得到高质量的热水,并通过热水出口7输出至外置保温储水箱;经阶梯状升温盘管阶梯式换热降温后的导热油通过冷却油出口1返回至螺杆式空压机内进行重复利用;由于螺杆式空压机高温油占总该机余热的75%,高温压缩空气占总余热的25%,因此该实施例完成了自来水与螺杆式空压机高温油的热交换,使自来水置换了螺杆式空压机75%的余热,得到了高温、高质量的热水。
实施例2
由于螺杆式空压机高温油占总该机余热的75%,高温压缩空气占总余热的25%,而实施例1仅完成了螺杆式空压机高温油与自来水的热交换,为了进一步提高自来水的温度,该实施例中,所述的管热交换器的自来水进口10通过气液热交换器Ⅰ与自来水管连通,所述的气液热交换器Ⅰ用以使螺杆式空压机的高温压缩空气与自来水进行热交换,使自来水在进入管热交换器之前得到一次预热,提高了自来水的温度,并使螺杆式空压机的高温压缩空气换热降温后排出,减少了热能的损失;该实施例中所述管热交换器的结构同实施例1。
如图2所示,所述的气液热交换器Ⅰ设置在管热交换器的中心,或设置在管热交换器的前端,该实施例中,所述的气液热交换器Ⅰ设置在管热交换器的中心,所述的气液热交换器包括有换热气罐体22、导向内筒15和内盘管14;所述的导向内筒15位于换热器罐体22内,并与换热器罐体22同轴设置;所述导向内筒15与换热器罐体22之间的间隙构成换热腔体;所述的内盘管14位于导向内筒15与换热器罐体22之间的换热腔体内;所述导向内筒15的内腔构成压缩空气通道,压缩空气通道的上端设置有与螺杆式空压机相连的压缩空气进口18;压缩空气通道的下端与换热腔体相连通;所述换热腔体的上端连通压缩空气出口21,使压缩空气通过压缩空气通道后进入换热腔体,对内盘管内的自来水进行一次换热;所述内盘管14的下端通过内盘管的自来水进口11与自来水管相连通,所述内盘管14的上端出口与管热交换器自来水换热通道的自来水进口10相连通,使经过气液热交换器Ⅰ换热的自来水进入管热交换器进行热交换。
一种螺杆式空压机高温余热回收机的余热回收工艺,自来水通过气液热交换器Ⅰ内盘管14的下端进入内盘管14内,螺杆式空压机通过管道将高温压缩空气送入导向内筒的压缩空气通道内,高温压缩空气从压缩空气通道的下端进入换热腔体,内盘管14内的自来水与螺杆式空压机的高温压缩空气进行热交换,对自来水进行预热;与内盘管内的自来水换热后的高温压缩空气降温后通过压缩空气出口21排出,与高温压缩空气换热后的自来水升温后进入管热交换器自来水换热通道,螺杆式空压机的高温导热油通过管道进入管热交换器的内管2的内腔所形成的高温导热油换热通道内,管热交换器自来水换热通道内、经过气液热交换器Ⅰ加热后的自来水与高温导热油换热通道内的高温导热油互为逆向流动进行热交换,使自来水通过阶梯状升温盘管的阶梯式连续升温后得到高质量的热水,并通过热水出口7输出至外置保温储水箱;经阶梯状升温盘管阶梯式换热降温后的导热油通过冷却油出口返回至螺杆式空压机内进行重复利用;完成了自来水与螺杆式空压机高温油以及自来水与高温压缩空气的两次热交换,充分利用了螺杆式空压机的余热,进一步提高了自来水的输出温度,得到了高温、高质量的热水。
实施例3
由于螺杆式空压机高温油占总该机余热的75%,高温压缩空气占总余热的25%,而实施例1仅完成了螺杆式空压机高温油与自来水的热交换,为了进一步提高自来水的温度,该实施例中,通过螺杆式空压机自身设计的气液热交换器Ⅱ使自来水与螺杆式空压机的高温压缩空气进行热交换,使自来水在进入管热交换器之前得到一次预热,提高了自来水的温度,并使螺杆式空压机的高温压缩空气换热降温后排出,减少了热能的损失;现有技术中螺杆式空压机自身设计的气液热交换器Ⅱ中冷却水管内的冷却水为对高温压缩空气进行冷却的循环水,不能提拱高温热水;该实施例中所述管热交换器的结构同实施例1;该实施例中,所述气液热交换器Ⅱ的冷却水管的出口与管热交换器的自来水进口10连通,气液热交换器Ⅱ冷却水管的进口与自来水管连接。
一种螺杆式空压机高温余热回收机的余热回收工艺,自来水进入螺杆式空压机自身设计的气液热交换器Ⅱ内,并与螺杆式空压机的高温压缩空气进行热交换,气液热交换器Ⅱ内的自来水与螺杆式空压机的高温压缩空气进行热交换,使自来水得到一次加热;与高温压缩空气换热后的自来水升温后进入管热交换器自来水换热通道,螺杆式空压机的高温导热油通过管道进入管热交换器的内管的内腔所形成的高温导热油换热通道内,管热交换器自来水换热通道内、经过气液热交换器Ⅱ加热后的自来水与高温导热油换热通道内的高温导热油互为逆向流动进行热交换,使自来水通过阶梯状升温盘管的阶梯式连续升温后得到高质量的热水,并通过热水出口输出至外置保温储水箱;经阶梯状升温盘管阶梯式换热降温后的导热油通过冷却油出口返回至螺杆式空压机内进行重复利用。
在上述实施例中,所述自来水管的输入端设置有自力式温控阀;所述的自力式温控阀13包括有进水温度传感器12、进油温度传感器20、热水温度传感器19和输出油温度传感器16;所述的进水温度传感器12设置在自来水输入端的管内,所述的进油温度传感器20设置在高温导热油进口管内;所述的热水温度传感器19设置在热水出口管内;所述的输出油温度传感器16设置在冷却油出口管内;所述的自力式温控阀13由输出油温度传感器测得的温控能量直接控制,保持空压机冷却油恒温散热所需的自来水流量;输出油温的温度为73—75度;通过进油温度传感器20、输出油温度传感器16,向自力式温控阀的控制器及屏显提供智能控制信号和观测数据信号。
上述实施例中,所述的自力式电动温控阀13选用了控制精度更高的带控制器的单片机温控阀,工程实例中也可选用分水器各分路采用电热阀,多级并联分级控制水量。
本发明在使用中,可根据热能设备的功率,液体压力及流量要求,选择多个管热交换器串联、并联或串并联使用,管热交换器中上下相邻两层盘管之间的保温间隔9可采用分体或整体的多种保温措施,外管3可使被加温冷水阶梯升温并可通过多个串接获得最高饱和高温;该实施例中多个管热交换器的内管2并联连接以配合空压机冷却油的喷油量流量要求;部分机型可采用或部分采用多级并串联板式换热器,各板式换热器之间必须保证足够的保温空间以实现阶梯温升效果。

Claims (9)

1.一种螺杆式空压机高温余热回收机,其特征在于:所述的余热回收机具有与螺杆式空压机(23)连接的管热交换器;所述的管热交换器具有由同轴设置的内管(2)和外管(3)构成的复合管;所述的复合管由下向上呈盘式螺旋状设置形成阶梯状升温盘管,且上下相邻两层盘管之间具有间隙;所述内管(2)与外管(3)之间的间隙构成自来水换热通道,所述内管(2)的内腔形成高温导热油换热通道;内管(2)与外管(3)之间的自来水换热通道的下端与自来水进口(10)连通;内管(2)与外管(3)之间的自来水换热通道的上端连接热水出口(7);所述高温导热油换热通道的上端通过高温导热油进口(5)与螺杆式空压机的高温导热油出口连通;所述高温导热油换热通道的下端连接冷却油出口(1),经管热交换器换热冷却后导热油通过冷却油出口(1)与螺杆式空压机冷却油回油端相连;所述高温导热油换热通道内的导热油与自来水换热通道内的自来水互为逆向流动进行换热;
所述一种螺杆式空压机高温余热回收机的余热回收工艺,采用具有阶梯状升温盘管的管热交换器使自来水与螺杆式空压机的高温导热油进行热交换,得到高质量的热水;其步骤如下:
自来水通过管热交换器的自来水进口(10)直接进入管热交换器自来水换热通道内;或,自来水通过气液热交换器Ⅰ进行换热后进入管热交换器;即自来水通过气液热交换器Ⅰ内盘管(14)的下端进入内盘管内,螺杆式空压机通过管道将高温压缩空气送入导向内筒的压缩空气通道内,高温压缩空气从压缩空气通道的下端进入换热腔体,高温压缩空气在换热腔体内由下向上流动与内盘管内的自来水进行热交换,使自来水得到一次加热;与内盘管(14)内的自来水换热后的高温压缩空气降温后通过压缩空气出口排出,经过换热后的自来水升温后通过管热交换器的自来水进口进入管热交换器的自来水换热通道内;或,自来水进入螺杆式空压机自身设计的气液热交换器Ⅱ,气液热交换器Ⅱ内的自来水与螺杆式空压机的高温压缩空气进行热交换,使自来水得到一次加热;螺杆式空压机的高温导热油通过管道进入管热交换器的内管的内腔所形成的高温导热油换热通道内,进入高温导热油换热通道内的高温导热油与管热交换器自来水换热通道内的自来水互为逆向流动进行热交换;使自来水通过阶梯状升温盘管的阶梯式连续升温后得到高质量的热水,并通过热水出口输出至外置保温储水箱;经阶梯状升温盘管阶梯式换热降温后的导热油通过冷却油出口返回至螺杆式空压机内进行重复利用,至此,完成了自来水与螺杆式空压机的热交换,得到高质量的热水。
2.根据权利要求1所述的一种螺杆式空压机高温余热回收机,其特征在于:所述管热交换器的两端分别设置有三通(4),所述三通(4)的一端通过内外封口连接头(6)与内管(2)的外壁密封连接,与其相对的一端与外管(3)密封连接,与其相邻的一端与自来水换热通道连通。
3.根据权利要求1所述的一种螺杆式空压机高温余热回收机,其特征在于:上下相邻两层盘管之间所具有的间隙内填充有保温材料,所述的保温材料套置在外管(3)上,套置在外管上的保温材料使上下相邻两层盘管之间形成保温间层(9)。
4.根据权利要求1所述的一种螺杆式空压机高温余热回收机,其特征在于:所述外管(3)内壁面上具有多个向内凸起的支撑点(8),用以支撑内管并使内管与外管同轴设置,并增加自来水在流动中的局部湍流效应,从而增加热交换效果。
5.根据权利要求1所述的一种螺杆式空压机高温余热回收机,其特征在于:所述管热交换器的自来水进口(10)直接与自来水管连通。
6.根据权利要求1所述的一种螺杆式空压机高温余热回收机,其特征在于:所述的管热交换器的自来水进口(10)通过气液热交换器Ⅰ与自来水管连通,所述的气液热交换器Ⅰ用以使螺杆式空压机的高温压缩空气与自来水进行热交换,对自来水进行预热;所述的气液热交换器Ⅰ包括有换热气罐体(22)、导向内筒(15)和内盘管(14);所述的导向内筒(15)位于换热器罐体(22)内,并与换热器罐体(22)同轴设置;所述导向内筒(15)与换热器罐体(22)之间的间隙构成换热腔体;所述的内盘管(14)位于导向内筒(15)与换热器罐体(22)之间的换热腔体内;所述导向内筒(15)的内腔构成压缩空气通道,压缩空气通道的上端设置有与螺杆式空压机相连的压缩空气进口(18);压缩空气通道的下端与换热腔体相连通,所述换热腔体的上端连通压缩空气出口(21),使压缩空气通过压缩空气通道后进入换热腔体,对内盘管内的自来水进行一次换热;所述内盘管(14)的下端与自来水管相连通,所述内盘管(14)上端的预热水出口与管热交换器自来水换热通道的自来水进口(10)相连通,使经过气液热交换器Ⅰ进行换热后的自来水进入管热交换器进行再次换热。
7.根据权利要求6所述的一种螺杆式空压机高温余热回收机,其特征在于:所述气液热交换器Ⅰ设置在管热交换器的中心位置或设置在管热交换器的前端。
8.根据权利要求1所述的一种螺杆式空压机高温余热回收机,其特征在于:所述管热交换器的自来水进口(10)通过螺杆式空压机自身设计的气液热交换器Ⅱ与自来水管相连通,所述气液热交换器Ⅱ的冷却水管的出口与管热交换器的自来水进口连通,所述气液热交换器Ⅱ冷却水管的进口与自来水管相连通。
9.根据权利要求5或6或8所述的一种螺杆式空压机高温余热回收机,其特征在于:所述自来水管的输入端设置有自力式温控阀;所述的自力式温控阀(13)包括有进水温度传感器(12)、进油温度传感器(20)、热水温度传感器(19)和输出油温度传感器(16);所述的进水温度传感器(12)设置在自来水输入端的管内,所述的进油温度传感器(20)设置在高温导热油进口管内;所述的热水温度传感器(19)设置在热水出口管内;所述的输出油温度传感器(16)设置在冷却油出口管内;所述的自力式温控阀(13)由输出油温度传感器测得的温控能量直接控制,保持空压机冷却油恒温散热所需的自来水流量;输出油温的温度为73—75度;通过进油温度传感器(20)、输出油温度传感器(16),向自力式温控阀的控制器及屏显提供智能控制信号和观测数据信号。
CN201410125996.9A 2014-04-01 2014-04-01 一种螺杆式空压机高温余热回收机及工艺 Expired - Fee Related CN103867451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410125996.9A CN103867451B (zh) 2014-04-01 2014-04-01 一种螺杆式空压机高温余热回收机及工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410125996.9A CN103867451B (zh) 2014-04-01 2014-04-01 一种螺杆式空压机高温余热回收机及工艺

Publications (2)

Publication Number Publication Date
CN103867451A CN103867451A (zh) 2014-06-18
CN103867451B true CN103867451B (zh) 2016-04-27

Family

ID=50906348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410125996.9A Expired - Fee Related CN103867451B (zh) 2014-04-01 2014-04-01 一种螺杆式空压机高温余热回收机及工艺

Country Status (1)

Country Link
CN (1) CN103867451B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112324641B (zh) * 2020-11-02 2021-10-29 北京航空航天大学 一种利用余热雾滴发生和雾滴冷却空气压缩装置及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2807150Y (zh) * 2005-04-18 2006-08-16 钮德明 自动切换的空调热水机组
CN101571132A (zh) * 2008-04-28 2009-11-04 上海瀚艺冷冻机械有限公司 螺杆式压缩机中的油冷却装置
CN202836269U (zh) * 2012-09-06 2013-03-27 江苏天舒电器有限公司 新型热补偿转移换热器和包含该换热器的热泵热水机
CN203362451U (zh) * 2013-07-01 2013-12-25 青岛科技大学 余热回收装置及采用此装置的空压机系统
CN203892197U (zh) * 2014-04-01 2014-10-22 杭州凯嘉节能科技有限公司 一种螺杆式空压机高温余热回收机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2807150Y (zh) * 2005-04-18 2006-08-16 钮德明 自动切换的空调热水机组
CN101571132A (zh) * 2008-04-28 2009-11-04 上海瀚艺冷冻机械有限公司 螺杆式压缩机中的油冷却装置
CN202836269U (zh) * 2012-09-06 2013-03-27 江苏天舒电器有限公司 新型热补偿转移换热器和包含该换热器的热泵热水机
CN203362451U (zh) * 2013-07-01 2013-12-25 青岛科技大学 余热回收装置及采用此装置的空压机系统
CN203892197U (zh) * 2014-04-01 2014-10-22 杭州凯嘉节能科技有限公司 一种螺杆式空压机高温余热回收机

Also Published As

Publication number Publication date
CN103867451A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
CN203190850U (zh) 一种双螺旋式热交换器
CN203671912U (zh) 一种用于空气源热泵热水器的水箱
CN101387439A (zh) 热泵水箱系统
CN203892197U (zh) 一种螺杆式空压机高温余热回收机
CN104807350A (zh) 一种空调热交换器
CN103867451B (zh) 一种螺杆式空压机高温余热回收机及工艺
CN104315702B (zh) 带电辅加热的容积式换热内胆
CN103672832A (zh) 导热油过热蒸汽发生器
CN203375703U (zh) 储热蓄水式热泵热水器及其室内机
CN201449014U (zh) 一种热泵热水器水箱
CN202751210U (zh) 一种热量回收加热的冷热饮水机
CN104236097A (zh) 一种新型换热储水箱
CN203550682U (zh) 一种多介质管壳式换热器
CN204987563U (zh) 一种双盘管桶式换热器及其并联结构
CN102032675B (zh) 内置换热器的热泵热水器水箱
CN206131532U (zh) 壳式热交换器、水冷外挂模组及水冷系统
CN106370036A (zh) 一种浮头式单管程逆流换热方法及换热器
CN204987961U (zh) 一种浮头式单管程逆流换热器
CN102980332B (zh) 热回收式壳管式冷凝器
CN206944768U (zh) 套管式换热器
CN207231003U (zh) 一种低温空气源热泵采暖机水侧换热器
CN103335457A (zh) 空气源热泵超导冷凝器和蒸发器
CN204150495U (zh) 一种丙烯酸罐保温系统
CN205024308U (zh) 一种氮化炉冷却段的冷却装置
CN204214141U (zh) 一种新型换热储水箱

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160427

Termination date: 20170401

CF01 Termination of patent right due to non-payment of annual fee