CN103862050A - 基于层间冲击强化工艺的金属3d打印机及打印方法 - Google Patents

基于层间冲击强化工艺的金属3d打印机及打印方法 Download PDF

Info

Publication number
CN103862050A
CN103862050A CN201410126522.6A CN201410126522A CN103862050A CN 103862050 A CN103862050 A CN 103862050A CN 201410126522 A CN201410126522 A CN 201410126522A CN 103862050 A CN103862050 A CN 103862050A
Authority
CN
China
Prior art keywords
strengthening
metal
cladding layer
nozzle
shock peening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410126522.6A
Other languages
English (en)
Other versions
CN103862050B (zh
Inventor
贺斌
赵卫
杨小君
江浩
李睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201410126522.6A priority Critical patent/CN103862050B/zh
Publication of CN103862050A publication Critical patent/CN103862050A/zh
Application granted granted Critical
Publication of CN103862050B publication Critical patent/CN103862050B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种在金属零件3D打印过程中采用冲击强化来提高打印件力学性能的工艺方法。其特殊之处在于,采取每熔覆一定的层数就在熔覆层上表面进行冲击强化,从而消除熔覆层内部的空洞、疏松、微裂纹等缺陷提高成形件的致密度;在冲击强化过程中将熔覆层进行加热和合理的分区工艺规划,并且冲击强化角度随着同一层不同区域和不同层数的变换而变化,从而保证在提高致密度增强力学性能的同时防止应力集中确保金属3D打印件的成形精度。

Description

基于层间冲击强化工艺的金属3D打印机及打印方法
技术领域
本发明涉及一种金属零件3D打印过程中面向熔覆层的冲击强化方法。采用该方法可根据熔覆层的不同特征采用合理的冲击工艺,从而消除熔覆层内部缺陷、细化晶粒并增加熔覆层内部的残余压应力,最终增加金属零件的力学性能尤其是高温疲劳力学性能。
技术背景
金属3D打印技术是一种能通过点、线、面的累加而直接成形结构复杂且力学性能优异的金属零件的先进制造技术。然而在成形过程中逐点累加成形的工作原理导致成形件内部几乎不可避免的产生孔洞、疏松等缺陷,并且对于大部分材料成形件内部还容易出现微裂纹。即便是采用可成形性最好的材料来成形零件并经过热等静压及热处理等工艺对零件进行后处理,其高温力学性能如高温疲劳性能依然无法达到锻件的标准。
发明内容
为解决现有金属3D打印过程中在成形件内部所产生的孔洞、疏松等缺陷的技术问题,本发明提供一种金属零件3D打印过程中面向熔覆层冲击强化的金属3D打印机及打印方法。
为达到以上目的,本发明采取如下技术方案予以实现的:
基于层间冲击强化工艺的金属3D打印机,包括熔覆喷嘴,其特殊之处在于:还包括设置在熔覆喷嘴上的强化喷嘴,所述强化喷嘴对熔覆喷嘴所形成的熔覆层进行冲击强化。
上述强化喷嘴为激光冲击强化喷嘴和/或机械喷丸强化喷嘴。
上述强化喷嘴中心线与熔覆层的夹角范围30°-60°。
基于层间冲击强化工艺的金属3D打印方法,其特殊之处在于:包括以下步骤:
1】熔覆层成形:
首先采用金属3D打印技术在基材表面形成若干熔覆层,层厚0.05-0.3mm,当熔覆层达到一定厚度时,停止3D打印成形;
2】熔覆层加热:
通过加热装置将熔覆层上表面加热到100℃-700℃;
3】熔覆层分区:
将熔覆层分为边界区和中间区7;其中边界区由外边界区6组成,或者由外边界区6和内边界区8组成;所述外边界区6为零件外轮廓向零件内部偏移0.5-3mm所形成的闭合曲线与该外轮廓形成的封闭区域,所述内边界区8为零件内轮廓向零件内部偏移0.5-3mm所形成的闭合曲线与该内轮廓形成的封闭区域;所述中间区7为除边界区之外的其他区域;
4】熔覆层强化:
强化顺序为先边界区再中间区7,且中间区强化时的覆盖率为边界区的0.5-0.8倍;
5】熔覆层继续成形:
在强化后的熔覆层顶部继续形成若干熔覆层,层厚0.05-0.3mm;
6】重复步骤2、3、4、5直至金属3D打印件成形完成。
采用上述的金属3D打印方法,在进行强化时,强化喷嘴中心线与熔覆层的夹角范围为30°-60°。
采用上述的金属3D打印方法,每完成1-3层的熔覆和强化,强化喷嘴中心线在XOY平面内的投影与X轴的夹角增大10°-50°。
采用上述的金属3D打印方法,在每次进行熔覆时,所述外边界区6的偏移量在0.5-3mm之间变换,所述内边界区8的偏移量在0.5-3mm之间变换。
所述熔覆层的材料为Ti合金;所述步骤2的加热温度为200℃;所述加热采用在基材底部设置加热板的方式实现。
本发明与现有技术相比,优点是:
本发明可以在金属3D成形过程中分阶段冲击已成形的熔覆层,从而消除熔覆层内部的空洞、疏松、微裂纹等缺陷提高成形件的致密度;在冲击强化过程中将熔覆层进行加热和合理的分区工艺规划,保证在提高致密度增强力学性能的同时也确保金属3D打印件的表面精度。
附图说明
图1是本发明方法在金属3D成形过程中采用冲击强化的原理示意图;
图2是在金属3D成形过程中采用机械喷丸强化案例示意图。
其中附图标记为:1-激光聚焦头,2-强化喷嘴,3-熔覆层,4-基材,5-加热板,6-外边界区6,7-中间区7,8-内边界区8,9-熔覆喷嘴,10-强化喷嘴,11-强化丸,12-粉末。
具体实施方式
如图1所示,本发明基于层间冲击强化工艺的金属3D打印机,包括熔覆喷嘴9,强化喷嘴10,激光聚焦头与熔覆喷嘴集成为一体。强化喷嘴10对熔覆喷嘴9所形成的熔覆层3进行冲击强化,强化喷嘴为激光冲击强化喷嘴和/或机械喷丸强化喷嘴,强化喷嘴中心线与熔覆层的夹角范围30°-60°。
本发明中的强化喷嘴与熔覆喷嘴之间的相互配合结构可以有五种:第一种是熔覆喷嘴设置在中心,强化喷嘴设置在熔覆喷嘴外围,强化喷嘴包括3-5个喷管,每个喷管可通过电气系统控制实现单独喷丸。第二种是强化喷嘴设置在中心,熔覆喷嘴设置在强化喷嘴外围,熔覆喷嘴包括3-5个喷管,每个喷管可通过电气系统控制实现单独喷射粉末;第三种是熔覆喷嘴包括多个喷管,强化喷嘴包括多个喷管,熔覆喷嘴的喷管和强化喷嘴的喷管依次相间排布且圆周均布;第四种是强化喷嘴设置在熔覆喷嘴外围,强化喷嘴包括3-5个激光头,每个激光头可单独发射激光;第五种强化喷嘴包括1个激光头,激光头设置在正中心;熔覆喷嘴设置强化喷嘴的外围。
如图2所示,在3D打印Ti合金零件过程中对Ti合金熔覆层采用喷丸冲击强化。喷丸强化喷嘴与同轴的熔覆喷嘴及用于金属粉末加热的激光聚焦头集成为一体,且熔覆喷嘴和强化喷嘴各包括多个喷管,熔覆喷嘴的喷管和强化喷嘴的喷管依次相间排布且圆周均布,可以在完成一定层数的堆积后迅速对堆积层进行冲击强化而不需要其他的辅助设备,其基本步骤如下:
1】熔覆层成形:
首先采用金属3D打印技术在基材表面形成若干熔覆层,每一层熔覆层的层厚0.05-0.3mm,当熔覆层达到一定厚度时,停止3D打印成形;
2】熔覆层加热:
通过加热装置将熔覆层上表面加热到100℃-700℃;
3】熔覆层分区:
将熔覆层分为边界区和中间区7;其中边界区由外边界区6组成,或者由外边界区6和内边界区8组成;外边界区6为零件外轮廓向零件内部偏移0.5-3mm所形成的闭合曲线与该外轮廓形成的封闭区域,内边界区8为零件内轮廓向零件内部偏移0.5-3mm所形成的闭合曲线与该内轮廓形成的封闭区域;中间区7为除边界区之外的其他区域;
4】熔覆层强化:
强化顺序为先边界区再中间区7,且中间区强化时的覆盖率为边界区的0.5-0.8倍;
5】熔覆层继续成形:
在强化后的熔覆层顶部继续形成若干熔覆层,层厚0.05-0.3mm;
6】重复步骤2、3、4、5直至金属3D打印件成形完成。
进一步的,在进行强化时,强化喷嘴中心线与熔覆层的夹角范围为30°-60°,采用该角度的优点是保证熔覆层能得到有效的强化。
进一步的,每完成1-3层的熔覆和强化,强化喷嘴中心线在XOY平面内的投影与X轴的夹角增大10°-50°,采用此方案的优点是使得强化比较均匀。
进一步的,在每次进行熔覆时,所述外边界区6的偏移量在0.5-3mm之间变换,内边界区8的偏移量在0.5-3mm之间变换,采用此方案的优点是防止产生强化接头位置应力集中。
进一步的,当熔覆层的金属为Ti合金时;步骤2的加热温度为200℃;加热采用在基材底部设置加热板5的方式实现。
在本发明中,由于在不同条件(不同强化方式,不同成形材料)下冲击强化所能穿透的沉积层厚度有较大的差异,所以强化前已成形层数需要根据具体条件的不同而进行设定。如采用机械喷丸强化时需要逐层或者每隔几层进行一次冲击强化,而采用激光冲击强化时则可以在成形十层甚至几十层后进行一次冲击强化。
在本发明中,根据材料的不同属性(如塑形)可将加热温度设置为不同的预定值,这样可以更好地发挥冲击强化在增强零件致密度方面的能力。
在本发明中,可以在熔覆层的不同位置采取不同的强化参数(包括压力、次数、速度、喷丸质量大小、移动速度、移动间距等),或者按照一定的次序调整熔覆层不同位置的强化次序,进而达到通过调整强化的工艺来调节零件内部不同位置处的残余应力的性质和大小,从而达到在增加致密度的同时保证成形件精度的效果。

Claims (10)

1.基于层间冲击强化工艺的金属3D打印机,包括熔覆喷嘴,其特征在于:还包括设置在熔覆喷嘴上的强化喷嘴,所述强化喷嘴对熔覆喷嘴所形成的熔覆层进行冲击强化。
2.根据权利要求1所述的基于层间冲击强化工艺的金属3D打印机,其特征在于:所述强化喷嘴为激光冲击强化喷嘴和/或机械喷丸强化喷嘴。
3.根据权利要求1或2所述的基于层间冲击强化工艺的金属3D打印机,其特征在于:所述强化喷嘴中心线与熔覆层的夹角范围30°-60°。
4.基于层间冲击强化工艺的金属3D打印方法,其特征在于:包括以下步骤:
1】熔覆层成形:
首先采用金属3D打印技术在基材表面形成若干熔覆层,每一层熔覆层的层厚0.05-0.3mm,当熔覆层达到一定厚度时,停止3D打印成形;
2】熔覆层加热:
通过加热装置将熔覆层上表面加热到100℃-700℃;
3】熔覆层分区:
将熔覆层分为边界区和中间区7;其中边界区由外边界区6组成,或者由外边界区6和内边界区8组成;所述外边界区6为零件外轮廓向零件内部偏移0.5-3mm所形成的闭合曲线与该外轮廓形成的封闭区域,所述内边界区8为零件内轮廓向零件内部偏移0.5-3mm所形成的闭合曲线与该内轮廓形成的封闭区域;所述中间区7为除边界区之外的其他区域;
4】熔覆层强化:
强化顺序为先边界区再中间区7,且中间区强化时的覆盖率为边界区的0.5-0.8倍;
5】熔覆层继续成形:
在强化后的熔覆层顶部继续形成若干熔覆层,层厚0.05-0.3mm;
6】重复步骤2、3、4、5直至金属3D打印件成形完成。
5.根据权利要求4所述的基于层间冲击强化工艺的金属3D打印方法,其特征在于:在进行强化时,强化喷嘴中心线与熔覆层的夹角范围为30°-60°。
6.根据权利要求4所述的基于层间冲击强化工艺的金属3D打印方法,其特征在于:在每次进行强化时,强化喷嘴中心线与熔覆层的夹角在30°-60°范围内变换。
7.根据权利要求4或5或6所述的基于层间冲击强化工艺的金属3D打印方法,其特征在于:每完成1-3层的熔覆和强化,强化喷嘴中心线在XOY平面内的投影与X轴的夹角增大10°-50°。
8.根据权利要求7所述的基于层间冲击强化工艺的金属3D打印方法,其特征在于:在每次进行熔覆时,所述外边界区6的偏移量在0.5-3mm之间变换,所述内边界区8的偏移量在0.5-3mm之间变换。
9.根据权利要求4或5或6所述的基于层间冲击强化工艺的金属3D打印方法,其特征在于:在每次进行熔覆时,所述外边界区6的偏移量在0.5-3mm之间变换,所述内边界区8的偏移量在0.5-3mm之间变换。
10.根据权利要求9所述的基于层间冲击强化工艺的金属3D打印方法,其特征在于:所述金属为Ti合金;所述步骤2的加热温度为200℃;所述加热采用在基材底部设置加热板的方式实现。
CN201410126522.6A 2014-03-31 2014-03-31 基于层间冲击强化工艺的金属3d打印机及打印方法 Expired - Fee Related CN103862050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410126522.6A CN103862050B (zh) 2014-03-31 2014-03-31 基于层间冲击强化工艺的金属3d打印机及打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410126522.6A CN103862050B (zh) 2014-03-31 2014-03-31 基于层间冲击强化工艺的金属3d打印机及打印方法

Publications (2)

Publication Number Publication Date
CN103862050A true CN103862050A (zh) 2014-06-18
CN103862050B CN103862050B (zh) 2016-08-17

Family

ID=50901402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410126522.6A Expired - Fee Related CN103862050B (zh) 2014-03-31 2014-03-31 基于层间冲击强化工艺的金属3d打印机及打印方法

Country Status (1)

Country Link
CN (1) CN103862050B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127755A (zh) * 2015-09-06 2015-12-09 北京航空航天大学 一种工件的成型与强化的复合加工装置及方法
CN105618740A (zh) * 2016-01-07 2016-06-01 西安理工大学 激光金属成形中熔道材质缺陷的在线检测消除装置及方法
CN106141439A (zh) * 2016-08-13 2016-11-23 中北大学 消除激光熔化成形制品残余应力的激光冲击装置
CN106216685A (zh) * 2016-08-28 2016-12-14 赵晴堂 三维增材成型强化系统
CN106735221A (zh) * 2017-02-24 2017-05-31 广东工业大学 一种激光冲击锻打金属3d打印复合制造方法及装置
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
CN107138728A (zh) * 2017-05-27 2017-09-08 广东工业大学 一种复杂结构的增材制造方法及增材制造系统
CN107190257A (zh) * 2017-05-11 2017-09-22 江苏大学 一种模具损伤部位的激光熔覆与机械喷丸交错再制造方法
CN107225244A (zh) * 2017-06-21 2017-10-03 苏州大学 一种调控/降低激光增材制造零件内应力的方法
CN107234239A (zh) * 2017-05-08 2017-10-10 广东工业大学 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
CN107283059A (zh) * 2017-05-18 2017-10-24 广东工业大学 一种电弧熔积激光冲击锻打增材制造方法和装置
CN107378251A (zh) * 2017-05-31 2017-11-24 广东工业大学 一种大型金属零件的去应力激光冲击锻打表面修复方法与装置
CN107649682A (zh) * 2017-09-04 2018-02-02 西安交通大学 超声冲击和感应加热细化激光增材制造钛合金晶粒的方法
CN107695520A (zh) * 2017-09-18 2018-02-16 中国科学院力学研究所 调节激光增材制造或再制造时应力的激光调控装置及方法
CN108698127A (zh) * 2016-02-19 2018-10-23 赛峰集团 使用层的连续沉积来制造部件的方法和装置
CN109402372A (zh) * 2018-08-29 2019-03-01 中国人民解放军空军工程大学 一种基于3d打印技术的吸收保护层快速涂覆装置与方法
CN110961635A (zh) * 2019-12-31 2020-04-07 西安交通大学 一种通过激光冲击强化改善异种合金增材制造界面组织和性能的方法
CN111559048A (zh) * 2020-04-25 2020-08-21 芜湖荣基实业有限公司 一种高分子塑料生产用熔接装置
CN112809022A (zh) * 2020-12-23 2021-05-18 中南大学 一种增材制备金属产品的新方法
CN113199037A (zh) * 2021-05-10 2021-08-03 西安交通大学 一种感应辅助喷丸细化激光增材制造轻合金晶粒的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338765B1 (en) * 1998-09-03 2002-01-15 Uit, L.L.C. Ultrasonic impact methods for treatment of welded structures
CN101705462A (zh) * 2009-11-18 2010-05-12 沈阳黎明航空发动机(集团)有限责任公司 一种用于消除薄壁件焊接应力的方法
US20120217226A1 (en) * 2009-10-31 2012-08-30 Mtu Aero Engines Gmbh Method and device for producing a component of a turbomachine
CN102776521A (zh) * 2012-08-09 2012-11-14 江苏大学 基于激光喷丸辅助的钛合金表面低温渗硼方法及装置
CN103305828A (zh) * 2013-06-03 2013-09-18 南京航空航天大学 一种超声冲击强化激光熔覆层的装置及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338765B1 (en) * 1998-09-03 2002-01-15 Uit, L.L.C. Ultrasonic impact methods for treatment of welded structures
US20120217226A1 (en) * 2009-10-31 2012-08-30 Mtu Aero Engines Gmbh Method and device for producing a component of a turbomachine
CN101705462A (zh) * 2009-11-18 2010-05-12 沈阳黎明航空发动机(集团)有限责任公司 一种用于消除薄壁件焊接应力的方法
CN102776521A (zh) * 2012-08-09 2012-11-14 江苏大学 基于激光喷丸辅助的钛合金表面低温渗硼方法及装置
CN103305828A (zh) * 2013-06-03 2013-09-18 南京航空航天大学 一种超声冲击强化激光熔覆层的装置及其方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105127755A (zh) * 2015-09-06 2015-12-09 北京航空航天大学 一种工件的成型与强化的复合加工装置及方法
CN105618740A (zh) * 2016-01-07 2016-06-01 西安理工大学 激光金属成形中熔道材质缺陷的在线检测消除装置及方法
CN108698127A (zh) * 2016-02-19 2018-10-23 赛峰集团 使用层的连续沉积来制造部件的方法和装置
CN108698127B (zh) * 2016-02-19 2021-11-16 赛峰集团 使用层的连续沉积来制造部件的方法和装置
CN106141439A (zh) * 2016-08-13 2016-11-23 中北大学 消除激光熔化成形制品残余应力的激光冲击装置
CN106141439B (zh) * 2016-08-13 2017-12-08 中北大学 消除激光熔化成形制品残余应力的激光冲击装置
CN106216685A (zh) * 2016-08-28 2016-12-14 赵晴堂 三维增材成型强化系统
CN106735221A (zh) * 2017-02-24 2017-05-31 广东工业大学 一种激光冲击锻打金属3d打印复合制造方法及装置
CN106825574A (zh) * 2017-04-18 2017-06-13 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
CN106825574B (zh) * 2017-04-18 2020-02-07 广东工业大学 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
CN107234239A (zh) * 2017-05-08 2017-10-10 广东工业大学 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
CN107234239B (zh) * 2017-05-08 2019-08-23 广东工业大学 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
CN107190257A (zh) * 2017-05-11 2017-09-22 江苏大学 一种模具损伤部位的激光熔覆与机械喷丸交错再制造方法
CN107283059A (zh) * 2017-05-18 2017-10-24 广东工业大学 一种电弧熔积激光冲击锻打增材制造方法和装置
CN107283059B (zh) * 2017-05-18 2019-10-29 广东工业大学 一种电弧熔积激光冲击锻打增材制造方法和装置
CN107138728A (zh) * 2017-05-27 2017-09-08 广东工业大学 一种复杂结构的增材制造方法及增材制造系统
CN107378251B (zh) * 2017-05-31 2019-10-29 广东工业大学 一种大型金属零件的去应力激光冲击锻打表面修复方法与装置
CN107378251A (zh) * 2017-05-31 2017-11-24 广东工业大学 一种大型金属零件的去应力激光冲击锻打表面修复方法与装置
CN107225244A (zh) * 2017-06-21 2017-10-03 苏州大学 一种调控/降低激光增材制造零件内应力的方法
CN107649682A (zh) * 2017-09-04 2018-02-02 西安交通大学 超声冲击和感应加热细化激光增材制造钛合金晶粒的方法
CN107695520A (zh) * 2017-09-18 2018-02-16 中国科学院力学研究所 调节激光增材制造或再制造时应力的激光调控装置及方法
CN109402372A (zh) * 2018-08-29 2019-03-01 中国人民解放军空军工程大学 一种基于3d打印技术的吸收保护层快速涂覆装置与方法
CN110961635A (zh) * 2019-12-31 2020-04-07 西安交通大学 一种通过激光冲击强化改善异种合金增材制造界面组织和性能的方法
CN111559048A (zh) * 2020-04-25 2020-08-21 芜湖荣基实业有限公司 一种高分子塑料生产用熔接装置
CN112809022A (zh) * 2020-12-23 2021-05-18 中南大学 一种增材制备金属产品的新方法
CN113199037A (zh) * 2021-05-10 2021-08-03 西安交通大学 一种感应辅助喷丸细化激光增材制造轻合金晶粒的方法和装置

Also Published As

Publication number Publication date
CN103862050B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN103862050A (zh) 基于层间冲击强化工艺的金属3d打印机及打印方法
CN104164538B (zh) 一种获得大面积均匀表面形貌的激光冲击强化方法
JP6964083B2 (ja) 層の連続的な堆積を使用する部品を製造するための方法および装置
WO2018223478A1 (zh) 双激光束熔敷成形冲击锻打复合增材制造方法
CN104525944A (zh) 一种金属材料高能束-超声复合增材制造方法
CN107217253B (zh) 一种光-粉-气同轴输送激光熔覆冲击锻打成形复合制造方法
US20120217226A1 (en) Method and device for producing a component of a turbomachine
JP2019507250A5 (zh)
CN104084584A (zh) 用于高温合金结构件快速成型的激光扫描方法
CN104923784A (zh) 一种提高激光变斑直接成形不等宽构件精度的方法
CN107419088A (zh) 一种机翼整体壁板局部铣削失稳的激光喷丸整形方法
WO2016044963A1 (zh) 一种优化的3d打印方法
CN111088488A (zh) 一种基于激光熔覆和激光冲击的3d打印方法
CN110961635A (zh) 一种通过激光冲击强化改善异种合金增材制造界面组织和性能的方法
CN106426907A (zh) 一种非连续填充激光增材制造高效率的扫描方法
CN107937910B (zh) 一种激光金属熔覆快速成型过程中的缺陷检测装置及检测和修复方法
CN107949470A (zh) 用于制造三维物体的方法和装置
CN203992399U (zh) 用于层间冲击强化的金属3d打印机一体式喷嘴结构
CN102248377A (zh) 汽车变速器齿轮热处理后的焊接工艺
CN106987685B (zh) 一种用于Cr12MoV钢铸造模具型面的热处理工艺
CN107766614B (zh) 一种基于计算模型确定激光喷丸固有应变的方法
CN103111497A (zh) 一种金属板材的激光成形方法
CN104248832A (zh) 高尔夫球杆头弧形击球面板的制造方法
CN101805882A (zh) 控制气体氮碳共渗零件变形的工艺
KR102012236B1 (ko) 레이저와 금속 분말을 이용한 3차원 형상 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

CF01 Termination of patent right due to non-payment of annual fee