CN103846640B - 微小孔的等离子体放电加工装置及加工方法 - Google Patents

微小孔的等离子体放电加工装置及加工方法 Download PDF

Info

Publication number
CN103846640B
CN103846640B CN201210524753.3A CN201210524753A CN103846640B CN 103846640 B CN103846640 B CN 103846640B CN 201210524753 A CN201210524753 A CN 201210524753A CN 103846640 B CN103846640 B CN 103846640B
Authority
CN
China
Prior art keywords
electrode
flow controller
gas
carbon tetrafluoride
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210524753.3A
Other languages
English (en)
Other versions
CN103846640A (zh
Inventor
张巨帆
李兵
王颖
党炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN201210524753.3A priority Critical patent/CN103846640B/zh
Publication of CN103846640A publication Critical patent/CN103846640A/zh
Application granted granted Critical
Publication of CN103846640B publication Critical patent/CN103846640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma

Abstract

本发明涉及一种微小孔的等离子体放电加工装置及加工方法,属于机械制造技术领域。本发明为解决现有微小孔加工方法难以完全避免表层/亚表层损伤,以及现有等离子体无损加工装置不适用于微小孔的超精密高效加工等问题。通过导向器将小直径线状电极固定于待加工孔中心,在电极与孔壁间的间隙内形成等离子体放电空间,射频电源通过阻抗匹配器与电极连接,工作气体通过对应的质量流量控制器控制流量后通入气室,接地夹套设置于工作台内并接地。方法:工件安放并接地,定位电极;通入气体,并调节流量;输入并调节功率;控制运动轨迹和驻留时间;关闭电源和气体;取出工件。本发明适用于微小孔的等离子体放电加工。

Description

微小孔的等离子体放电加工装置及加工方法
技术领域
本发明隶属于机械制造领域,涉及一种微小孔的等离子体放电加工装置及加工方法。
背景技术
随着科技的发展,直径小于1mm的微小孔已经广泛地出现在我们生活中的各个领域,大到航空、航天、军事等方面的尖端零件,小到电路板、喷丝板、模型、喷油嘴、模具、医疗卫生用具、钟表等民用零件,微小孔可谓无处不在。微小孔加工是孔加工中最为困难的加工工艺之一:首先,由于孔径极小,所以微小孔加工几乎全部为长径比大的深孔;其次,需要加工微小孔的零件材料,一般多为高强度、高硬度的难加工材料,如耐热钢、不锈钢、硬质合金、陶瓷、金刚石等。为了解决微小孔加工的技术难题,人们在不断改进传统加工方法的同时,也在不断研究新的加工方法。目前,大约有50余种微小孔加工方法,如机械加工法、激光加工法、电火花加工法等,其不同程度地存在着一定的孔壁表面缺陷、亚表层损伤或残余应力等缺陷,并且大多数在加工高硬脆性材料时效率较低,加工周期长。
等离子体放电加工是化学非接触式加工方法,通过等离子体激发活性反应原子,使待加工表面处于高化学活性的氛围中,避免了表层/亚表层损伤,并以较高的化学反应速率保证了加工效率。
等离子体化学加工已经得到了广泛认可和应用,但现有等离子体放电加工装置大多数需要负压或真空环境支持,导致设备成本较高;现有同轴放电、点接触放电、平板放电等大气等离子体加工方式不适于微小孔的加工,无法在长径比较大的微小尺寸孔形空间内实现有效放电和控制。
发明内容
本发明为解决现有微小孔加工方法无法完全避免零件的表层/亚表层损伤,以及现有等离子放电加工技术不适用于微小孔加工等问题,提出一种微小孔的等离子体放电加工装置及加工方法。
本发明为解决上述技术问题采取的技术方案是:
本发明的一种用于微小孔加工的等离子体放电加工装置,其特征在于:所述加工装置包括氦气瓶、四氟化碳气瓶、氧气瓶、氦气质量流量控制器、四氟化碳质量流量控制器、氧气质量流量控制器、混气阀、射频电源、阻抗匹配器、电极、上导向器、气室、工作台、运动控制系统、下导向器、底座、接地线、接地夹套,射频电源通过阻抗匹配器与电极连接,接地线与接地夹套连接,射频电源、阻抗匹配器、电极与工件、接地线、接地夹套构成等离子体同轴放电结构,电极上端插入上导向器的通孔、下端插入下导向器的通孔以固定,上导向器、下导向器分别安装于气室、底座内,上、下导向器同轴安装以实现电极的定位,电极通过工件中的小孔,与工件小孔内壁形成等离子体放电腔室,工件放置于接地夹套内并与其良好连接,接地夹套放置并固定于工作台上,氦气瓶、四氟化碳气瓶、氧气瓶分别通过氦气质量本发明流量控制器、四氟化碳质量流量控制器、氧气质量流量控制器与混气阀连接,混气阀出口与气室进气口连接,氦气质量流量控制器用于控制氦气流量、四氟化碳质量流量控制器用于控制四氟化碳流量、氧气质量流量控制器用于控制氧气流量,工作台与运动控制系统连接。
本发明的微小孔等离子体放电加工方法是按照以下步骤实现的:
步骤一、将待加工工件置于工作台上,确定接地线连接良好,将电极从待加工微小孔中穿过,之后将电极下端插入下导向器固定(也可选择不使用下导向器);
步骤二、调整气室、工作台的空间位置,获得预期的等离子体放电腔室内的放电间隙距离,并固定工件与气室、底座的相对位置;
步骤三、打开氦气质量流量控制器、四氟化碳质量流量控制器、氧气质量流量控制器,打开混气阀,打开氦气瓶、四氟化碳气瓶、氧气瓶,其中氦气为等离子体气体,四氟化碳为反应气体,通过氦气质量流量控制器调节氦气流量为1~5L/min,通过四氟化碳质量流量控制器调节四氟化碳流量为10~100ml/min;
步骤四、打开射频电源、阻抗匹配器,对射频电源逐步增加功率,功率控制范围为50~400瓦,调整阻抗匹配至反射功率为0;
步骤五、如需在加工中改变微小孔相对电极的位置,则启动运动控制系统,实现预定的运动轨迹和驻留时间;
步骤六、关闭射频电源、阻抗匹配器,关闭氦气瓶、四氟化碳气瓶、氧气瓶,关闭氦气质量流量控制器、四氟化碳质量流量控制器、氧气质量流量控制器,关闭混气阀;
步骤七、升起电极,取出工件。
附图说明
图1是本发明的微小孔等离子体放电加工装置的整体结构主视图,图2是上、下导向器的剖视图,图3是移除下导向器时的微小孔等离子体放电加工装置的整体结构视图。
具体实施方式
1.具体实施方式一:如图1、图2所示,本实施方式的微小孔等离子体放电加工装置包括氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3)、氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6)、混气阀(7)、射频电源(8)、阻抗匹配器(9)、电极(10)、上导向器(11)、气室(12)、工作台(14)、运动控制系统(15)、下导向器(16)、底座(17)、接地线(18)、接地夹套(22),射频电源(8)通过阻抗匹配器(9)与电极(10)连接,接地线(18)与接地夹套(22)连接,射频电源(8)、阻抗匹配器(9)、电极(10)与工件(13)、接地线(18)、接地夹套(22)构成等离子体同轴放电结构,电极(10)上端插入上导向器(11)的通孔、下端插入下导向器(16)的通孔以固定,上导向器(11)、下导向器(16)分别安装于气室(12)、底座(17)内,上、下导向器同轴安装以实现电极(10)的定位,电极(10)通过工件(13)中的小孔,与工件小孔内壁形成等离子体放电腔室(19),工件(13)放置于接地夹套(22)内并与其良好连接,接地夹套(22)放置并固定于工作台(14)上,氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3)分别通过氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6)与混气阀(7)连接,混气阀(7)出口与气室(12)进气口连接,氦气质量流量控制器(4)用于控制氦气流量、四氟化碳质量流量控制器(5)用于控制四氟化碳流量、氧气质量流量控制器(6)用于控制氧气流量,工作台(14)与运动控制系统(15)连接。
微小孔的直径范围为小于1mm,但本发明的微小孔等离子体放电加工装置及加工方法也适用于直径范围为1-10mm的普通孔。
2.具体实施方式二:如图1所示,本实施方式所述气室(12)下端开有通气孔(20),工作台(14)下端开有排气孔(21)。如此设计,混气阀(7)供入气室(12)的气体由通气孔(20)吹入等离子体放电腔室(19),并由排气孔(21)吹出,保证了气路的单向通畅,还有利于热量的散失,其它组成及连接关系与具体实施方式一相同。
3.具体实施方式三:如图1所示,本实施方式所述四氟化碳气瓶(2)可替换为六氟化硫、三氟化氮等其他反应气体气瓶,并与对应气体的质量流量控制器连接,氧气瓶(3)可选择不使用。如此设计,可根据不同的待加工材料特性选择最适宜的反应气体配方,以实现较高的加工速率和表面质量。其它组成及连接关系与具体实施方式一或二相同。
4.具体实施方式四:如图2所示,本实施方式所述上导向器(11)、下导向器(16)内包括绝缘材料制成的导向套(11-2)、(16-2),导向套内开有与电极直径相同的通孔。如此设计可保证较高的绝缘强度,在高压放电时导向器也不会击穿,避免了对操作人员的安全隐患,同时也有利于维持均匀的电场分布强度。其它组成及连接关系与具体实施方式一、二或三相同。
5.具体实施方式五:如图3所示,本实施方式所述当电极具有较高的机械强度,可以凭自身刚度保持在孔中的要求位置时,可以移除下导向器(16)。如此设计,有利于实现对孔部分表面进行分段式加工,更适用于盲孔的加工以保证气流通畅循环,也可节省设备空间。其它组成及连接关系与具体实施方式一~四相同。
6.具体实施方式六:如图1~3所示,本实施方式的微小孔等离子体放电加工方法步骤如下:
步骤一、将待加工工件置于工作台(14)上,确定接地线(18)连接良好,将电极(10)从待加工微小孔中穿过,之后将电极(10)下端插入下导向器(16)固定(也可选择不使用下导向器);
步骤二、调整气室(12)、工作台(14)的空间位置,获得预期的等离子体放电腔室(19)内的放电间隙距离,并固定工件与气室(12)、底座(17)的相对位置;
步骤三、打开氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6),打开混气阀(7),打开氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3),其中氦气为等离子体气体,四氟化碳为反应气体,通过氦气质量流量控制器(4)调节氦气流量为1~5L/min,通过四氟化碳质量流量控制器(5)调节四氟化碳流量为10~100ml/min;
步骤四、打开射频电源(8)、阻抗匹配器(9),对射频电源(8)逐步增加功率,功率控制范围为50~400瓦,调整阻抗匹配至反射功率为0;
步骤五、如需在加工中改变微小孔相对电极的位置,则启动运动控制系统,实现预定的运动轨迹和驻留时间;
步骤六、关闭射频电源(8)、阻抗匹配器(9),关闭氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3),关闭氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6),关闭混气阀(7);
步骤七、升起电极(10),取出工件。
如图1~3所示,加工采用电极与微小孔同轴放电的方式进行表面超精密加工和变质层材料的去处。加工中电极伸入微小孔并按要求保持其相对位置,放电间隙可通过选择不同直径的电极控制,气体由通孔一端吹入,由另一端吹出,保证了气流的单向顺畅流动,同时可带走部分热量。放电时,等离子体和活性反应原子在电极与孔壁间的间隙内产生,反应原子直接作用于孔壁材料,生成气态产物并随气流排出。

Claims (6)

1.一种用于微小孔加工的等离子体放电加工装置,其特征在于:所述加工装置包括氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3)、氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6)、混气阀(7)、射频电源(8)、阻抗匹配器(9)、电极(10)、上导向器(11)、气室(12)、工作台(14)、运动控制系统(15)、下导向器(16)、底座(17)、接地线(18)、接地夹套(22),射频电源(8)通过阻抗匹配器(9)与电极(10)连接,接地线(18)与接地夹套(22)连接,射频电源(8)、阻抗匹配器(9)、电极(10)与工件(13)、接地线(18)、接地夹套(22)构成等离子体同轴放电结构,电极(10)上端插入上导向器(11)的通孔、下端插入下导向器(16)的通孔以固定,上导向器(11)、下导向器(16)分别安装于气室(12)、底座(17)内,上、下导向器同轴安装以实现电极(10)的定位,电极(10)通过工件(13)中的小孔,与工件小孔内壁形成等离子体放电腔室(19),工件(13)放置于接地夹套(22)内并与其良好连接,接地夹套(22)放置并固定于工作台(14)上,氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3)分别通过氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6)与混气阀(7)连接,混气阀(7)出口与气室(12)进气口连接,氦气质量流量控制器(4)用于控制氦气流量、四氟化碳质量流量控制器(5)用于控制四氟化碳流量、氧气质量流量控制器(6)用于控制氧气流量,工作台(14)与运动控制系统(15)连接。
2.根据权利要求1所述的微小孔等离子体放电加工装置,其特征在于:气室(12)下端开有通气孔(20),工作台(14)下端开有排气孔(21),混气阀(7)供入气室(12)的气体由通气孔(20)吹入等离子体放电腔室(19),并由排气孔(21)吹出。
3.根据权利要求1或2所述的微小孔等离子体放电加工装置,其特征在于:四氟化碳气瓶(2)可替换为六氟化硫或三氟化氮气瓶,并与对应气体的质量流量控制器连接。
4.根据权利要求1或2所述的微小孔等离子体放电加工装置,其特征在于:上导向器(11)、下导向器(16)内包括绝缘材料制成的导向套(11-2)、(16-2),导向套内开有与电极直径相同的通孔。
5.根据权利要求1或2所述的微小孔等离子体放电加工装置,其特征在于:当电极具有较高的机械强度并使所述电极凭自身刚度保持在孔中的要求位置时,移除下导向器(16)。
6.一种利用权利要求1~5中任一权利要求所述的微小孔等离子体放电加工方法,其特征在于微小孔加工方法步骤如下:
步骤一、将待加工工件置于工作台(14)上,确定接地线(18)连接良好,将电极(10)从待加工微小孔中穿过,之后将电极(10)下端插入下导向器(16)固定;
步骤二、调整气室(12)、工作台(14)的空间位置,获得预期的等离子体放电腔室(19)内的放电间隙距离,并固定工件与气室(12)、底座(17)的相对位置;
步骤三、打开氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6),打开混气阀(7),打开氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3),其中氦气为等离子体气体,四氟化碳为反应气体,通过氦气质量流量控制器(4)调节氦气流量为1~5L/min,通过四氟化碳质量流量控制器(5)调节四氟化碳流量为10~100ml/min;
步骤四、打开射频电源(8)、阻抗匹配器(9),对射频电源(8)逐步增加功率,功率控制范围为50~400瓦,调整阻抗匹配至反射功率为0;
步骤五、如需在加工中改变微小孔相对电极的位置,则启动运动控制系统,实现预定的运动轨迹和驻留时间;
步骤六、关闭射频电源(8)、阻抗匹配器(9),关闭氦气瓶(1)、四氟化碳气瓶(2)、氧气瓶(3),关闭氦气质量流量控制器(4)、四氟化碳质量流量控制器(5)、氧气质量流量控制器(6),关闭混气阀(7);
步骤七、升起电极(10),取出工件。
CN201210524753.3A 2012-12-07 2012-12-07 微小孔的等离子体放电加工装置及加工方法 Expired - Fee Related CN103846640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210524753.3A CN103846640B (zh) 2012-12-07 2012-12-07 微小孔的等离子体放电加工装置及加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210524753.3A CN103846640B (zh) 2012-12-07 2012-12-07 微小孔的等离子体放电加工装置及加工方法

Publications (2)

Publication Number Publication Date
CN103846640A CN103846640A (zh) 2014-06-11
CN103846640B true CN103846640B (zh) 2017-02-15

Family

ID=50855016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210524753.3A Expired - Fee Related CN103846640B (zh) 2012-12-07 2012-12-07 微小孔的等离子体放电加工装置及加工方法

Country Status (1)

Country Link
CN (1) CN103846640B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597078B (zh) * 2021-08-24 2022-06-28 上海交通大学 多通道电容耦合式等离子体射流装置及工作方法
CN116038047A (zh) * 2023-01-07 2023-05-02 中国航空制造技术研究院 一种用于电液束加工小孔的加工工装及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071101A (ja) * 1984-02-03 1985-04-23 Hajime Ishimaru 超高真空用アルミ系材料の加工法
DE19826138B4 (de) * 1998-04-17 2007-06-28 NU TECH Gesellschaft für Lasertechnik Materialprüfung und Meßtechnik mbH Verfahren zur Herstellung eines Werkstücks mit einer verschleißbeständigen Oberfläche
CN100437070C (zh) * 2004-12-30 2008-11-26 清华大学 一种标准漏孔的制作方法
CN100448611C (zh) * 2007-06-06 2009-01-07 祁锦明 曲线条形料下料机
EP2017006A1 (en) * 2007-07-20 2009-01-21 Koninklijke Philips Electronics N.V. Microfluidic methods and systems for use in detecting analytes

Also Published As

Publication number Publication date
CN103846640A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
US6236013B1 (en) Combined process and automatic installation for plasma-jet marking and cutting or welding, in particular of metals
CN103480926B (zh) 微小孔电火花-电解异区同步复合加工方法及其专用工具
CN103846640B (zh) 微小孔的等离子体放电加工装置及加工方法
CN110202225B (zh) 气流辅助提高电火花电解复合穿孔加工质量的装置
CN104264200B (zh) 微弧氧化处理装置及方法
CN102503177A (zh) 一种用于超光滑表面的等离子体加工装置
CN106851954A (zh) 一种大气压介质阻挡放电冷等离子体射流对金属材料表面改性的方法
CN108817582B (zh) 一种用于电解加工中阴极绝缘的装置
US20180071865A1 (en) Laser machining device and laser machining scrap removal device
CN108251846A (zh) 一种无掩膜制备图案化润湿性表面的方法
CN108247208A (zh) 激光标刻装置及其标刻方法
CN104108053B (zh) 大型复杂金属表面等离子体与脉冲放电复合抛光加工方法
CN104465266B (zh) 一种大面积厚gem的制作工艺
CA2445077A1 (en) Small hole electrical discharge machining method and small hole electrical discharge machining apparatus and electrode inserting method and electrode inserting apparatus
CN109048088B (zh) 一种长脉冲激光与等离子体射流复合加工微孔的方法及装置
JP2005074466A (ja) レーザ加工用ノズル及びレーザ加工機
CN214867987U (zh) 激光切割机的吸附治具及激光切割机
CN109732157A (zh) 一种准干式高速电火花加工方法及其装置
CN206941308U (zh) 一种便携式纸张脱酸机
CN106312332B (zh) 一种射流和气体辅助激光的陶瓷钻孔方法
CN105204180A (zh) 复眼镜片的制造方法及装置
CN208467541U (zh) 激光加工二维码自动化线用板材切割工作台
CN106312205B (zh) 大气压冷等离子体射流中电火花加工方法
JPH0724579A (ja) プラズマ加工方法
CN106252665A (zh) 锂离子电池集流体及其表面毛刺处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170215

Termination date: 20181207