CN104465266B - 一种大面积厚gem的制作工艺 - Google Patents

一种大面积厚gem的制作工艺 Download PDF

Info

Publication number
CN104465266B
CN104465266B CN201410704645.3A CN201410704645A CN104465266B CN 104465266 B CN104465266 B CN 104465266B CN 201410704645 A CN201410704645 A CN 201410704645A CN 104465266 B CN104465266 B CN 104465266B
Authority
CN
China
Prior art keywords
laser
gem
substrate
solder mask
large area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410704645.3A
Other languages
English (en)
Other versions
CN104465266A (zh
Inventor
谢宇广
吴军权
吕军光
陈春
武守坤
林映生
唐宏华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of High Energy Physics of CAS
Huizhou King Brother Circuit Technology Co Ltd
Original Assignee
Institute of High Energy Physics of CAS
Huizhou King Brother Circuit Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of High Energy Physics of CAS, Huizhou King Brother Circuit Technology Co Ltd filed Critical Institute of High Energy Physics of CAS
Priority to CN201410704645.3A priority Critical patent/CN104465266B/zh
Publication of CN104465266A publication Critical patent/CN104465266A/zh
Application granted granted Critical
Publication of CN104465266B publication Critical patent/CN104465266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种大面积厚GEM的制作工艺,包括阻焊层覆盖、激光开窗、绝缘环加工、通孔成型和阻焊层消褪处理等步骤,采用激光钻孔方式,激光钻孔开窗和激光钻孔通孔成型的双重定位技术进行厚GEM的加工。本发明大面积厚GEM的制作工艺具有成本低、加工精度高和生产效率高等特点。

Description

一种大面积厚 GEM 的制作工艺
技术领域
本发明涉及气体电子倍增器技术领域,具体是指一种大面积厚GEM的制作工艺。
背景技术
厚型气体电子倍增器(Thick Gaseous Electron Multiplier,THGEM, 以下称厚GEM)是在以色列的物理学家A. Breskin于2004年在传统气体电子倍增器基础上提出的一种新型微结构气体探测器。其特点是利用工业的PCB加工技术,在0.1~1.0mm的PCB板上通过机械钻孔形成密集均匀的微孔阵列,且PCB板上、下表面覆导电金属层(铜)。由于微孔结构的存在,当在上、下两平面电极附加一定电压差时,就能够在通孔内形成很强的电场。将探测器置于工作气体后,电离电子进入通孔内,在强电场的作用下即发生气体的雪崩倍增过程,从而实现信号的放大和物理过程的探测。厚GEM结构简单、成本低、增益高、结实耐用,计数率高,在粒子物理和辐射成像等领域具有广阔的应用前景。
国内外制作厚GEM有四种不同的工艺,都是通过机械钻孔形成孔阵列,通过化学腐蚀形成绝缘环,只是在工艺顺序和细节处理上有所差异。随着厚GEM性能的不断提高和技术的不断成熟,推广其实际应用成了主要的目标。然而,实际应用的前提是能够制作较大的尺寸,如>=200*200mm^2。大面积意味着钻孔数目高达数十万,甚至上百万。采用机械钻孔的加工方式每分钟仅能完成数百个孔,要实现大面积厚GEM的制作不仅要求连续钻孔时间极长(如>24h),而且需要更换大量钻头以保证钻孔质量,更换频率约为2000孔/头,如此在钻孔过程中也将造成相当大的物耗成本。此外,当孔间距要求≤0.5mm时,钻孔的精度要求会显著提高,而常规的工业化设备定位精度有限,无法满足加工需求,需要采用精密的数控钻床进行加工,这进一步形成了大面积制作效率低、成本高和实际应用批量生产需求之间的瓶颈。
因此,发展一种高效率、高精度和成本适宜的厚GEM制作技术成为推动其实际大规模应用的关键。
发明内容
本发明针对目前传统的气体电子倍增器在加工中存在的加工难度大的问题,提供一种大面积厚GEM的制作工艺,具有成本低廉、加工精度高和生产周期短的优点。
本发明可以通过以下技术方案来实现:
一种大面积厚GEM的制作工艺,包括以下步骤:
第一步、阻焊层覆盖,对基板进行双面绿油印制,在基板的双面覆盖阻焊层;
第二步、激光开窗,根据大面积厚GEM的分布要求,在第一步所得的覆盖有阻焊层的基板上采用激光对孔环位进行阻焊开窗,形成通孔的激光窗位
第三步、绝缘环加工,把第二步所得激光开窗处理后的基板先采用等离子清洗工艺去除激光开窗后残余铜面的保护膜,然后侧蚀方式精确蚀刻绝缘环,完成激光窗位的二次蚀刻规整限位。得到激光窗位的绝缘环;
第四步、通孔成型,调节激光发生器激光照射方向对准经过第三步二次蚀刻规整限位处理的绝缘环的圆心对齐定位,从基板的双面同时进行激光钻孔通孔成型,在基板上均匀形成与绝缘环高同心度高的激光通孔;
第五步、阻焊层消褪处理,把经过第四步通孔成型处理的基板进行阻焊层消褪处理,去除基板通孔成型后残余的阻焊层。
在第二步中的激光开窗和第四步中采用激光通孔成型,充分发挥激光发生器的对位精度高的特点,可以使制板的重复定位精准度达±5um,最终得到与绝缘环高同心度激光通孔,第三步采用等离子清洗和侧蚀方式,有效保证了绝缘环内部的规整程度,有效保证激光照射绝缘环圆心的同心效果。第四步通孔成型采用通孔采用激光双面加工,可得到高真圆度通孔孔型,且孔径尺寸偏差可以有效降低。
进一步地,第三步所述等离子清洗工艺使用的清洗介质为四氟化碳和氧气的混合气,所述混合气的体积配比四氟化碳:氧气为5:2,有效清除阻焊层覆盖后在基板铜面残留的氧化层,确保绝缘环的侧蚀的蚀刻效果。
进一步地,第一步所述的阻焊层覆盖包括阻焊前处理、阻焊印刷和阻焊固化步骤,有效保证了阻焊层的结合效果。
进一步地,第一步阻焊层覆盖所用的基板是以铜箔为原材料通过开料、棕化和叠板压合步骤加工形成的。为了保证后续阻焊层覆盖的效果,在进行叠板压合时要注意铜箔反压毛面向外以降低铜牙放电对阻焊层结合效果的破坏,必要时还需要在压合后进行砂带磨板削除表面铜牙。
进一步地,完成第五步阻焊层消褪处理的基板还包括后处理工序,所述后处理工序包括喷砂、外层线路制造、电金和耐高压测试,最终获得成品。
优选地,所述激光通孔的孔径为0.05mm~1.0mm,相对于机械钻孔,其孔径更小,可满足更高的加工要求。
优选地,所述激光通孔的孔距为0.15mm~10.0mm,相对于机械钻孔,其孔距更小,可满足更高的加工要求。
优选地,第二步所述激光开窗和第四步所述通孔成型的激光定位的精度≤40um,相对于机械钻孔,其精度更高,可满足更高的加工要求。
本发明大面积厚GEM的制作工艺,与现有技术相比,具有如下的有益效果:
第一、成本低,通过采用激光钻孔代替传统的机械钻孔方式,显著降低钻孔钻偏的缺陷,可以有效提高成品率,进行规模化生产,有效节约材料成本和减少加工损耗成本;
第二、加工精度高,采用激光钻孔方式进行激光开窗和通孔成型,既可以保证有效利用激光钻孔精度的优点,又实现双重对位保证绝缘环与激光通孔的同心度,同时激光双面通孔加工也可以有效保证通孔的高真圆度和减少孔径尺寸偏差,进一步提高加工的精度;
第三、生产效率高,通过激光钻孔方式代替传统的机械钻孔,加工速度快,可达到10000孔/秒,生产效率显著提高,大大缩短生产周期;
第四、操作方便,激光钻孔方式自动化程度高,绝缘环加工采用的等离子清洗和侧蚀方式可以规模化进行,直接提高操作的便捷性;
第五、一致性好。通过在激光开窗和通孔成型之间加入绝缘环加工工序,有效避免激光开窗钻孔残留氧化膜对通孔成型的影响,保证保证绝缘环与激光通孔的同心度,减少孔径尺寸偏差,提升加工的一致性。
附图说明
1为本发明大面积厚GEM的制作工艺的工艺流程
2为激光打孔与机械钻孔厚GEM的增益曲线对比
3为激光打孔与机械钻孔厚GEM的增益稳定性对比
4为激光打孔与机械钻孔厚GEM的能量分辨对比
具体实施方式
为了使本技术领域的人员更好地理解本发明的技术方案,下面结合实施例及附对本发明产品作进一步详细的说明。
1所示,一种大面积厚GEM的制作工艺,在进行大面积厚GEM加工前,以铜箔为原材料通过开料、棕化和叠板压合步骤加工形成基板。根据基板表面的铜牙状况进行砂带磨板进一步消除表面铜牙,然后按照如下工序进行加工:。
第一步、阻焊层覆盖,对基板进行双面绿油印制,在基板的双面覆盖阻焊层,此步包括阻焊前处理、阻焊印刷和阻焊固化等工序;
第二步、激光开窗,根据大面积厚GEM的分布要求,在第一步所得的覆盖有阻焊层的基板上采用激光对孔环位进行阻焊开窗,形成通孔的激光窗位,在加工过程中控制激光定位的精度≤40um;
第三步、绝缘环加工,把第二步所得激光开窗处理后的基板先采用等离子清洗工艺去除激光开窗后残余铜面的保护膜,然后侧蚀方式精确蚀刻绝缘环,完成激光窗位的二次蚀刻规整限位。得到激光窗位的绝缘环,此步中所述等离子清洗工艺使用的清洗介质为四氟化碳和氧气的混合气,所述混合气的体积配比四氟化碳:氧气为5:2;
第四步、通孔成型,调节激光发生器激光照射方向对准经过第三步二次蚀刻规整限位处理的绝缘环的圆心对齐定位,从基板的双面同时进行激光钻孔通孔成型,在基板上均匀形成与绝缘环高同心度高的激光通孔。在加工过程中控制激光定位的精度≤40um,激光通孔的孔径为0.05mm~1.0mm,激光通孔的孔距为0.15mm~10.0mm;
第五步、阻焊层消褪处理,把经过第四步通孔成型处理的基板进行阻焊层消褪处理,去除基板通孔成型后残余的阻焊层
完成第五步阻焊层消褪处理的基板进入后处理工序,所述后处理工序包括喷砂、外层线路制造、电金和耐高压测试等步骤。
为了进一步说明本发明所述一种大面积厚型电子倍增器的效果,我们同时对本法激光制版制备的大面积厚GEM和采用传统机械钻孔方式的厚GEM进行工艺效果对比,对接结果如表 1所示:
表1 工艺效果对比表 1
项目 激光钻孔厚型气体电子倍增器 机械钻孔厚型气体电子倍增器
孔径 100um 150um
孔间距 300um 400um
厚度 100um 100um
Rim 20um 70um
本征分辨率 87um 116um
1可以看到,采用厚度相同的基板进行加工,采用激光钻孔方式的厚GEM可加工的孔径、孔间距和rim更小,本征分辨率更高,说明采用激光钻孔方式的厚GEM较机械钻孔方式制备的厚型气体电子倍增管精度更高。
同时,为了进一步从增益效果上说明采用本发明制备方法制备的厚GEM的性能,分别对激光钻孔方式和机械钻孔方式制备的厚GEM进行增益、增益稳定性和能量分辨测试,具体如2、3、4所示。在附2中,上侧为激光制板增益效果曲线,下侧为机械制板增益效果曲线;在附3中,上侧为激光制板增益稳定性曲线,下侧为机械制板增益稳定性曲线;在附4中,上侧为激光制板能量分辨谱,下侧为机械制板能量分辨谱。2、3和4的结果表明,采用激光打孔方式制作厚GEM可以得到与机械钻孔方式厚GEM的相同性能,甚至更好,而其可达到的本征分辨率更小,且能在更低的电压下获得较大增益,能量分辨也有更大的的提升空间。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附所示和以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,可利用以上所揭示的技术内容而作出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (8)

1.一种大面积厚GEM的制作工艺,其特征在于包括以下步骤:
第一步、阻焊层覆盖,对基板进行双面绿油印制,在基板的双面覆盖阻焊层;
第二步、激光开窗,根据大面积厚GEM的分布要求,在第一步所得的覆盖有阻焊层的基板上采用激光对孔环位进行阻焊开窗,形成通孔的激光窗位
第三步、绝缘环加工,把第二步所得激光开窗处理后的基板先采用等离子清洗工艺去除激光开窗后残余铜面的保护膜,然后侧蚀方式精确蚀刻绝缘环,完成激光窗位的二次蚀刻规整限位,得到激光窗位的绝缘环;
第四步、通孔成型,调节激光发生器激光照射方向对准经过第三步二次蚀刻规整限位处理的绝缘环的圆心对齐定位,从基板的双面同时进行激光钻孔通孔成型,在基板上均匀形成与绝缘环高同心度的激光通孔;
第五步、阻焊层消褪处理,把经过第四步通孔成型处理的基板进行阻焊层消褪处理,去除基板通孔成型后残余的阻焊层。
2.根据权利要求1所述的大面积厚GEM的制作工艺,其特征在于:第三步所述等离子清洗工艺使用的清洗介质为四氟化碳和氧气的混合气,所述混合气的体积配比四氟化碳:氧气为5:2。
3.根据权利要求1或2所述的大面积厚GEM的制作工艺,其特征在于:第一步所述的阻焊层覆盖包括阻焊前处理、阻焊印刷和阻焊固化步骤。
4.根据权利要求3所述的大面积厚GEM的制作工艺,其特征在于:第一步阻焊层覆盖所用的基板是通过开料、棕化和叠板压合步骤加工形成的。
5.根据权利要求4所述的大面积厚GEM的制作工艺,其特征在于:完成第五步阻焊层消褪处理的基板还包括后处理工序,所述后处理工序包括喷砂、外层线路制造、图电金和耐高压测试。
6.根据权利要求5所述的大面积厚GEM的制作工艺,其特征在于:所述激光通孔的孔径为0.05mm~1.0mm。
7.根据权利要求6所述的大面积厚GEM的制作工艺,其特征在于:所述激光通孔的孔距为0.15mm~10.0mm。
8.根据权利要求7所述的大面积厚GEM的制作工艺,其特征在于:第二步所述激光开窗和第四步所述通孔成型的激光定位的精度≤40um。
CN201410704645.3A 2014-11-29 2014-11-29 一种大面积厚gem的制作工艺 Active CN104465266B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410704645.3A CN104465266B (zh) 2014-11-29 2014-11-29 一种大面积厚gem的制作工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410704645.3A CN104465266B (zh) 2014-11-29 2014-11-29 一种大面积厚gem的制作工艺

Publications (2)

Publication Number Publication Date
CN104465266A CN104465266A (zh) 2015-03-25
CN104465266B true CN104465266B (zh) 2017-01-11

Family

ID=52911148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410704645.3A Active CN104465266B (zh) 2014-11-29 2014-11-29 一种大面积厚gem的制作工艺

Country Status (1)

Country Link
CN (1) CN104465266B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338753B (zh) * 2015-12-09 2017-11-03 中国科学院大学 一种阻性厚型气体电子倍增膜板及其制作方法
JP6605103B2 (ja) * 2017-09-27 2019-11-13 株式会社タムラ製作所 ソルダーレジスト膜のパターン形成方法、および電子基板の製造方法
CN108770226B (zh) * 2018-05-15 2020-07-03 惠州市金百泽电路科技有限公司 一种线路板阻焊侧蚀位置渗金短路预防加工方法
CN110349761B (zh) * 2019-07-05 2021-04-06 中国科学院微电子研究所 一种具有通孔阵列的平板电容结构制造方法及电子设备
CN111916331B (zh) * 2020-09-04 2023-04-07 北京航天新立科技有限公司 一种小尺寸gem膜板的工业化制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547232A (zh) * 2003-11-28 2004-11-17 中国科学院上海光学精密机械研究所 气体电子倍增器聚合物薄膜网格的制作方法
CN103280387A (zh) * 2013-05-16 2013-09-04 中国科学院高能物理研究所 一种工业化厚gem制作方法
CN103635026A (zh) * 2013-12-11 2014-03-12 中国科学院大学 厚型气体电子倍增探测器膜板的制作方法
EP2708918A1 (en) * 2012-09-12 2014-03-19 Paul Scherrer Institut Energy-sensitive fast neutron imaging detector and method for energy-sensitive fast neutron detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547232A (zh) * 2003-11-28 2004-11-17 中国科学院上海光学精密机械研究所 气体电子倍增器聚合物薄膜网格的制作方法
EP2708918A1 (en) * 2012-09-12 2014-03-19 Paul Scherrer Institut Energy-sensitive fast neutron imaging detector and method for energy-sensitive fast neutron detection
CN103280387A (zh) * 2013-05-16 2013-09-04 中国科学院高能物理研究所 一种工业化厚gem制作方法
CN103635026A (zh) * 2013-12-11 2014-03-12 中国科学院大学 厚型气体电子倍增探测器膜板的制作方法

Also Published As

Publication number Publication date
CN104465266A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104465266B (zh) 一种大面积厚gem的制作工艺
CN101228288B (zh) 注射型等离子体处理设备和方法
CN101533764B (zh) 喷淋头和基板处理装置
CN103635026B (zh) 厚型气体电子倍增探测器膜板的制作方法
KR102085409B1 (ko) 가스 공급 장치, 플라스마 처리 장치 및 가스 공급 장치의 제조 방법
CN105047593B (zh) 非接触式搬送手
WO2010008116A3 (en) Method and chamber for inductively coupled plasma processing for cylinderical material with three-dimensional surface
CN103280387B (zh) 一种工业化厚gem制作方法
CN106298425B (zh) 提高等离子体径向均匀性的等离子体腔室
CN103972015A (zh) 链式条件下的双频等离子发生器
CN102891071A (zh) 一种新型的常压等离子体自由基清洗喷枪
CN105555044A (zh) 一种井型气体电子倍增膜板及其制作方法和应用
CN101481789B (zh) 镀膜系统及其隔离装置
US9363881B2 (en) Plasma device and operation method of plasma device
CN103747607A (zh) 一种远区等离子体喷枪装置
TWI592507B (zh) Continuous coating equipment
CN202591170U (zh) 一种常压双射频电极的等离子体自由基清洗喷枪
CN107731711A (zh) 一种等离子减薄装置与方法
CN106304641A (zh) 一种超厚铁氟龙电路板的制作方法
CN108551723B (zh) 厚型气体电子倍增器用电路板的分区块无缝激光加工方法
CN209766374U (zh) 刻蚀机台
CN103237403A (zh) 电晕放电模式的大气等离子体发生装置
CN105463448B (zh) 一种激光微孔加工所致重铸层的修复方法
CN207282468U (zh) 一种等离子减薄装置
JP2008146994A (ja) 処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant