CN103840134B - 一种基于石墨烯‑石墨球复合材料的锂电池电极片的制备方法 - Google Patents

一种基于石墨烯‑石墨球复合材料的锂电池电极片的制备方法 Download PDF

Info

Publication number
CN103840134B
CN103840134B CN201210512229.4A CN201210512229A CN103840134B CN 103840134 B CN103840134 B CN 103840134B CN 201210512229 A CN201210512229 A CN 201210512229A CN 103840134 B CN103840134 B CN 103840134B
Authority
CN
China
Prior art keywords
graphite nodule
graphene
composite
electrode plate
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210512229.4A
Other languages
English (en)
Other versions
CN103840134A (zh
Inventor
林朝晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Xinfeng two Mstar Technology Ltd
Original Assignee
Fujian Province Huirui Material Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Province Huirui Material Science & Technology Co Ltd filed Critical Fujian Province Huirui Material Science & Technology Co Ltd
Priority to CN201210512229.4A priority Critical patent/CN103840134B/zh
Publication of CN103840134A publication Critical patent/CN103840134A/zh
Application granted granted Critical
Publication of CN103840134B publication Critical patent/CN103840134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明适用于化学合成技术领域,提供了一种基于石墨烯‑石墨球复合材料的锂电池电极片的制备方法,通过用立体式化学气相沉积的方法,在高温下通过多孔催化金属裂解碳氢气体,得到气相的碳自由基,所述碳自由基沉积到石墨球的石墨化表面,原位地在石墨球表面生长出石墨烯,从而制备出石墨烯‑石墨球复合材料;将得到的石墨烯‑石墨球复合材料与PVDF粘合剂混合,调成浆液后直接涂敷或旋转涂布至铜箔表面,再烘干、压实和剪切,得到锂电池电极片。本发明可以大量地制备基于石墨烯‑石墨球复合材料的锂电池电极片,极大地提高锂电池负极材料的性能,解决目前锂动力电池能量密度和功率密度不足的问题。

Description

一种基于石墨烯-石墨球复合材料的锂电池电极片的制备 方法
技术领域
本发明属于化学合成技术领域,尤其涉及一种基于石墨烯-石墨球复合材料的锂电池电极片的制备方法。
背景技术
目前,80%以上的锂电池采用天然石墨球或人工石墨球,石墨化碳材料仍然是锂电池负极材料的主流。但在锂储量以及电子导电性方面,目前使用的天然石墨球和人造石墨球都还有很大的提升空间。
石墨烯是一种单原子层二维材料,具有超大的比表面积(2630m2/g),良好的导电性和导热性,是很有潜力的储能材料。如果将单层石墨烯以杂乱无章的形式排列,那么石墨烯的两个表面都可以结合离锂子,理论储锂量将大于744mAh/g。除此之外,在锂电池应用方面,石墨烯材料还具有独特的优势。一方面,石墨烯具有优良的导电和导热特性,可以降低电极的电阻,并提高热稳定性;另一方面,石墨烯片层的尺度在微纳米量级,小于石墨粉或石墨球,大大缩短了锂离子在石墨烯片层之间的传输路径。理想情况下,石墨烯片层全部垂直于电极片,这样可以缩短锂离子在石墨烯片层之间的扩散距离,同时也加快了锂离子嵌入和脱出的速度。
石墨烯用于锂电池所测得不可逆容量和循环性能明显不足,几十次循环后,容量出现了较大程度的衰减。其原因是过大的比表面积,在初次充放电时,大量的锂离子在石墨烯表面沉积,形成活性的固态电解质界面层(SEI),从而造成这部分锂离子在后续充放电中的不可逆。此外,活性的SEI膜在后续的充放电过程中,会产生类似金属锂电极的枝晶锂问题,从而影响电池的安全性和循环性能。
石墨烯-石墨球复合材料,既具有石墨烯导电率高、储锂量大的优点,又结合了石墨球安全性高的长处,是制备锂电池负极的理想材料。目前制备石墨烯-石墨球复合材料,通常有三种路径:(1)将石墨球进行弱氧化插层,将表面部分的石墨氧化,还原后得到表面是石墨烯,内核是石墨球的结构。但该工艺难以控制弱氧化插层的程度,所制得样品的均一性较差。(2)在液相中将石墨球与石墨烯混合,然后滤干。但石墨烯在水及有机溶剂中都很难分散,与石墨球混合时,只有少量的石墨烯能包覆到石墨球中。(3)在液相中将石墨球与氧化石墨烯均匀混合,然后将氧化石墨烯还原。该方法解决了石墨烯难以分散的问题,但却带来氧化石墨烯还原不彻底的问题。
发明内容
本发明实施例的目的在于克服现有技术中存在的问题,提供一种适合低成本工业化大规模生产、高质量的基于石墨烯-石墨球复合材料的锂电池电极片的制备方法。
本发明实施例是这样实现的,一种基于石墨烯-石墨球复合材料的锂电池电极片的制备方法,通过用立体式化学气相沉积的方法,在高温下通过多孔催化金属裂解碳氢气体,得到气相的碳自由基,所述碳自由基沉积到石墨球的石墨化表面,原位地在石墨球表面生长出石墨烯,从而制备出石墨烯-石墨球复合材料,将得到的石墨烯-石墨球复合材料与PVDF粘合剂混合,调成浆液后直接涂敷或旋转涂布至铜箔表面,再烘干、压实和剪切,得到锂电池电极片。
在优选的实施例中,该方法进一步包括对石墨球表面处理,处理方法为在高温下用氢气处理人造石墨球原料,刻蚀石墨球表面无定形结构,得到石墨化结构的表面。
在优选的实施例中,所述多孔结构的催化金属为铜或镍。
在优选的实施例中,所述碳氢气体为甲烷。
在本发明的实施例中,有如下的技术效果:可以大量地制备石墨烯-石墨球复合材料,极大地提高锂电池负极材料的性能,解决目前锂动力电池能量密度和功率密度不足的问题。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的实施例中,通过用立体式化学气相沉积的方法,在高温下通过多孔催化金属裂解碳氢气体,原位地在石墨球表面生长出高质量的石墨烯,从而制备出石墨烯-石墨球复合材料,然后将该石墨烯-石墨球复合材料制成锂电池电极片。
所述制备方法包括如下步骤:
1、在高温下用氢气处理人造石墨球原料,刻蚀石墨球表面无定形结构,得到石墨化结构的表面。
2、在高温下,使用多孔结构的催化金属裂解碳氢气体,得到气相的碳自由基,这些碳自由基沉积到石墨球的石墨化表面,原位地生长出高质量的石墨烯,从而制得石墨烯-石墨球复合材料。在本发明实施例中,所述多孔结构的催化金属可以为铜、镍。
3、将得到的石墨烯-石墨球复合材料与PVDF(聚偏氟乙烯)粘合剂混合,调成浆液后直接涂敷或旋转涂布至铜箔表面,再烘干、压实和剪切,得到锂电池电极片。
以下结合具体实施例来说明。
本实施例中石墨烯材料制备方法的实施流程如下:
用石英管式炉,在高温下用氢气处理人造石墨球原料,刻蚀石墨球表面无定形结构,得到石墨化结构的表面。然后通入碳氢气体,如甲烷,在多孔结构的催化金属下,裂解碳氢气体得到气相的碳自由基。这些碳自由基沉积到石墨球的石墨化表面,原位地生长出高质量的石墨烯,制得石墨烯-石墨球复合材料。
将得到的石墨烯-石墨球复合材料与PVDF粘合剂混合,调成浆液后直接涂敷或旋转涂布至铜箔表面,再烘干、压实和剪切,得到锂电池电极片。
采用化学气相沉积技术,通过裂解碳氢气体,直接在石墨球表面原位地生长出石墨烯,所得到的石墨烯导电率高,对石墨球的包覆性好。
结合多孔结构的催化金属,实现立体式地原位生长。高温下催化金属将碳氢气体裂解成碳氢自由基和碳自由基团,这些自由基团在石墨球的石墨化表面沉积,形成石墨烯。这种立体式的结构,所得可以大量地制备石墨烯-石墨球复合材料。
在气相中直接制备得到固态的石墨烯-石墨球复合材料,避免了各种液相处理时污染和氧化过程,从而得到高导电率的石墨烯。而固态的石墨烯-石墨球复合材料,也有利于后续锂电极的制备。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于石墨烯-石墨球复合材料的锂电池电极片的制备方法,其特征在于,通过用立体式化学气相沉积的方法,在高温下通过多孔催化金属裂解碳氢气体,得到气相的碳自由基,所述碳自由基沉积到石墨球的石墨化表面,原位地在石墨球表面生长出石墨烯,从而制备出石墨烯-石墨球复合材料;
将得到的石墨烯-石墨球复合材料与PVDF粘合剂混合,调成浆液后直接涂敷或旋转涂布至铜箔表面,再烘干、压实和剪切,得到锂电池电极片。
2.如权利要求1所述的方法,其特征在于,该方法进一步包括对石墨球表面处理,处理方法为在高温下用氢气处理人造石墨球原料,刻蚀石墨球表面无定形结构,得到石墨化结构的表面。
3.如权利要求1所述的方法,其特征在于,所述多孔结构的催化金属为铜或镍。
4.如权利要求1所述的方法,其特征在于,所述碳氢气体为甲烷。
CN201210512229.4A 2012-11-25 2012-11-25 一种基于石墨烯‑石墨球复合材料的锂电池电极片的制备方法 Active CN103840134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210512229.4A CN103840134B (zh) 2012-11-25 2012-11-25 一种基于石墨烯‑石墨球复合材料的锂电池电极片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210512229.4A CN103840134B (zh) 2012-11-25 2012-11-25 一种基于石墨烯‑石墨球复合材料的锂电池电极片的制备方法

Publications (2)

Publication Number Publication Date
CN103840134A CN103840134A (zh) 2014-06-04
CN103840134B true CN103840134B (zh) 2017-09-05

Family

ID=50803418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210512229.4A Active CN103840134B (zh) 2012-11-25 2012-11-25 一种基于石墨烯‑石墨球复合材料的锂电池电极片的制备方法

Country Status (1)

Country Link
CN (1) CN103840134B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581275B (zh) * 2018-06-07 2023-03-17 山东欧铂新材料有限公司 一种锂离子电池石墨烯/软碳负极材料及其制备方法、锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831622A (zh) * 2010-05-20 2010-09-15 中国科学院化学研究所 石墨烯泡沫及其制备方法
CN102412402A (zh) * 2011-11-11 2012-04-11 深圳市德方纳米科技有限公司 一种非连续石墨烯包覆的锂离子电池电极材料的制备方法
CN102412396A (zh) * 2011-11-11 2012-04-11 深圳市德方纳米科技有限公司 一种非连续石墨烯包覆的锂离子电池电极材料
CN102674321A (zh) * 2011-03-10 2012-09-19 中国科学院金属研究所 一种具有三维全连通网络的石墨烯泡沫及其宏量制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369809C (zh) * 2004-12-14 2008-02-20 中国科学院物理研究所 一种碳绒球材料及其制备方法和用途
CN100422112C (zh) * 2005-07-08 2008-10-01 中国科学院物理研究所 一种具有球形核壳结构的碳硅复合材料及其制法和用途
CN100540456C (zh) * 2005-07-12 2009-09-16 中国科学院物理研究所 一种纳米硅线/碳复合材料及其制备方法和用途
US9437344B2 (en) * 2010-07-22 2016-09-06 Nanotek Instruments, Inc. Graphite or carbon particulates for the lithium ion battery anode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831622A (zh) * 2010-05-20 2010-09-15 中国科学院化学研究所 石墨烯泡沫及其制备方法
CN102674321A (zh) * 2011-03-10 2012-09-19 中国科学院金属研究所 一种具有三维全连通网络的石墨烯泡沫及其宏量制备方法
CN102412402A (zh) * 2011-11-11 2012-04-11 深圳市德方纳米科技有限公司 一种非连续石墨烯包覆的锂离子电池电极材料的制备方法
CN102412396A (zh) * 2011-11-11 2012-04-11 深圳市德方纳米科技有限公司 一种非连续石墨烯包覆的锂离子电池电极材料

Also Published As

Publication number Publication date
CN103840134A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
Bai et al. Nickel-cobalt layered double hydroxide nanowires on three dimensional graphene nickel foam for high performance asymmetric supercapacitors
He et al. Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries
Zhou et al. N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries
Zhang et al. Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries
CN105680023B (zh) 一种高倍率硅基复合材料的制备方法、负极材料和锂电池
Chen et al. A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries
Mu et al. A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries
Ni et al. The fabrication of Li3VO4/Ni composite material and its electrochemical performance as anode for Li-ion battery
Huang et al. Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application
Du et al. One step synthesis of Fe2O3/nitrogen-doped graphene composite as anode materials for lithium ion batteries
CN105655542B (zh) 锂离子电池负极及其制备方法
CN104600251A (zh) 一种锂硫电池正极及其制备方法
Li et al. Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO 2 nanosheets for high-performance supercapacitors
Ji et al. Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries
CN104176721A (zh) 一种碳复合材料及其制备方法和应用
Liu et al. Biomass-derived activated carbon for rechargeable lithium-sulfur batteries
Xia et al. Supercritical fluid assisted biotemplating synthesis of Si–O–C microspheres from microalgae for advanced Li-ion batteries
CN103833032A (zh) 基于石墨烯的复合负极材料
CN104332616A (zh) 石墨烯包覆石墨复合锂离子电池负极材料及其制备方法
CN106783230A (zh) 一种碳化钛原位生长CNTs三维复合材料及其制备方法
Han et al. Direct growth of SnO 2 nanorods on graphene as high capacity anode materials for lithium ion batteries
CN109360962B (zh) 一种锂电池用高稳定性硅碳负极材料及其制备方法
CN107317036A (zh) 一种具有超低电阻的极片、其制备方法以及含有这种极片的锂离子电池
CN103811756B (zh) 一种石墨烯‑石墨球复合材料的制备方法
CN104269283A (zh) 一种高比电容石墨烯超级电容器电极材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200228

Address after: District 362000 Fujian Dongyuan town east of Taiwan investment in Quanzhou City Road 2 Road Office

Patentee after: Fujian Xinfeng two Mstar Technology Ltd

Address before: 362000 building, administrative building, Taiwan Businessmen Investment Zone, Fujian, Quanzhou Province, China 5

Patentee before: FUJIAN PROVINCE HUIRUI MATERIAL SCIENCE & TECHNOLOGY CO., LTD.

TR01 Transfer of patent right