CN103819215B - Preparation method of aluminium nitride base ceramic copper-clad plate - Google Patents

Preparation method of aluminium nitride base ceramic copper-clad plate Download PDF

Info

Publication number
CN103819215B
CN103819215B CN201410105481.2A CN201410105481A CN103819215B CN 103819215 B CN103819215 B CN 103819215B CN 201410105481 A CN201410105481 A CN 201410105481A CN 103819215 B CN103819215 B CN 103819215B
Authority
CN
China
Prior art keywords
bonding
clad plate
temperature
time
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410105481.2A
Other languages
Chinese (zh)
Other versions
CN103819215A (en
Inventor
李磊
王怀义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Zhending Semiconductor Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410105481.2A priority Critical patent/CN103819215B/en
Publication of CN103819215A publication Critical patent/CN103819215A/en
Application granted granted Critical
Publication of CN103819215B publication Critical patent/CN103819215B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

The invention belongs to the technical field of copper-clad plate manufacturing, and particularly relates to a preparation method of an aluminium nitride base ceramic copper-clad plate. The preparation method comprises the following steps: pretreating an oxygen-free red copper foil, then putting the pretreated oxygen-free red copper foil in molten sodium nitrate, and carrying out medium temperature chemical oxidation treatment; pretreating an aluminum nitride substrate, and then carrying out high-temperature oxidation treatment; and carrying out magnetron sputtering treatment on the aluminum nitride substrate subjected to high temperature oxidation, prepressing the treated oxygen-free red copper foil into a circular arc shape, stacking the circular arc-shaped oxygen-free red copper foil and the aluminum nitride substrate together, putting in a chained bonding furnace, carrying out high temperature dynamic continuous bonding, and then treating by adopting a sequential temperature difference alternative falling temperature method, thus obtaining the aluminium nitride base ceramic copper-clad plate. The preparation method is simple in production efficiency, stable in quality and low in cost. The prepared aluminium nitride base ceramic copper-clad plate has the characteristics of low void ratio, low coefficient of thermal expansion, low stress, high thermal conductivity, high peel strength and large bonding area.

Description

The preparation method of aluminum-nitride-based ceramic copper-clad plate
Technical field
The invention belongs to copper-clad plate manufacturing technology field, be specifically related to a kind of preparation method of aluminum-nitride-based ceramic copper-clad plate.
Background technology
Along with the high-frequency power electronic devices of efficient, energy-conservation, material-saving, economize on electricity, device to tradition, poor efficiency, power consumption, take the power frequency electric power electron device of material, the update of device, the IGBT module that current power electronics market demand is a large amount of.Because igbt chip manufacturing process is complicated, through tens photoetching processes, single big current chip thus need can not be made, so multi-chip parallel technology just becomes the technical measures that IGBT module develops to high current capacity.This just needs a kind of circuit card that can etch various graphic structure as pcb board to realize lines in parallel, heat radiation and the Insulation Problems of IGBT module will be solved simultaneously, meet big current, high-insulativity, high heat conductance, thermal expansivity close to technical requirementss such as silicons, therefore ceramic copper-clad plate has become the high frequency device blocks such as IGBT and has manufactured requisite critical material.Though alumina-based ceramic copper-clad plate can meet above-mentioned basic demand, its thermal conductivity is lower than aluminum-nitride-based ceramic copper-clad plate more than 6 times, and thermal expansivity is larger than aluminum-nitride-based ceramic copper-clad plate.And aluminum-nitride-based ceramic copper-clad plate not only has higher thermal conductivity, thermal expansivity and silicon closely, and electric property and aluminum oxide ceramic copper-clad plate close, be more satisfactory ceramic copper-clad panel material in current new generation of high density, great-power electronic encapsulation.
Because aluminium nitride ceramics belongs to the stronger compound of covalent linkage, covalent linkage very strong between Al-N and the extremely strong directivity of covalent linkage, make aluminium nitride ceramics have good chemical stability, be difficult to and Copper Foil and oxide compound generation chemical reaction thereof under high temperature.Cu-Cu 2o eutectic melt is at high temperature poor to the wettability of aluminium nitride ceramics, and the aluminium nitride ceramics that therefore covalency key is stronger can not form Direct Bonding with copper, must have one deck oxide compound phase Al 2o 3as transition layer.
The production technique of existing aluminum-nitride-based ceramic copper-clad plate is for generate one deck Cu by anaerobic red copper foil high temperature oxidation 2o transition layer, generates one deck Al by aluminium nitride substrate high temperature oxidation 2o 3transition layer, the tiling of anaerobic red copper foil is overlayed and aluminum nitride ceramic substrate puts into tube furnace and carry out static state and sinter aluminum-nitride-based ceramic copper-clad plate into, but the ceramic copper-clad plate area made is less, generally at 40mm × 40mm.Because be static sintering, can only sinter and a collection ofly could carry out second batch sintering, and the temperature in boiler tube, nitrogen oxygen atmosphere flow will have been waited before carrying out second batch sintering to recover after processing parameter stablizes several minutes could to operate, so production efficiency is very low.Because be static sintering, the tiling of anaerobic red copper foil to be overlayed on aluminum nitride ceramic substrate and put into high temperature rapidly from room temperature, in short period of time, temperature head alters a great deal, if aluminium nitride substrate area is more than 40mm × 40mm, be easy at short notice absorb more heat transfer, cause local sintering loosely, occur delamination or cavitation.Because be that tiling stacks sintering, under high temperature, anaerobic red copper foil and aluminum nitride ceramic substrate are fitted and very closely, and can not also be had gas in sintering process by clip pack in the middle of bi-material, thus produce a large amount of cavity.
Summary of the invention
The object of this invention is to provide a kind of preparation method of aluminum-nitride-based ceramic copper-clad plate, production efficiency is high, steady quality, cost are low, and the aluminum-nitride-based ceramic copper-clad plate of preparation has the advantages that voidage is low, thermal expansivity is low, stress is low, thermal conductivity is high, stripping strength is high, bonding area is large.
The preparation method of aluminum-nitride-based ceramic copper-clad plate of the present invention, step is as follows:
(1) after the pre-treatment of anaerobic red copper foil, then the SODIUMNITRATE putting into melting carries out warm chemical oxidation treatment, forms the Cu of one deck even compact at the bonding face of anaerobic red copper foil 2o film;
(2), after aluminium nitride substrate pre-treatment, then through high temperature oxidation process, the Al of one deck even compact is respectively formed on the two sides of aluminium nitride substrate 2o 3film;
(3) to the aluminium nitride substrate magnetron sputtering process after high temperature oxidation, the Cu of one deck even compact is respectively formed on two sides 2o film;
(4) pass through the anaerobic red copper foil precompressed after by process in the arc-shaped, ensure that convex surface is oxidation aspect, concave surface is non-oxide aspect, and oxidation aspect and aluminium nitride substrate are stacked to be placed in chain type bonding stove and carry out high temperature dynamically continuous bonding;
(5) adopt the temperature difference in proper order to replace falling temperature method process after bonding, to obtain final product.
The thickness of the anaerobic red copper foil described in step (1) is 0.1 ~ 0.4mm, and length is 35 ~ 193mm, and width is 35 ~ 145mm.
The temperature of the middle temperature chemical oxidation treatment described in step (1) is 350 ~ 370 DEG C, and the time is 15 ~ 20min.
Anaerobic red copper foil pre-treatment described in step (1) be with four brush roll plate brushing machines carry out 5% dilute sulphuric acid pickling, the technique such as brush board removes natural oxidizing layer, wash from the beginning, high pressure washes from the beginning, ultrasonic wave washed with de-ionized water, hot-air seasoning, then on non-oxide, paste the resistance to 400 DEG C of high temperature gummed tapes of one deck, when preventing that nonbonding face is oxidized causes bonding, surface is melted.Pretreatment process is conventional steps.
SODIUMNITRATE described in step (1) is the SODIUMNITRATE of SILVER REAGENT, and state is the SODIUMNITRATE of 350 ~ 370 DEG C of meltings, and oxidization time is 15 ~ 20min.
Based on the character of SODIUMNITRATE, SODIUMNITRATE can not melting lower than 306 DEG C, and producing oxygen higher than 380 DEG C of decomposition easily generates the cupric oxide CuO of black, reacts following 2Cu+O 2→ 2CuO.So determine to generate Cu according to above temperature profile comprehensive test 2350 ~ 370 DEG C, the reasonable temperature interval of O film, forms Cu 2the chemical process of O film is 2Cu+NaNO 3→ Cu 2o+NaNO 2.
Because aluminium nitride ceramics belongs to the stronger compound of covalent linkage, covalent linkage very strong between Al-N and the extremely strong directivity of covalent linkage, make aluminium nitride ceramics have good chemical stability, be difficult to and Copper Foil and oxide compound generation chemical reaction thereof under high temperature.Cu-Cu 2o eutectic melt is at high temperature poor to the wettability of aluminium nitride ceramics, and the aluminium nitride ceramics that therefore covalency key is stronger can not form Direct Bonding with copper, must have one deck oxide compound phase Al 2o 3as transition layer.
Aluminium nitride substrate described in step (2) is the AlN of content >=97%, and thickness is 0.38 ~ 1.0mm, and length is 40 ~ 200mm, and width is 40 ~ 150mm.
The temperature of the high temperature oxidation process described in step (2) is 1095 ~ 1105 DEG C, and the time is 200 ~ 230min, and oxygen flow is 20 ~ 30ml/min, high purity oxygen gas purity >=99.99%.
High temperature oxidation process described in step (2) is that aluminium nitride substrate carries out in high temperature oxidation furnace, and high temperature oxidation burner hearth material is content 99%Al 2o 3, size of burner hearth is φ 350mm × 1500mm.
By to aluminium nitride substrate high temperature oxidation process, can at the Al of aluminum nitride ceramic substrate Surface Creation one deck densification 2o 3layer, reaction formula is 4AlN+3O 2→ 2Al 2o 3+ 2N 2.
Aluminium nitride substrate pre-treatment described in step (2) is the cleaning of ultrasonic wave acetone, ultrasonic wave washed with de-ionized water, oven dry.Pretreatment process is conventional steps.
Aluminum nitride ceramic substrate put into JGP-350C type magnetron sputtering equipment (Shenyang scientific instrument limited-liability company of the Chinese Academy of Sciences) in magnetron sputtering process described in step (3), sputtering target used is high-purity Cu target (purity > 99.99%), diameter is 60mm, thickness 3mm.Distance between target and substrate is 70mm, adopts Ar(purity > 99.999%) be working gas, O 2(purity > 99.999%) is reactant gases.Power is 76W, and air pressure is 1.0Pa, Ar flow 76ml/min ~ 78ml/min, O 2flow 7.6ml/min ~ 7.8ml/min, oxygen partial pressure ratio is 6.6 × 10 -2, depositing time 13min ~ 15min.By magnetron sputtering process, at the Al of aluminum nitride ceramic substrate Surface Creation 2o 3layer sputters the Cu of one deck even compact 2o film, can to Al 2o 3film forms protection and reinforces, and prevents under high temperature nitrogen atmosphere, very thin Al 2o 3film occurs to react 2Al as follows with nitrogen again 2o 3+ 2N 2→ 4AlN+3O 2, thus transition layer Al 2o 3film destroy, is peeling the situation that intensity is not up to standard after causing bonding.
Magnetron sputtering method is in high vacuum, pour appropriate argon gas, volts DS is applied between negative electrode (Style Columu Talget or planar target) and anode (plated film locular wall), magnet controlled anomalous glow discharge is produced in coating chamber, argon gas is ionized, argon ion is accelerated by negative electrode and bombarding cathode target surface, target material surface atom sputtering is out deposited and forms film on the surface of the substrate, by the sputtering time that the target changing unlike material is different with control, the coatings of unlike material and different thickness can be obtained, the bonding force that magnetron sputtering method has coatings and base material is strong, coatings is fine and close, the advantage such as evenly.
Chain type bonding stove described in step (4) is chain-belt type continuous transmission nitrogen oxygen atmosphere high temperature eutectic bonding stove.
Bonding temperature described in step (4) is 1070 ~ 1078 DEG C, and bonding time is 3 ~ 7min, and nitrogen oxygen atmosphere flow is 20 ~ 40L/min, and oxygen content is 20 ~ 100ppm, oxygen purity >=99.99%, nitrogen gas purity >=99.99%.
In the atmosphere bonding process that at high temperature oxygen level is certain, the Cu that copper foil surface chemical oxidation generates 2the Cu of O film and aluminium nitride ceramics surface magnetic control sputtering 2cu-Cu is there is higher than during eutectoid point in O film in temperature 2o eutectic liquid phase, Cu wherein 2o phase and Al 2o 3film has good affinity, and interfacial energy is reduced, and eutectic liquid is on good terms and is soaked Copper Foil and pottery well.Cu simultaneously in liquid phase 2o and Al 2o 3there is chemical reaction and generate CuAlO 2, reaction formula is Al 2o 3+ Cu 2o → CuAlO 2, by Cu-Al-O chemical bond after cooling, Copper Foil is together with aluminium nitride ceramics secure bond.
The temperature difference in proper order described in step (5) replaces falling temperature method, and step is as follows:
(1) the 7min time is cooled to 800 DEG C from bonding temperature;
(2) the 3min time is warming up to 900 DEG C from 800 DEG C;
(3) the 7min time is cooled to 600 DEG C from 900 DEG C;
(4) the 3min time is warming up to 700 DEG C from 600 DEG C;
(5) the 7min time is cooled to 300 DEG C from 700 DEG C;
(6) the 3min time is warming up to 400 DEG C from 300 DEG C;
(7) the 7min time is cooled to 200 DEG C from 400 DEG C;
(8) the 3min time be cooled to 50 DEG C from 200 DEG C after naturally cooling.
Adopt the temperature difference in proper order to replace falling temperature method after bonding and eliminate matrix material because of the inconsistent stress of thermal expansivity and warpage issues to reach.
Use the aluminum-nitride-based ceramic copper-clad board parameter that present invention process makes, in table 1.
The aluminum-nitride-based ceramic copper-clad board parameter of table 1
The present invention compared with prior art, has following beneficial effect:
(1) by Cu that middle temperature (350 DEG C ~ 370 DEG C) chemical oxidation treatment obtains 2the Cu that O film obtains than high temperature oxidation 2o film even compact, Cu 2o film thickness is 2 μm ~ 6 μm, and maximum benefit is that middle temperature chemical oxidation treatment makes Copper Foil that high temperature annealing reaction not occur, and Copper Foil still presents hard state shape, and to be the Copper Foil of circular arc be linearly fits tightly that to get rid of bubble highly beneficial with aluminium nitride substrate for this.And the Copper Foil of high temperature oxidation is soft state shape, makes the Copper Foil of circular arc be difficult at high temperature fit tightly with aluminium nitride substrate in linear, cause bonding face to produce large cavity.
(2) magnetron sputtering process is carried out to the aluminium nitride substrate after high temperature oxidation, respectively form the Cu of one deck even compact on two sides 2o film, can to Al 2o 3film forms protection and reinforces, and prevents under high temperature nitrogen atmosphere, very thin Al 2o 3film occurs to react 2Al as follows with nitrogen again 2o 3+ 2N 2→ 4AlN+3O 2, thus transition layer Al 2o 3film destroy, is peeling the situation that intensity is not up to standard.
(3) existing aluminum-nitride-based ceramic copper-clad plate is because be static sintering, the tiling of anaerobic red copper foil to be overlayed on aluminum nitride ceramic substrate and put into high temperature rapidly from room temperature, in short period of time, temperature head alters a great deal, if aluminium nitride substrate area is more than 40mm × 40mm, be easy to absorb heat at short notice more, cause local sintering loosely, occur delamination or cavitation.Bonding of the present invention is dynamic bonding continuously, bonding stove is chain-belt type continuous transmission nitrogen oxygen atmosphere high temperature eutectic bonding stove, this bonding pattern be a little anaerobic red copper foil tiling overlay on aluminum nitride ceramic substrate from room temperature slowly continuously heat absorption enter high temperature bonding, be unlikely temperature head in the short period of time to alter a great deal, be not easy to absorb more heat transfer at short notice, so aluminum-nitride-based ceramic copper-clad plate bonding area is very easy to more than 40mm × 40mm, the aluminum-nitride-based ceramic copper-clad plate maximum area of being produced by present invention process is 200mm × 150mm.
(4) the aluminum-nitride-based ceramic copper-clad plate after bonding adopts " temperature difference replaces falling temperature method in proper order " to eliminate matrix material because of the inconsistent stress of thermal expansivity and warpage issues, warpage≤0.002mm/mm to reach.
Embodiment
Below in conjunction with embodiment, the present invention is described further.
Embodiment 1
(1) chemical oxidation treatment of Copper Foil
1. anaerobic red copper foil size 193mm × 145mm × 0.2mm, pre-treatment;
2. Copper Foil is put into the SODIUMNITRATE of 350 DEG C of meltings, oxidization time is 20min, forms the Cu of compact and firm at copper foil surface 2o film.
(2) high temperature oxidation of aluminum nitride ceramic substrate
Aluminum nitride ceramic substrate is of a size of 200mm × 150mm × 0.38mm, pre-treatment; Aluminum nitride ceramic substrate is inserted Al 2o 3push in the ceramic grillage of material in three station high temperature oxidation boiler tubes and carry out oxide treatment, parameter is as follows: high temperature oxidation temperature 1095 DEG C, oxygen flow 30ml/min, soaking time 230min.
(3) magnetron sputtering of aluminum nitride ceramic substrate
Radio frequency power 76W, operating pressure is 1.0Pa, Ar flow 78ml/min, O 2flow 7.8ml/min, oxygen partial pressure ratio is 6.5 × 10 -2, depositing time 15min.
(4) the high temperature bonding of aluminum-nitride-based ceramic copper-clad plate
The Copper Foil of chemical oxidation is pressed into circular arc type in advance along length 193mm direction, and ensure action 20mm, ensure that convex surface is oxidation aspect, concave surface is non-oxide aspect; Copper Foil oxidation aspect and aluminium nitride substrate are stacked to be placed in chain type bonding stove and carry out high temperature dynamically continuous bonding; Bonding region temperature 1070 DEG C, bonding time 7min, nitrogen oxygen atmosphere flow is 40L/min, and oxygen content is 100ppm.
(5) aluminum-nitride-based ceramic copper-clad plate adopts " temperature difference replaces falling temperature method in proper order "
1. the 7min time is cooled to 800 DEG C from bonding temperature 1070 DEG C;
2. the 3min time is warming up to 900 DEG C from 800 DEG C;
3. the 7min time is cooled to 600 DEG C from 900 DEG C;
4. the 3min time is warming up to 700 DEG C from 600 DEG C;
5. the 7min time is cooled to 300 DEG C from 700 DEG C;
6. the 3min time is warming up to 400 DEG C from 300 DEG C;
7. the 7min time is cooled to 200 DEG C from 400 DEG C;
8. the 3min time be cooled to 50 DEG C from 200 DEG C after naturally cooling.
Embodiment 2
(1) chemical oxidation treatment of Copper Foil
1. anaerobic red copper foil size 193mm × 145mm × 0.3mm, pre-treatment;
2. Copper Foil is put into the SODIUMNITRATE of 360 DEG C of meltings, oxidization time is 18min, forms the Cu of compact and firm at copper foil surface 2o film.
(2) high temperature oxidation of aluminum nitride ceramic substrate
Aluminum nitride ceramic substrate is of a size of 200mm × 150mm × 0.63mm, pre-treatment; Aluminum nitride ceramic substrate is inserted Al 2o 3push in the ceramic grillage of material in three station high temperature oxidation boiler tubes and carry out oxide treatment, parameter is as follows: high temperature oxidation temperature 1100 DEG C, oxygen flow 25ml/min, soaking time 215min.
(3) magnetron sputtering of aluminum nitride ceramic substrate
Radio frequency power 76W, operating pressure is 1.0Pa, Ar flow 77ml/min, O 2flow 7.7ml/min, oxygen partial pressure ratio is 6.5 × 10 -2, depositing time 14min.
(4) the high temperature bonding of aluminum-nitride-based ceramic copper-clad plate
The Copper Foil of chemical oxidation is pressed into circular arc type in advance along length 193mm direction, and ensure action 20mm, ensure that convex surface is oxidation aspect, concave surface is non-oxide aspect; Copper Foil oxidation aspect and aluminium nitride substrate are stacked to be placed in chain type bonding stove and carry out high temperature dynamically continuous bonding; Bonding region temperature 1075 DEG C, bonding time 5min, nitrogen oxygen atmosphere flow is 30L/min, and oxygen content is 60ppm.
(5) aluminum-nitride-based ceramic copper-clad plate adopts " temperature difference replaces falling temperature method in proper order "
1. the 7min time is cooled to 800 DEG C from bonding temperature 1075 DEG C;
2. the 3min time is warming up to 900 DEG C from 800 DEG C;
3. the 7min time is cooled to 600 DEG C from 900 DEG C;
4. the 3min time is warming up to 700 DEG C from 600 DEG C;
5. the 7min time is cooled to 300 DEG C from 700 DEG C;
6. the 3min time is warming up to 400 DEG C from 300 DEG C;
7. the 7min time is cooled to 200 DEG C from 400 DEG C;
8. the 3min time be cooled to 50 DEG C from 200 DEG C after naturally cooling.
Embodiment 3
(1) chemical oxidation treatment of Copper Foil
1. anaerobic red copper foil size 193mm × 145mm × 0.35mm, pre-treatment;
2. Copper Foil is put into the SODIUMNITRATE of 370 DEG C of meltings, oxidization time is 15min, forms the Cu of compact and firm at copper foil surface 2o film.
(2) high temperature oxidation of aluminum nitride ceramic substrate
Aluminum nitride ceramic substrate is of a size of 200mm × 150mm × 1.0mm, pre-treatment; Aluminum nitride ceramic substrate is inserted Al 2o 3push in the ceramic grillage of material in three station high temperature oxidation boiler tubes and carry out oxide treatment, parameter is as follows: high temperature oxidation temperature 1105 DEG C, oxygen flow 20ml/min, soaking time 200min.
(3) magnetron sputtering of aluminum nitride ceramic substrate
Radio frequency power 76W, Ar flow 76ml/min, O 2flow 7.6ml/min, oxygen partial pressure ratio is 6.5 × 10 -2, depositing time 13min.
(4) the high temperature bonding of aluminum-nitride-based ceramic copper-clad plate
The Copper Foil of chemical oxidation is pressed into circular arc type in advance along length 193mm direction, and ensure action 20mm, ensure that convex surface is oxidation aspect, concave surface is non-oxide aspect; Copper Foil oxidation aspect and aluminium nitride substrate are stacked to be placed in chain type bonding stove and carry out high temperature dynamically continuous bonding; Bonding region temperature 1078 DEG C, bonding time 3min, nitrogen oxygen atmosphere flow is 20L/min, and oxygen content is 20ppm.
(5) aluminum-nitride-based ceramic copper-clad plate adopts " temperature difference replaces falling temperature method in proper order "
1. the 7min time is cooled to 800 DEG C from bonding temperature 1078 DEG C;
2. the 3min time is warming up to 900 DEG C from 800 DEG C;
3. the 7min time is cooled to 600 DEG C from 900 DEG C;
4. the 3min time is warming up to 700 DEG C from 600 DEG C;
5. the 7min time is cooled to 300 DEG C from 700 DEG C;
6. the 3min time is warming up to 400 DEG C from 300 DEG C;
7. the 7min time is cooled to 200 DEG C from 400 DEG C;
8. the 3min time be cooled to 50 DEG C from 200 DEG C after naturally cooling.
Comparative example 1
This comparative example is for illustration of aluminum-nitride-based ceramic copper-clad plate of the prior art.
Adopt common process to prepare aluminum-nitride-based ceramic copper-clad plate, concrete grammar is:
(1) high temperature oxidation of Copper Foil
Copper Foil is put into three station Al 2o 3carry out oxide treatment in the ceramic boiler tube of material, parameter is as follows: temperature 750 DEG C, is to carry out high temperature oxidation under the nitrogen atmosphere of 450ppm at oxygen content, and gas flow is 300ml/min, soaking time 10min, and copper foil surface obtains Cu 2o film.
(2) high temperature oxidation of aluminum nitride ceramic substrate
Aluminum nitride ceramic substrate is of a size of 200mm × 150mm × 0.63mm, and aluminum nitride ceramic substrate is inserted Al 2o 3push in the ceramic grillage of material in three station high temperature oxidation boiler tubes and carry out oxide treatment, parameter is as follows: high temperature oxidation temperature 1098 DEG C, oxygen flow 25ml/min, soaking time 230min.
(3) the high temperature bonding of aluminum-nitride-based ceramic copper-clad plate
The Copper Foil of high temperature oxidation and aluminum nitride ceramic substrate are tiled to be stacked together to be placed in bonding stove and carry out static state high-temperature bonding, bonding region temperature 1075 DEG C, bonding time 5min, nitrogen oxygen atmosphere flow is 30L/min, and oxygen content is 60ppm.
The aluminum-nitride-based ceramic copper-clad plate make above-described embodiment 1 ~ 3 and the aluminum-nitride-based ceramic copper-clad plate that makes of comparative example 1 carry out voidage, stripping strength, thermal conductivity, dielectric strength properties are tested.
The test result obtained, in table 2.
Table 2 test result
Quality index Embodiment 1 Embodiment 2 Embodiment 3 Comparative example 1
Voidage (%) 0.97 0.92 0.95 3.16
Stripping strength (N/mm) 8.6 8.9 8.3 4.3
Thermal conductivity (W/mK) 183 181 182 169
Dielectric strength (kV/mm) 15.2 15.5 15.1 15.2
As can be seen from the test result of table 2, prior art of comparing, thermal conductivity, the stripping strength of aluminum-nitride-based ceramic copper-clad plate of the present invention are improved, and voidage obtains decline.

Claims (6)

1. a preparation method for aluminum-nitride-based ceramic copper-clad plate, is characterized in that step is as follows:
(1) after the pre-treatment of anaerobic red copper foil, then the SODIUMNITRATE putting into melting carries out warm chemical oxidation treatment, forms the Cu of one deck even compact at the bonding face of anaerobic red copper foil 2o film;
(2), after aluminium nitride substrate pre-treatment, then through high temperature oxidation process, the Al of one deck even compact is respectively formed on the two sides of aluminium nitride substrate 2o 3film;
(3) to the aluminium nitride substrate magnetron sputtering process after high temperature oxidation, the Cu of one deck even compact is respectively formed on two sides 2o film;
(4) by by the arc-shaped for the anaerobic red copper foil precompressed after process, be stacked to be placed in chain type bonding stove with aluminium nitride substrate and carry out high temperature dynamically continuous bonding;
(5) adopt the temperature difference in proper order to replace falling temperature method process after bonding, to obtain final product;
The thickness of the anaerobic red copper foil described in step (1) is 0.1 ~ 0.4mm, and length is 35 ~ 193mm, and width is 35 ~ 145mm;
Aluminium nitride substrate described in step (2) is the AlN of content >=97%, and thickness is 0.38 ~ 1.0mm, and length is 40 ~ 200mm, and width is 40 ~ 150mm.
2. the preparation method of aluminum-nitride-based ceramic copper-clad plate according to claim 1, it is characterized in that the temperature of the middle temperature chemical oxidation treatment described in step (1) is 350 ~ 370 DEG C, the time is 15 ~ 20min.
3. the preparation method of aluminum-nitride-based ceramic copper-clad plate according to claim 1, it is characterized in that the temperature of the high temperature oxidation process described in step (2) is 1095 ~ 1105 DEG C, the time is 200 ~ 230min.
4. the preparation method of aluminum-nitride-based ceramic copper-clad plate according to claim 1, is characterized in that the chain type bonding stove described in step (4) is chain-belt type continuous transmission nitrogen oxygen atmosphere high temperature eutectic bonding stove.
5. the preparation method of aluminum-nitride-based ceramic copper-clad plate according to claim 1, it is characterized in that the bonding temperature described in step (4) is 1070 ~ 1078 DEG C, bonding time is 3 ~ 7min.
6. the preparation method of aluminum-nitride-based ceramic copper-clad plate according to claim 1, it is characterized in that the temperature difference in proper order described in step (5) replaces falling temperature method, step is as follows:
(1) the 7min time is cooled to 800 DEG C from bonding temperature;
(2) the 3min time is warming up to 900 DEG C from 800 DEG C;
(3) the 7min time is cooled to 600 DEG C from 900 DEG C;
(4) the 3min time is warming up to 700 DEG C from 600 DEG C;
(5) the 7min time is cooled to 300 DEG C from 700 DEG C;
(6) the 3min time is warming up to 400 DEG C from 300 DEG C;
(7) the 7min time is cooled to 200 DEG C from 400 DEG C;
(8) the 3min time be cooled to 50 DEG C from 200 DEG C after naturally cooling.
CN201410105481.2A 2014-03-20 2014-03-20 Preparation method of aluminium nitride base ceramic copper-clad plate Active CN103819215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410105481.2A CN103819215B (en) 2014-03-20 2014-03-20 Preparation method of aluminium nitride base ceramic copper-clad plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410105481.2A CN103819215B (en) 2014-03-20 2014-03-20 Preparation method of aluminium nitride base ceramic copper-clad plate

Publications (2)

Publication Number Publication Date
CN103819215A CN103819215A (en) 2014-05-28
CN103819215B true CN103819215B (en) 2015-04-15

Family

ID=50754554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410105481.2A Active CN103819215B (en) 2014-03-20 2014-03-20 Preparation method of aluminium nitride base ceramic copper-clad plate

Country Status (1)

Country Link
CN (1) CN103819215B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106287580A (en) * 2015-06-02 2017-01-04 深圳市光峰光电技术有限公司 Wavelength converter and preparation method thereof, related lighting fixtures and optical projection system
CN105777210B (en) * 2016-03-10 2018-07-17 浙江大学 A kind of aluminium nitride ceramics copper-clad plate and preparation method thereof
CN107359110A (en) * 2017-08-03 2017-11-17 四川科尔威光电科技有限公司 One kind is used for aluminium nitride ceramic substrate oxidation treatment method
CN107619652A (en) * 2017-09-20 2018-01-23 苏州三冷暖工程有限公司 A kind of ceramic copper-clad plate activity high-heat-conductivity glue
CN108181342B (en) * 2017-12-11 2021-06-25 广州兴森快捷电路科技有限公司 Flexible plate detection method
CN108191449B (en) * 2018-01-03 2021-04-27 上海富乐华半导体科技有限公司 Copper-aluminum oxide ceramic substrate and preparation method thereof
CN110165545A (en) * 2019-05-06 2019-08-23 江苏稳润光电科技有限公司 A kind of high power laser light device and preparation method thereof
CN110734295B (en) * 2019-09-17 2022-02-18 昆山市柳鑫电子有限公司 Preparation method of aluminum nitride ceramic copper-clad plate
CN113939095B (en) * 2020-06-29 2023-02-10 比亚迪股份有限公司 Ceramic copper-clad plate and preparation method thereof
CN113215518B (en) * 2021-03-17 2022-10-11 江苏富乐华半导体科技股份有限公司 Copper sheet oxidation method
CN114501820B (en) * 2022-02-21 2024-06-18 青州云领电子科技有限公司 Preparation process and product of ceramic-based circuit board
CN116037746B (en) * 2023-02-01 2024-01-26 江苏富乐华半导体科技股份有限公司 Method for solving problem of large bubbles of copper-clad ceramic substrate sintered by chemical copper oxide sheet
CN117303932B (en) * 2023-10-18 2024-03-19 江苏富乐华半导体科技股份有限公司 Method for thoroughly solving problem of large bubbles generated by wet oxidation DBC sintering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445386A (en) * 2007-11-27 2009-06-03 比亚迪股份有限公司 Preparing method of ceramic copper-clad base plate
CN101814439A (en) * 2010-04-06 2010-08-25 淄博市临淄银河高技术开发有限公司 Process for preparing low thermal resistance ceramic copper-clad plate used for IGBT (Insulated Gate Bipolar Transistor) module
CN102208371A (en) * 2010-03-31 2011-10-05 比亚迪股份有限公司 Aluminium nitride ceramic copper-clad substrate and preparation method thereof
CN102206098A (en) * 2010-03-30 2011-10-05 比亚迪股份有限公司 Ceramic copper-clad substrate and preparation method thereof
CN102922828A (en) * 2012-10-24 2013-02-13 浙江工贸职业技术学院 Composite board of copper-foil-bonded ceramic substrate and preparation method of composite board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445386A (en) * 2007-11-27 2009-06-03 比亚迪股份有限公司 Preparing method of ceramic copper-clad base plate
CN102206098A (en) * 2010-03-30 2011-10-05 比亚迪股份有限公司 Ceramic copper-clad substrate and preparation method thereof
CN102208371A (en) * 2010-03-31 2011-10-05 比亚迪股份有限公司 Aluminium nitride ceramic copper-clad substrate and preparation method thereof
CN101814439A (en) * 2010-04-06 2010-08-25 淄博市临淄银河高技术开发有限公司 Process for preparing low thermal resistance ceramic copper-clad plate used for IGBT (Insulated Gate Bipolar Transistor) module
CN102922828A (en) * 2012-10-24 2013-02-13 浙江工贸职业技术学院 Composite board of copper-foil-bonded ceramic substrate and preparation method of composite board

Also Published As

Publication number Publication date
CN103819215A (en) 2014-05-28

Similar Documents

Publication Publication Date Title
CN103819215B (en) Preparation method of aluminium nitride base ceramic copper-clad plate
CN103188877B (en) The method that the quick high flexibility of a kind of ceramic circuit-board makes
CN105777210B (en) A kind of aluminium nitride ceramics copper-clad plate and preparation method thereof
CN110438444B (en) Tungsten-plated diamond particles, tungsten plating method, application of tungsten-plated diamond particles as copper-based reinforcing phase and diamond/copper composite material obtained by tungsten-plated diamond particles
CN103741141B (en) A kind of metallized method of al nitride ceramic board
CN103819214A (en) AlN ceramic bonded copper substrate and preparation method thereof
CN109608221A (en) A kind of preparation method of aluminium nitride ceramic copper-clad substrate
CN105330340A (en) Aluminum oxide ceramic metallization method used for brazing
CN104362099A (en) Manufacturing method of high-heat-conductivity copper-clad ceramic substrate
CN104822223A (en) Ceramic-based circuit board and preparation method thereof
CN109336646A (en) A kind of manufacturing method for covering copper aluminum nitride ceramic substrate
JP7512507B2 (en) Ceramic copper-clad laminate and method for producing the same
CN109133966B (en) Preparation method of layered gradient graphite film/aluminum composite material
CN102452844B (en) Aluminum nitride aluminum-coated base plate and preparation method thereof
CN101887942A (en) Metal baseplate provided with LED and manufacturing method thereof
CN111069611A (en) Preparation method of graphite-graphene-metal composite material
Wei et al. Comparative studies on microstructures, strengths and reliabilities of two types of AlN direct bonding copper substrates
CN113613474A (en) Preparation method of heat-conducting film
CN114907135B (en) Preparation method of aluminum nitride copper-clad ceramic substrate
CN102917534A (en) DLC (Diamond like Carbon) thin film coating-based ceramic substrate
CN114501828A (en) Preparation method of diamond printed circuit board with efficient heat dissipation function
CN202931664U (en) Double-faced aluminium circuit board with ultrahigh heat conductivity
CN104617213B (en) A kind of method that aluminium nitride film is generated on aluminium sheet
CN103327735A (en) High heat conducting and insulating metal matrix printed circuit board
CN105506624A (en) Film plating method of aluminium nitride ceramic substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240108

Address after: No. 189 Yisheng Road, Jiangling Street, Wujiang District, Suzhou City, Jiangsu Province, 215200

Patentee after: Suzhou Zhending Semiconductor Technology Co.,Ltd.

Address before: 255400 No. 432, Linzi Avenue, Linzi District, Shandong, Zibo

Patentee before: Li Lei

Patentee before: Wang Huaiyi

TR01 Transfer of patent right