CN103814080A - 聚对苯二甲酸乙二酯-石墨烯纳米复合物 - Google Patents

聚对苯二甲酸乙二酯-石墨烯纳米复合物 Download PDF

Info

Publication number
CN103814080A
CN103814080A CN201280033203.XA CN201280033203A CN103814080A CN 103814080 A CN103814080 A CN 103814080A CN 201280033203 A CN201280033203 A CN 201280033203A CN 103814080 A CN103814080 A CN 103814080A
Authority
CN
China
Prior art keywords
nano
graphene
weight
pet
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280033203.XA
Other languages
English (en)
Other versions
CN103814080B (zh
Inventor
J.C.哈南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oklahoma State University Council
Original Assignee
Oklahoma State University Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oklahoma State University Council filed Critical Oklahoma State University Council
Publication of CN103814080A publication Critical patent/CN103814080A/zh
Application granted granted Critical
Publication of CN103814080B publication Critical patent/CN103814080B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K999/00PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS dummy group
    • H05K999/99PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS dummy group dummy group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/776Ceramic powder or flake

Abstract

一种纳米复合材料,包含作为基体聚合物的聚对苯二甲酸乙二酯(PET)和提高该基体聚合物强度的纳米颗粒。

Description

聚对苯二甲酸乙二酯-石墨烯纳米复合物
相关申请的交叉引用
本申请要求2011年5月3日提交的美国临时申请号61/482,048的权益,通过引用以其全文并入本文,用于所有目的。
发明领域
本公开总体上涉及聚合物,并更具体地涉及通过引入纳米材料来加强聚合物。
发明背景
聚合物已经成为现代生活中常见的成分。曾经利用劳动和/或能量密集型方法由金属和其它重型材料制造的产品现在可以更便宜、更迅速和用更少的能量输入来制造。汽车、医疗、信息技术和保健只是普遍使用聚合物的工业的一小部分。
由聚合物制造装置通常产生比由结构金属或者其它材料制造的等价物品重量更轻的物品。然而重量的减少通常带来强度的降低。强度降低可能是承受扭矩、剪切、压缩、压力或者其它力而不弯曲、破裂或变形至不可接受的程度的能力的降低。
需要的是用于解决上述和相关问题的体系和方法。
发明概述
本公开的发明,在其中一个方面,包含纳米复合材料。该材料包含包括聚对苯二甲酸乙二酯(PET)的基体聚合物,和提高该基体聚合物强度的纳米颗粒。该纳米颗粒可能包含石墨烯纳米片,其可由片层剥离制备。石墨烯纳米片可具有5微米的平均直径。它们可包含约2重量%的纳米复合材料。在其它实施方案中,石墨烯纳米片可包含约5%、10%或15%重量的纳米复合材料。在另一个实施方案中,重量百分比可为约2-约5。
本公开的发明,在其中另一方面,包含生产纳米复合材料的方法。该方法包括提供作为基体聚合物的聚对苯二甲酸乙二酯(PET),和提供纳米颗粒物质。该方法还包括将基体聚合物与纳米颗粒材料混合以形成母料产物,和将该母料产物注塑。该纳米颗粒物质可包含石墨烯。石墨烯可由片层剥离制备。
在一个实施方案中,纳米颗粒物质可包含约2重量%的纳米颗粒物质材料在母料产物中。在其它实施方案中,重量百分比可为约5、10或15。在一些实施方案中,其可为约2%-约15%。
附图简述
图1:xGnP粉末样品的SEM显微图片,(a)1000倍;(b)11000倍。
图2:PET(A)和PET-15% xGnP纳米复合物(B)的经拉伸试验的样品。
图3:(a)PET、(b)PET-2%重量xGnP纳米复合物、(c)PET-5%重量xGnP纳米复合物、(d)具有微孔的PET-10%重量xGnP纳米复合物、(e)5000倍下的PET-10%重量xGnP纳米复合物和(f)PET-15%重量xGnP纳米复合物样品的SEM显微图片。
图4:TEM显微图片显示了PET-15% xGnP纳米复合物中纳米片的分散;(a)10000倍、(b)20000倍的亮场图片和(c)60000倍的暗场图片。
图5:xGnP粉末与PET对照和纳米复合物的XRD图案对比。
图6:PET和PET-xGnP纳米复合物的应力-应变曲线对比。
图7:PET纳米复合物的杨氏模量与对照PET的比较。
图8:预测的PET-石墨烯纳米复合物的模量与实验结果的比较。
优选实施方案详述
基体聚合物可具有许多固有的与它们的外貌、颜色、硬度、强度和许多其它可测量性质相关的特征。在一些情况下,基体聚合物与预定量的材料混合将改变基体聚合物的性质。加入到基体聚合物的材料称为母料,而按照一定方式将母料加入到基体聚合物使得基体聚合物的性质改变的过程可称为母料过程。
还可在进一步处理产生成品的母料过程中制备聚合物。例如,如下所述的聚合物或纳米复合聚合物可制备成母料丸粒,其随后经模塑为成品(例如,通过注塑或其它适合方法)。
在本公开的一些实施方案中,纳米尺度的颗粒与聚合物共混或结合成母料丸粒,然后可将母料丸粒注塑为成品。在母料的聚合物中,纳米尺度材料将仅在纳米尺度上相互作用以改变基体聚合物的性质,其相对于较大的增强机制提供了某些益处。基于格里菲斯(Griffith)破裂理论和韦布尔(Weibull)分析,较小颗粒与它们较大的相应部分相比更坚固并且可更有效地增强基质。此外,由于它们提高的表面积和高的宽厚比,较少体积的较小增强体可提供等效的增强作用。
纳米颗粒的选择可基于所需的性质、与基质的相互作用、加工、成本和最终复合物的应用。若干纳米颗粒,例如有机粘土(MMT)、金属纳米颗粒(Al和Ag)、金属氧化物(ZnO、二氧化硅)和碳衍生物(CNT's、富勒烯 、氧化石墨、石墨烯),可用于聚合物纳米复合物的制备。在另一个实施方案中,利用聚对苯二甲酸乙二酯(PET)-石墨烯制造聚合物纳米复合物。该材料适于注塑和吹塑以及其它处理及制造工艺。
石墨烯(其包含单层碳原子)与其它纳米颗粒相比具有优良的机械性质(模量-1060GPa,强度-20GPa)和电性质(50×10-6 I cm)。石墨烯经过表面处理的帮助可在基体聚合物中分散良好。片层剥离石墨烯纳米片(xGnP)为多个石墨烯层堆叠形成片状物。
对于PET与石墨烯的特定组合(例如,像在本公开的某些实施方案中),虽然PET是广泛使用的聚合物,但是迄今为止在实验室研究中被忽视,部分因为其相对较粘并且具有相对高的熔点的事实。此外,PET的组成体单元(constituent mer unit)呈现极性,在产品混合时,其可导致特定极性纳米结构的分解。应注意到石墨烯是极性物质,意味着在PET存在下它可预期溶解或失去它的结构完整性。然而,如本文公开,石墨烯可以并且确实保持足够的完整性以有利地改变PET的物理特征。
在一个实施方案中,PET-片层剥离石墨烯纳米复合物利用注塑经过母料过程制备,其中石墨烯纳米片与PET混合以形成母料丸粒。这些实验结果与利用Halpin-Tsai和Hui-Shia模型的理论结果相比较。
经常基于简化的经验方程估算连续纤维复合物,该经验方程称为“混合物法则”。在纳米增强体的情况下,“混合物法则”会低估或者高估最终性质。这可能是由于它们的低体积部分,以及基质与增强体之间性质的通常较大的差异。
对于纳米复合物,纳米片与基质之间的特殊相互作用在测定它们的弹性性能时是重要的。纳米片的高的宽厚比与基质-增强体界面处的复杂机制相结合,使纳米复合物性质估算变复杂。因此,已修改传统的微观力学模型(micromechanical model)以估算纳米颗粒的机械性质。
实验1
材料
在一个示范中,使用市售可得的被称作oZpetTM的0.80dl/g(I.V.)聚对苯二甲酸乙二酯(GG-3180 FGH,Leading Synthetics,澳大利亚)。如图1所示,平均直径为5 Pm的xGnP?-M-5级别(99.5%碳)片层剥离石墨烯纳米片由XG Sciences , Inc(East Lansing ,MI)以干粉末获得。石墨烯纳米片(xGnP)与所取得的PET树脂通过Ovation Polymers(Medina,OH)利用它们的ExTimaTM技术混合为PET-xGnP母料丸粒。
石墨烯纳米片本质上是憎水的;石墨烯的有效分散产生自氧与羟基官能团(由于在片状物断裂期间原料碳的暴露而形成)在它们表面与PET极性基团的相互作用[19]。从上述过程获得的母料丸粒用作注塑过程的原料。PET对照样品与增加重量分数(2%、5%、10%和15%)的PET-xGnP纳米复合物拉伸条于250℃-260℃温度下,遵循ASTM D 638的型号-I规范(通过引用在此并入)注塑。
表征技术
产生的纳米复合物拉伸条(如图2所示)利用通用材料试验机(Instron 5582型)测试。测试遵循ASTM D 638标准,十字头速度为5mm/分钟。使用非接触式激光伸长计(Electronic Instrument Research,Model LE-05)记录无仪器柔度的位移。激光伸长计记录来自放置在测量长度上的自反射粘着物的反射的位移。
三个每一种复合物与纯PET样品一起测试用于对比。以100ms时间间隔同时记录十字头的激光位移和负荷。
利用电子显微镜(SEM,TEM)和X射线衍射观察石墨烯纳米片的分散。xGnP粉末以及PET和PET-片层剥离石墨烯纳米复合物断面的SEM显微图片利用Hitachi S-4800获得。
PET对照和具有较低石墨烯含量的纳米复合物利用Balzers Union MED 010涂布机涂布Au/Pt。用于透射成像的薄片(厚度为70nm)利用Reichert-Jung Ultracut E薄片切片机切片。透射显微图片利用JEOL JEM-2100显微镜在200kV操作电压下采集。X射线衍射图案在Bruker D8 Discovery衍射计上以反射采集,利用Cu Kα(λ=1.54054?)辐射。XGnP粉末连同PET样品的XRD扫描在40kV和40mA下采集,曝露时间为120秒。
结果
扫描电子显微镜法
XGnP干粉末的SEM显微图片显示在图1(b),其显示了聚集的片状物,每一个片状物由大量石墨烯层共同堆叠组成。这些片状物平均直径为5-10 Pm和厚度为数纳米(5-20nm)。
PET-石墨烯纳米复合物失效表面的显微图片(图3(b)、(c)、(d) 、(e)和(f))显示,石墨烯纳米片保持完整并且分散到PET基质内,没有聚集迹象。显微图片说明纳米复合物在拉伸负荷下的失效是通过易碎的微观破裂的联合。可从具有5%和10%石墨烯纳米片重量分数的纳米复合物样品的SEM显微图片注意到微孔的存在和从这些空隙引发的破裂。SEM显微图片显示纳米片突出断面以外。它们看起来已变形并与基质混合。
透射电子显微镜法
纳米复合物的性能取决于纳米颗粒的分散。TEM显微图片采集自70nm的薄部以得到对纳米片分散的更好了解。图4显示的透射显微图片揭示了石墨烯纳米片保持完整为片状物并且分散到聚合物基质中,没有发现石墨烯片(完全的片层剥离物)的单独分散。显微图片以亮场和暗场两种模式采集。由于纳米片由若干单独的石墨烯片组成,使用的70nm厚部可能含有聚合物和石墨烯片的层,因此暗场模式是有利的。石墨烯比聚合物基质更导电,因此在透射成像中,这个区别提供了对比度。
X射线衍射
从干的xGnP粉末、PET对照和PET-xGnP纳米复合物采集的XRD图案显示在图5中。石墨烯纳米片的衍射图案显示石墨烯-2H特征峰在26.6°(d=3.35?)和54.7°(d=1.68?)2θ处。在26.6°2θ处峰的轻微宽化说明存在不同尺寸的片状物。在大约19.2°2θ处观察到PET对照样品的宽的无定形峰。这证实对照样品具有无定形的微观结构。如图5所示,在26.6°2θ处的石墨烯峰的强度随纳米片的重量分数提高。未观察到峰移动。这与TEM显微图片一起证实纳米片并非基本上为片层[20]。此外,衍射图案证实PET基质如预期至少在0.2mm的表面内为无定形的。
机械性能
绘制PET对照和纳米复合物的应力-应变曲线,如图6所示,其基于拉伸试验收集的数据。添加石墨烯纳米片使性能(模量)提高,与纯PET相比高至300%,并且遵循指数趋势,如图7所示。虽然观察到主要为线性的行为,但15%纳米复合物的应力-应变曲线中的峰表明此复合物与另一较低体积部分相比有附加的韧化机制。这可能是由于增强体-增强体的相互作用。
以了解石墨烯纳米片作为增强体的有效性为目的,微观力学模型(例如Halpin-Tsai和Hui-Shia模型)用于测定该PET-石墨烯纳米复合物的理论弹性机械性能。微观力学模型基于假设而估算性质,例如完美增强体、均质分散或增强体的一致取向。石墨烯纳米复合物优异性能的理想情况是具有所需长度的无缺陷石墨烯片(单层),其良好分散在基质内并沿着最大负荷方向取向。
Gong等人[16]已经测定石墨烯片作为增强体有效的所需长度(>30μm)。Georgantzinos等人[22]用分子模拟观察到,石墨烯片的机械性能,例如硬度和泊松比率,随包含的层数的增加而减少。他们估计包含五层的片状物的硬度与单层石墨烯相比减少了15%,并且它们还注意到石墨烯的性质基于它们的取向而有所区别。已经报道的石墨烯片状物(薄片)的模量为0.795 TPa [23]。
表1:用于理论预测的石墨烯和PET的性质
Figure 189358DEST_PATH_IMAGE001
本研究中,从TEM显微图片观察具有宽范围的长度(或存在于平面方向之外的片状物直径)和厚度的石墨烯片。颗粒尺寸由较大(5μm)石墨烯干粉末到较小(300nm)石墨烯干粉末(如TEM图像(图4)中观察到的尺寸)的变化,可归因于在混合和模塑过程期间的剪切。表1显示了片状物的平均尺寸,以及最小值和最大值。然后将这些片状物性质用于测定纳米复合物的性能范围,基于微观力学模型(误差条显示在图8中)。相对于实验结果,绘制得自微观力学模型的预测的纳米复合物模量,显示于图8。经过Halpin-Tsai模型估算的模量与实验值对比较高。Halpin-Tsai模型估算复合物的模量,其中片状物沿着负荷方向排列。然而,片状物通常不按负荷方向排列。另外,与基质相比较,增强体的非常高的硬度(>250倍)使得通过Halpin-Tsai模型准确预测变得困难[22]。Hui-Shia模型显示最好的一致性。Hui-Shia模型估算在平行(轴1和2)和垂直方向(沿着轴3)两者上均负载有片状物的纳米复合物的弹性模量,如图8所示。这个模型与Halpin-Tsai模型相比,对于宽范围的硬度比率是有效的[22]。
此外,在复合物中基质到增强体之间的应力传递对控制它们的机械行为是关键的。例如,PMMA基质中的石墨烯纳米复合物,基质与石墨烯片和石墨烯片-石墨烯片之间的应力传递显示为由弱范德华力主导,降低了潜在的机械性能。然而,微观力学模型没有考虑在应力传递行为中的这些变化。这导致了与实验值的偏差。
当前的实验模量显示了与理论预测合理的一致性。这并未考虑片状物几何形状的宽范围(参见表格)。最佳情况是模量与片状物平行(方向-3)的Hui-Shia模型。这表明增强体的合理的有效性。当增强体随机分布时,可预期平行的和垂直的两种Hui-Shia预测之间的性能。对片状物分布的随机性的进一步研究需要另外的估算。如果片状物具有更高的宽厚比,则甚至可预期更硬的模量增强体,因为预测的模量对宽厚比敏感。由于在添加剂的生产以及它们与基质的加工方面有持续的提高,所以这是合理的目标。显然,纳米尺度的增强体有利于机械性质的提高。
此外,由X射线衍射,石墨烯片的加入未显示出对PET最终结晶的影响。规模经济可改善任何这些添加剂的成本。更了解纳米片对注塑过程的影响,可帮助进一步改善复合物性质。例如,许多不同的螺杆类型可用于注塑,并且需要探索它们在添加剂的混合和分散中的优点。
测试结论
本公开表明石墨烯纳米片对聚对苯二甲酸乙二酯或者PET实现提高的强度特性(例如弹性模量)是有效的。母料丸粒的注塑是一种成功的用于制备PET-石墨烯(xGnP)纳米复合物(重量分数2-15%)的方法。与简单机械模型的对比说明了它们的优异性能。硬度可能不仅取决于增强体硬度,还取决于宽厚比以及基质与增强体之间界面应力传递的主要机制。还有一些迹象表明增强体-增强体的相互作用在体积分数超过10%时起重要作用。
参考文献
[1]T. Kuila, S. Bhadra, D. Yao, N. H. Kim, S. Bose和J. H. Lee, “Recent advances in graphene based polymer composites(基于石墨烯的聚合物复合物的最新进展),” Progress in Polymer Science, 卷号在印,校正版.
[2]H. Fukushima, "Graphite Nanoreinforcements in Polymer Nanocomposites(聚合物纳米复合物中的石墨纳米增强体),"Chemical Engineering and Materials Science. 哲学博士卷,2003年,311页.
[3]X. Jiang 和 L. T. Drzal, "Multifunctional high density polyethylene nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties(通过加入片层剥离石墨纳米片生产的多功能高密度聚乙烯纳米复合物1:形貌与机械性质)," Polymer Composites,卷31, 1091-1098页.
[4]F. Hussain, M. Hojjati, M. Okamoto, 和 R. E. Gorga, "Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview(综述文章:聚合物基质纳米复合物:加工、制造和应用:概述)," Journal of Composite Materials, 卷40, 1511-1575页, 2006年9月1.
[5]D. R. Paul 和 L. M. Robeson, "Polymer nanotechnology: Nanocomposites(聚合物纳米技术:纳米复合物)," Polymer, 卷 49, 3187-3204页, 2008年.
[6]H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, 和 I. A. Aksay, "Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide(衍生自分离的氧化石墨的功能化单石墨烯片)," The Journal of Physical Chemistry B, 卷110, 8535-8539页, 2006年.
[7]B. Jang 和 A. Zhamu, "Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review(纳米石墨烯片(NGPs)和NGP纳米复合物的加工:综述)," Journal of Materials Science, 卷43, 5092-5101页, 2008年.
[8]K. Wakabayashi, C. Pierre, D. A. Dikin, R. S. Ruoff, T. Ramanathan, L. C. Brinson, 和 J. M. Torkelson, "Polymer?Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization(聚合物-石墨纳米复合物:通过固态剪切研碎的有效分散和主要性质增强)," Macromolecules, 卷41, 1905-1908页, 2008年.
[9]I. H. Kim 和 Y. G. Jeong, "Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity(具有增强的热稳定性、机械模量和导电性的聚交酯/片层剥离石墨纳米复合物)," Journal of Polymer Science Part B: Polymer Physics, 卷48, 850-858页, 2010年.
[10]F. M. Uhl, Q. Yao, H. Nakajima, E. Manias, 和 C. A. Wilkie, "Expandable graphite/polyamide-6 nanocomposites(可膨胀石墨/聚酰胺-6纳米复合物)," Polymer Degradation and Stability, 卷89, 70-84页, 2005年.
[11]M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, 和 N. Koratkar, "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content(低石墨烯含量下纳米复合物的增强的机械性质)," ACS Nano, 卷3, 3884-3890页, 2009年.
[12]K. Kalaitzidou, H. Fukushima, 和 L. T. Drzal, "A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold(一种用于混合具有增强的柔性和较低的逾渗阈值的片层剥离石墨-聚丙烯纳米复合物的新方法)," Composites Science and Technology, 卷67, 2045-2051页, 2007年.
[13]D. G. Miloaga, H. A. A. Hosein, M. Misra, 和 L. T. Drzal, "Crystallization of poly(3-hydroxybutyrate) by exfoliated graphite nanoplatelets(通过片层剥离石墨纳米片的聚(3-羟基丁酸酯)结晶)," Journal of Applied Polymer Science, 卷106, 2548-2558页, 2007年.
[14]A. S. Patole, S. P. Patole, H. Kang, J.-B. Yoo, T.-H. Kim, 和 J.-H. Ahn, "A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization(通过原位微乳液聚合制造石墨烯/聚苯乙烯纳米复合物的一种简易方法)," Journal of Colloid and Interface Science, 卷350, 530-537页, 2010年.
[15]Y. C. Li 和 G. H. Chen, "HDPE/expanded graphite nanocomposites prepared via masterbatch process(通过母料过程制备的HDPE/膨胀石墨纳米复合物)," Polymer Engineering & Science, 卷47, 882-888页, 2007年.
[16]H. Hu, L. Onyebueke, 和 A. Abatan, "Characterizing and Modeling Mechanical Properties of nanocomposites - Review and Evaluation(对纳米复合物的机械性质表征和建模:综述与评价)," Journal of Minerals & Materials Characterization & Engineering, 卷9, 45页, 2010年.
[17]P. A. Beale, "Global Polyester Raw Materials Dynamics(全球聚酯原材料动态)," in The Packaging Conference, Las Vegas, 2011年.
[18]J.-H. Chang, S. J. Kim, Y. L. Joo, 和 S. Im, "Poly(ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybrid fibers(通过原位插层聚合的聚(对苯二甲酸乙二酯)纳米复合物:杂化纤维的热-机械性质和形貌)," Polymer, 卷45, . 919-926页, 2004年.
[19]A. A. K, U. S. Agarwal, 和 R. Joseph, "Carbon nanotubes-reinforced PET nanocomposite by melt-compounding(通过熔融混合的碳纳米管增强的PET纳米复合物),"Journal of Applied Polymer Science, 卷104, 3090-3095页, 2007年.
[20]H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, 和 Z.-Z. Yu, "Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding (通过熔融混合制备导电性聚对苯二甲酸乙二酯/石墨烯纳米复合物)," Polymer, 卷51, 1191-1196页, 2010年.
[21]A. B. Morgan 和 J. W. Gilman, "Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study(通过透射电子显微镜和X射线衍射表征聚合物-层状硅酸盐粘土纳米复合物:对比研究)," Journal of Applied Polymer Science, 卷87, 1329-1338页, 2003年.
[22]C. Y. Hui 和 D. Shia, "Simple formulae for the effective moduli of unidirectional aligned composites(单向排列复合物的有效模量的简单方程)," Polymer Engineering & Science, 卷38, 774-782页, 1998年.
[23]O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, 和 T. Weng, "Elastic Constants of Compression-Annealed Pyrolytic Graphite(压缩退火热解石墨的弹性常数)," Journal of Applied Physics, 卷41, 3373-3382页, 1970年.
[24]C. Y. Hui 和 D. Shia, "Simple formulae for the effective moduli of unidirectional aligned composites(单向排列复合物的有效模量的简单方程)," Polymer Engineering & Science, 卷38, 774-782页, 1998年.
[25]D. Shia, C. Y. Hui, S. D. Burnside, 和 E. P. Giannelis, "An interface model for the prediction of Young's modulus of layered silicate-elastomer nanocomposites(用于预测层状硅酸盐-弹性体纳米复合物的杨氏模量的界面模型)," Polymer Composites, 卷19, 608-617页, 1998年.
[26]H. Hua, L. Onyebueke, 和 A. Abatan, "Characterizing and Modeling Mechanical Properties of Nanocomposites-Review and Evaluation(对纳米复合物的机械性质表征和建模:综述和评价)," Journal of Minerals & Materials Characterization & Engineering, 卷9, 275-319页, 2010年.
[27]J. C. H. Affdl 和 J. L. Kardos, "The Halpin-Tsai equations: A review(Halpin-Tsai方程:综述)," Polymer Engineering & Science, 卷16, 344-352页, 1976年.
因此,本发明良好适应于实施所述目的并获得上述结果和优点以及其中固有的那些。虽然为了本公开的目的描述了现有优选实施方案,但许多变化与修改对本领域的普通技术人员将显而易见。这些变化与修改包括在如权利要求限定的本发明的精神之内。

Claims (17)

1. 一种纳米复合材料,其包含:
包括聚对苯二甲酸乙二酯(PET)的基体聚合物;和
提高所述基体聚合物强度的纳米颗粒。
2. 权利要求1的材料,其中所述纳米颗粒包含石墨烯纳米片。
3. 权利要求2的材料,其中所述石墨烯包含片层剥离纳米片。
4. 权利要求2的材料,其中所述石墨烯纳米片的平均直径为5微米。
5. 权利要求2的材料,其中所述纳米片包含约2重量%的所述纳米复合材料。
6. 权利要求2的材料,其中所述纳米片包含约5重量%的所述纳米复合材料。
7. 权利要求2的材料,其中所述纳米片包含约10重量%的所述纳米复合材料。
8. 权利要求2的材料,其中所述纳米片包含约15重量%的所述纳米复合材料。
9. 权利要求2的材料,其中所述纳米片包含约2重量%-约15重量%的所述纳米复合材料。
10. 一种生产纳米复合材料的方法,其包含:
提供聚对苯二甲酸乙二酯(PET)作为基体聚合物;
提供纳米颗粒物质;
将所述基体聚合物与所述纳米颗粒材料混合以形成母料产物;和
将所述母料产物注塑。
11. 权利要求10的方法,其中提供纳米颗粒物质进一步包含提供石墨烯。
12. 权利要求11的方法,其还包含通过片层剥离制备所述石墨烯。
13. 权利要求10的方法,其中提供纳米颗粒物质还包含在所述母料产物中提供约2重量%的所述纳米颗粒物质材料。
14. 权利要求10的方法,其中提供纳米颗粒物质还包含在所述母料产物中提供约5重量%的所述纳米颗粒物质材料。
15. 权利要求10的方法,其中提供纳米颗粒物质还包含在所述母料产物中提供约10重量%的所述纳米颗粒物质材料。
16. 权利要求10的方法,其中提供纳米颗粒物质还包含在所述母料产物中提供约15重量%的所述纳米颗粒物质材料。
17. 权利要求10的方法,其中提供纳米颗粒物质还包含在所述母料产物中提供约2重量%-约15重量%的所述纳米颗粒物质材料。
CN201280033203.XA 2011-05-03 2012-05-03 聚对苯二甲酸乙二酯-石墨烯纳米复合物 Expired - Fee Related CN103814080B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161482048P 2011-05-03 2011-05-03
US61/482048 2011-05-03
US61/482,048 2011-05-03
PCT/US2012/036376 WO2012151433A2 (en) 2011-05-03 2012-05-03 Polyethylene terephthalate-graphene nanocomposites

Publications (2)

Publication Number Publication Date
CN103814080A true CN103814080A (zh) 2014-05-21
CN103814080B CN103814080B (zh) 2016-12-07

Family

ID=47108235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280033203.XA Expired - Fee Related CN103814080B (zh) 2011-05-03 2012-05-03 聚对苯二甲酸乙二酯-石墨烯纳米复合物

Country Status (14)

Country Link
US (3) US9636855B2 (zh)
EP (2) EP3372644A1 (zh)
JP (1) JP6113148B2 (zh)
KR (3) KR101851708B1 (zh)
CN (1) CN103814080B (zh)
AU (1) AU2012250670C1 (zh)
BR (1) BR112013028400B1 (zh)
CA (1) CA2835112C (zh)
CO (1) CO6811879A2 (zh)
ES (1) ES2673289T3 (zh)
IL (1) IL229216A (zh)
MX (1) MX359481B (zh)
RU (1) RU2013153379A (zh)
WO (1) WO2012151433A2 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105504700A (zh) * 2015-10-27 2016-04-20 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯材料、制备方法和用途
CN105506771A (zh) * 2015-10-27 2016-04-20 济南圣泉集团股份有限公司 一种复合聚酯纤维、其制备方法和用途
CN105504696A (zh) * 2015-10-27 2016-04-20 济南圣泉集团股份有限公司 一种复合聚酯材料、制备方法和用途
CN105525381A (zh) * 2015-10-27 2016-04-27 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯纤维、其制备方法和用途
CN105525384A (zh) * 2016-01-22 2016-04-27 济南圣泉集团股份有限公司 一种改性中空棉的用途
CN105603568A (zh) * 2016-01-21 2016-05-25 济南圣泉集团股份有限公司 一种改性中空棉及其制备方法
CN107383395A (zh) * 2017-04-24 2017-11-24 劳富文 Pet材料的石墨烯色母料制作方法
CN107849292A (zh) * 2015-03-17 2018-03-27 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
CN108026021A (zh) * 2015-07-08 2018-05-11 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二酯
CN108350210A (zh) * 2015-07-08 2018-07-31 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
US10519268B2 (en) 2015-10-27 2019-12-31 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyurethane foam comprising graphene, processes for preparing the same use thereof
US10689501B2 (en) 2015-10-27 2020-06-23 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyester material, composite polyester fiber, processes for preparing the same and uses thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3372644A1 (en) * 2011-05-03 2018-09-12 The Board Of Regents For Oklahoma State University Polyethylene terephthalate-graphene nanocomposites
WO2014144139A1 (en) * 2013-03-15 2014-09-18 Xolve, Inc. Polymer-graphene nanocomposites
CN103224694A (zh) * 2013-04-18 2013-07-31 苏州旭光聚合物有限公司 一种导电pbt复合材料
GB2517808B (en) * 2013-07-19 2017-11-01 Gkn Hybrid Power Ltd Flywheel assembly
US10432061B2 (en) 2013-07-19 2019-10-01 Gkn Hybrid Power Limited Flywheel assembly
PT107398B (pt) * 2014-01-12 2018-06-26 Octavio Adolfo Romao Viana Filme de politereftalato de etileno e grafeno e/ou óxido de grafeno
MX2017011941A (es) * 2015-03-17 2018-06-15 Niagara Bottling Llc Tereftalato de polietileno reforzado con grafeno.
KR20180040580A (ko) * 2015-07-08 2018-04-20 나이아가라 바틀링, 엘엘씨 그래핀 보강된 폴리에틸렌 테레프탈레이트
WO2019000985A1 (zh) * 2017-06-26 2019-01-03 杭州高烯科技有限公司 石墨烯复合材料及其制备方法
EP3446725A1 (en) * 2017-08-22 2019-02-27 Cook Medical Technologies LLC Medical balloons with nanoplatelet composite materials and method of making the same
KR101974046B1 (ko) 2017-11-15 2019-08-23 울산과학기술원 탄소나노물질을 포함하는 나일론 중간재의 형성 방법
CA3099526A1 (en) * 2018-05-09 2019-11-14 Niagara Bottling, Llc Poly(ethylene terephthalate)-graphene nanocomposites from improved dispersion
PT110802A (pt) 2018-06-24 2019-12-24 Octavio Adolfo Romao Viana Processo para a obtenção de um filme de bioplástico e óxido de grafeno e/ou e grafeno.
AU2020256188A1 (en) * 2019-04-01 2021-11-04 Niagara Bottling, Llc Graphene polyethylene terephthalate composite for improving reheat energy consumption
WO2021035202A1 (en) * 2019-08-22 2021-02-25 Xg Sciences, Inc. Graphene reinforced hybrid composites
JP2023525479A (ja) * 2020-04-30 2023-06-16 ペプシコ・インク 軽量高温充填容器及びそれを作製するための方法
US20230373792A1 (en) * 2020-10-15 2023-11-23 Georgia Tech Research Corporation Chemically functionalized graphene oxide nanoparticle composites, coatings and methods of use thereof
PT117073A (pt) 2021-02-18 2022-08-18 Thorn Assets Lda Composto de couro, polímeros termoplásticos e nanocompósitos constituídos de grafeno
EP4351863A1 (en) * 2021-06-10 2024-04-17 Amcor Rigid Packaging USA, LLC Recycled polymeric container including graphene
KR102515624B1 (ko) * 2022-06-28 2023-03-30 신우산업주식회사 판상구조 흑연복합체를 포함하는 비금속 사출물 및 그의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216067A1 (en) * 2000-01-21 2007-09-20 Cyclics Corporation Macrocyclic polyester oligomers as carriers and/or flow modifier additives for thermoplastics
WO2011028924A2 (en) * 2009-09-02 2011-03-10 University Of Washington Porous thermoplastic foams as heat transfer materials

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501858B2 (en) * 2002-09-12 2013-08-06 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
US7745528B2 (en) * 2006-10-06 2010-06-29 The Trustees Of Princeton University Functional graphene-rubber nanocomposites
US20080315453A1 (en) * 2007-06-22 2008-12-25 Michael Joseph Molitor Process for the production of polyester nanocomposites
EP2240404A4 (en) 2008-02-05 2014-09-03 Univ Princeton FUNCTIONAL GRAPHIC FILMS WITH HIGH CARBON OXYGEN RATIO
JP5575669B2 (ja) * 2008-03-13 2014-08-20 ビーエーエスエフ ソシエタス・ヨーロピア 基板上に金属層を形成するための方法及び分散液、並びに金属化可能な熱可塑性成形用化合物
US9080122B2 (en) * 2009-01-06 2015-07-14 Board Of Trustees Of Michigan State University Nanoparticle graphite-based minimum quantity lubrication method and composition
EP2449003A1 (en) 2009-06-29 2012-05-09 E. I. du Pont de Nemours and Company Process for the production of polyester nanocomposites and shaped articles made thereof
JP5296622B2 (ja) * 2009-07-08 2013-09-25 帝人株式会社 導電性樹脂組成物からなる成形品
KR20110012338A (ko) 2009-07-30 2011-02-09 현대자동차주식회사 디젤 매연여과장치의 제어방법
US9327985B2 (en) 2009-12-18 2016-05-03 National University Corporation Hokkaido University Graphene oxide sheet, article containing graphene-containing substance produced by reducing the graphene oxide sheet, and process for production of the graphene oxide sheet
KR101093056B1 (ko) * 2010-05-07 2011-12-13 금오공과대학교 산학협력단 우수한 기계적 물성과 전기전도성을 갖는 폴리트리메틸렌 테레프탈레이트/그래핀 복합체 및 그 제조방법
EP3372644A1 (en) * 2011-05-03 2018-09-12 The Board Of Regents For Oklahoma State University Polyethylene terephthalate-graphene nanocomposites
US9803100B2 (en) * 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
MX2017011941A (es) * 2015-03-17 2018-06-15 Niagara Bottling Llc Tereftalato de polietileno reforzado con grafeno.
CN111253618A (zh) * 2015-03-17 2020-06-09 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
KR20180040580A (ko) * 2015-07-08 2018-04-20 나이아가라 바틀링, 엘엘씨 그래핀 보강된 폴리에틸렌 테레프탈레이트

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216067A1 (en) * 2000-01-21 2007-09-20 Cyclics Corporation Macrocyclic polyester oligomers as carriers and/or flow modifier additives for thermoplastics
WO2011028924A2 (en) * 2009-09-02 2011-03-10 University Of Washington Porous thermoplastic foams as heat transfer materials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAO-BIN ZHANG等: "Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding", 《POLYMER》, vol. 51, no. 5, 18 January 2010 (2010-01-18), pages 1191 - 1196 *
MEILU LI等: "Poly(ethylene terephthalate)/exfoliated graphite nanocomposites with improved thermal stability, mechanical and electrical properties", 《COMPOSITES: PART A》, vol. 42, no. 5, 28 January 2011 (2011-01-28), pages 560 - 566 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849292A (zh) * 2015-03-17 2018-03-27 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
CN111253618A (zh) * 2015-03-17 2020-06-09 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
CN108350210A (zh) * 2015-07-08 2018-07-31 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二醇酯
CN108026021A (zh) * 2015-07-08 2018-05-11 尼亚加拉装瓶有限责任公司 石墨烯增强的聚对苯二甲酸乙二酯
US10689501B2 (en) 2015-10-27 2020-06-23 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyester material, composite polyester fiber, processes for preparing the same and uses thereof
US10519268B2 (en) 2015-10-27 2019-12-31 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyurethane foam comprising graphene, processes for preparing the same use thereof
CN105525381B (zh) * 2015-10-27 2018-03-06 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯纤维、其制备方法和用途
CN105504700A (zh) * 2015-10-27 2016-04-20 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯材料、制备方法和用途
CN105525381A (zh) * 2015-10-27 2016-04-27 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯纤维、其制备方法和用途
CN105504696A (zh) * 2015-10-27 2016-04-20 济南圣泉集团股份有限公司 一种复合聚酯材料、制备方法和用途
CN105506771A (zh) * 2015-10-27 2016-04-20 济南圣泉集团股份有限公司 一种复合聚酯纤维、其制备方法和用途
CN105603568A (zh) * 2016-01-21 2016-05-25 济南圣泉集团股份有限公司 一种改性中空棉及其制备方法
CN105603568B (zh) * 2016-01-21 2018-05-01 济南圣泉集团股份有限公司 一种改性中空棉及其制备方法
CN105525384A (zh) * 2016-01-22 2016-04-27 济南圣泉集团股份有限公司 一种改性中空棉的用途
CN105525384B (zh) * 2016-01-22 2019-05-10 济南圣泉集团股份有限公司 一种改性中空棉的用途
CN107383395A (zh) * 2017-04-24 2017-11-24 劳富文 Pet材料的石墨烯色母料制作方法

Also Published As

Publication number Publication date
CA2835112C (en) 2020-05-05
AU2012250670A1 (en) 2013-12-19
AU2012250670B2 (en) 2016-03-17
WO2012151433A2 (en) 2012-11-08
CN103814080B (zh) 2016-12-07
US20140080962A1 (en) 2014-03-20
US20190010304A1 (en) 2019-01-10
JP2014513186A (ja) 2014-05-29
JP6113148B2 (ja) 2017-04-12
KR20190110630A (ko) 2019-09-30
MX359481B (es) 2018-09-28
EP2705091B8 (en) 2018-08-15
BR112013028400A2 (pt) 2017-01-24
EP2705091A2 (en) 2014-03-12
KR20140034802A (ko) 2014-03-20
US20170218166A1 (en) 2017-08-03
KR101851708B1 (ko) 2018-04-24
KR20180043400A (ko) 2018-04-27
US9636855B2 (en) 2017-05-02
US10087302B2 (en) 2018-10-02
EP2705091A4 (en) 2014-10-29
IL229216A0 (en) 2014-01-30
MX2013012880A (es) 2014-07-30
RU2013153379A (ru) 2015-06-10
BR112013028400B1 (pt) 2020-11-24
CO6811879A2 (es) 2013-12-16
CA2835112A1 (en) 2012-11-08
EP3372644A1 (en) 2018-09-12
IL229216A (en) 2017-01-31
ES2673289T3 (es) 2018-06-21
EP2705091B1 (en) 2018-04-25
KR102195567B1 (ko) 2020-12-28
WO2012151433A3 (en) 2013-01-17
AU2012250670C1 (en) 2016-07-21
KR102025305B1 (ko) 2019-09-25
US10808098B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
CN103814080A (zh) 聚对苯二甲酸乙二酯-石墨烯纳米复合物
Leng et al. Multifunctional polymer nanocomposites
Lee et al. Characterization of the effect of clay on morphological evaluations of PLA/biodegradable polymer blends by FT-rheology
Wang et al. Polycarbonate toughening with reduced graphene oxide: toward high toughness, strength and notch resistance
Ismail et al. The effect of halloysite nanotubes as a novel nanofiller on curing behaviour, mechanical and microstructural properties of ethylene propylene diene monomer (EPDM) nanocomposites
Wijerathne et al. Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate composites
Abdallah et al. Influence of nanoparticle pretreatment on the thermal, rheological and mechanical properties of PLA-PBSA nanocomposites incorporating cellulose nanocrystals or montmorillonite
Zuo et al. Engineering styrenic blends with poly (lactic acid)
Haider et al. Overview of various sorts of polymer nanocomposite reinforced with layered silicate
Dehnou et al. A review: Studying the effect of graphene nanoparticles on mechanical, physical and thermal properties of polylactic acid polymer
JP2010006906A (ja) 熱可塑性樹脂組成物成形体およびその製造方法
Yetkin et al. Investigation of The Mechanical and Thermal Properties of Graphene Oxide Filled Polypropylene Composites
Kashi Graphene nanoplatelet-based nanocomposites: electromagnetic interference shielding properties and rheology
KRASINSKYI et al. ANALYSIS OF THE INFLUENCE OF INTERCALATED MONTMORILLONITE ON HOMOGENIZATION OF PP/PA-6 NANOCOMPOSITE IN MELT.
Açık Poly (lactic acid) based nanocomposites: mechanical, thermal and rheological properties and morphology
Hanan STANDARD PATENT
Chakraborty Fabrication of multifunctional graphenebased polymer composite materials using different fillers
Rane et al. Structural, mechanical and morphological analysis of self assembled bionanocomposites
Demir Elastic Modulus Prediction of Polymer Nanocomposites: Production and Characterization of Cellulose Nanocrystal Reinforced Polyamide Nanocomposites
Yetgin et al. Grafen Oksit Katkılı Polipropilen Polimer Kompozitlerin Mekanik ve Termal Özelliklerin İncelenmesi
Zuo Designing Biodegradable Tertiary Polymer Blends for Enhancing Mechanical & Thermoelastic Properties
LI et al. Additive manufacturing high performance graphene-based composites
Erpek Yeniova Use of inorganic natural nanotubes and synthetic carbon nanotubes in poly (lactic acid)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161207

Termination date: 20210503

CF01 Termination of patent right due to non-payment of annual fee