CN103807568B - 一种纳米微孔绝热保温板及其制备方法 - Google Patents

一种纳米微孔绝热保温板及其制备方法 Download PDF

Info

Publication number
CN103807568B
CN103807568B CN201310713032.1A CN201310713032A CN103807568B CN 103807568 B CN103807568 B CN 103807568B CN 201310713032 A CN201310713032 A CN 201310713032A CN 103807568 B CN103807568 B CN 103807568B
Authority
CN
China
Prior art keywords
layer
heat insulating
nanometer micropore
antiradiation
preserving board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310713032.1A
Other languages
English (en)
Other versions
CN103807568A (zh
Inventor
王璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TONGXIANG ZHONGYUAN BUILDING MATERIALS CO., LTD.
Original Assignee
Weifang Naboou Chemical Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weifang Naboou Chemical Science & Technology Co Ltd filed Critical Weifang Naboou Chemical Science & Technology Co Ltd
Priority to CN201310713032.1A priority Critical patent/CN103807568B/zh
Publication of CN103807568A publication Critical patent/CN103807568A/zh
Application granted granted Critical
Publication of CN103807568B publication Critical patent/CN103807568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant

Abstract

本发明涉及一种纳米微孔绝热保温板,其结构中从冷面到热面依次为保温层、反辐射层和增强层,使用时靠近热面处的增强层具有较强的耐高温性和机械性能,而远离热面的保温层具有较好的保温、隔热性能,进一步,作为中间层的反辐射层中添加遮光剂组分,通过降低整体的消光系数来降低其辐射传热,强化了保温板的隔热保温性能,并且由于不同的遮光剂具有不同的消光系数而呈现较宽的反辐射温度区间,因此本发明所述纳米微孔绝热保温板能够在高温条件下保持较好隔热、保温性能。

Description

一种纳米微孔绝热保温板及其制备方法
技术领域
本发明涉及一种纳米微孔绝热保温板及其制备方法,属于隔热材料技术领域。
背景技术
超级绝热材料(Superinsulation)的概念是美国人HuntAJ等人在1992年的国际材料工程大会上提出的,是指在特定的使用条件下,导热系数低于“静止空气”导热系数的绝热材料。二氧化硅气凝胶材料的结构中具有大量的纳米孔隙,且85%以上的孔隙直径小于50nm,空气中的氧气、氮气分子的平均自由程约为70nm,当孔隙直径小于气体的平均自由程时,空气分子可以被视为“静止”,有效消除了气体的对流传热,同时超高气孔率又使得二氧化硅气凝胶材料的固相传热受到限制,所以二氧化硅气凝胶被认为是目前绝热性能最佳的固体材料,在隔热材料领域具有广阔的应用前景。
中国专利文献CN103195985A公开了一种具有多层复合隔热结构的输送管道,包括由内到外依次设置的内工作管、内隔热层、中间反辐射层、外隔热层、隔离层;所述内隔热层为疏水性或亲水性的气凝胶复合材料,所述外隔热层为疏水性的气凝胶复合材料,所述反辐射层为铝箔玻纤布,所述铝箔玻纤布的铝箔面与内隔热层贴合,所述铝箔玻纤布的玻纤面与外隔热层贴合,所述隔离层为热压成型的防水带粘性铝箔布或钢管。上述隔热结构是位于输送管道的夹层中,通过将钢管或热压成型的防水带粘结性铝箔布作为基材,进而依次在其上面附着外隔热层、中间反辐射层、内隔热层,并将气凝胶复合材料同时用于内、外隔热层中以起到保温、隔热的作用,然而,当上述输送管道长时间处于高温环境中,由于气凝胶复合材料长期使用温度不应高于800℃,温度过高,会导致材料的热收缩率变大,隔热保温性能急剧下降,从而将最终影响整个输送管道系统的保温性和安全性。
发明内容
本发明所要解决的技术问题是现有技术中的多层复合隔热结构采用气凝胶复合材料分别作为内隔热层和外隔热层,并不能实现高温条件下长期、有效的保温和隔热,从而提供一种高温条件下具有较好隔热、保温性能的纳米微孔绝热保温板及其制备方法。
为解决上述技术问题,本发明是通过以下技术方案实现的:
本发明提供一种纳米微孔绝热保温板,其从冷面到热面依次为保温层、反辐射层和增强层,所述保温层的物料组分为气相二氧化硅和耐高温超细纤维;所述反辐射层的物料组分为碳化硅、二氧化钛、炭黑、三氧化二铝、铝粉中的一种或几种的混合物;所述增强层的物料组分为三氧化二铝、氧化锆、硅酸钙、无机粘土中的一种或几种的混合物。
所述保温层、反辐射层和增强层的厚度比为2:1:1-30:1:1。
所述反辐射层的厚度为0.5mm-2mm。
所述耐高温超细纤维包括玻璃纤维、陶瓷纤维、氧化铝纤维、碳纤维中的一种或几种的混合物。
所述反辐射层的物料组分为纳米级粉体。
还设置有外覆合层,所述外覆合层对所述保温层、反辐射层和增强层的外表面形成包覆。
所述外覆合层为热收缩膜、铝箔、铝箔玻纤布、电子布、陶瓷纤维布、纤维纸中的一种或几种的组合。
进一步,提供一种制备所述的纳米微孔绝热保温板的方法,其包括如下步骤:
(1)称取所述增强层的物料组分注入模具,并使其平铺于模具底部作为底层;
(2)称取所述反辐射层的物料组分注入模具,并使其在步骤(1)所述底层的上面均匀铺开形成中间层;
(3)称取所述保温层的物料组分注入模具,并使其在步骤(2)所述中间层的上面均匀铺开;
(4)对模具中的三层物料进行缓慢加压,加压速度150-500mm/min,至8-10MPa,并保压2-5s;
(5)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
本发明设置所述纳米微孔绝热保温板从冷面到热面依次为保温层、反辐射层和增强层,其中所述“冷面”是指纳米微孔绝热保温板在使用时,远离保温对象、温度最低的一侧;“热面”是指纳米微孔绝热保温板在使用时紧贴保温对象的一侧。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明所述的纳米微孔绝热保温板,包括从冷面到热面依次设置的保温层、反辐射层和增强层;本发明通过分别在保温层添加气相二氧化硅组分和在反辐射层中添加遮光剂组分,使得所述纳米微孔绝热保温板内部的对流传热和辐射传热得以同时降低,数据表明,本发明所述纳米微孔绝热保温板的导热系数低于0.018,较之现有技术中的保温板降低了17%左右,进一步,还通过包括增强层有效提高所述绝热保温板的耐火度和表面机械强度,使其能够长时间应用于高温环境,较之现有技术中的多层复合隔热结构采用气凝胶复合材料分别作为内隔热层和外隔热层,并不能实现高温条件下长期、有效的保温和隔热,本发明所述纳米微绝热保温板通过在结构中从冷面到热面依次设置为保温层、反辐射层和增强层,并且在温度最高的热面增强层中加入耐高温组分,从而将产品的耐火度提高到1300℃,长期使用温度达到1000℃;同时通过在反辐射层加入消光系数不同的遮光剂,能够实现不同温度范围内都具有较好的遮光作用,使得产品的具有更高的热稳定性;使用时靠近热面处的增强层具有较强的耐高温性和机械性能,而远离热面的保温层具有较好的保温、隔热性能,进一步,作为中间层的反辐射层通过降低整体的消光系数来降低其辐射传热,强化了保温板的隔热保温性能,因此本发明所述纳米微孔绝热保温板能够在高温条件下保持较好隔热、保温性能。
(2)本发明所述的纳米微孔绝热保温板,其中所述保温层、反辐射层和增强层的厚度比为2:1:1-30:1:1,从而使其具有良好隔热、保温性能的同时还具有较高的耐火度和机械性能。
(3)本发明所述的纳米微孔绝热保温板,其中所述反辐射层的厚度为0.5-2mm,这是由于反辐射层过厚,会导致产品整体机械性能及耐火度下降,过薄又会导致产品对热的稳定性差问题。
(4)本发明所述的纳米微孔绝热保温板,其中所述反辐射层的物料组分为纳米级粉体,理由在于纳米级的遮光剂粉体本身热导率较低、反辐射作用强,并且在保温板的制备过程中,反辐射层中的纳米粉体更易于与上下层物料组分融为一体,系统稳定性更强。
(5)本发明所述的纳米微孔绝热保温板的制备方法,其通过外力加压而实现所述纳米微孔绝热板的成型,在成型过程中通过调节压力参数来控制产品的密度、强度、孔隙率等参数并实现优化选择,使得最终制备得到的所述纳米微孔绝热保温板在长期的使用过程中保持恒定的热稳定性,具有更稳定、优异的保温隔热、耐温等性能。
附图说明
为了使本发明的内容更容易被清楚的理解,下面结合附图,对本发明作进一步详细的说明,其中,
图1是本发明所述纳米微孔绝热保温板的结构示意图。
图中附图标记表示为:1-保温层,2-反辐射层,3-增强层,4-外覆合层。
具体实施方式
实施例1
本实施例提供一种纳米微孔绝热保温板,其结构如图1所示,从冷面到热面(图中由上至下)依次为保温层、反辐射层和增强层,所述保温层、反辐射层和增强层的厚度分别为3mm、1.5mm、1.5mm;其中所述保温层的物料组分为550g的气相二氧化硅和30g玻璃纤维;所述反辐射层的物料组分为30g纳米碳化硅、15g纳米二氧化钛;所述增强层的物料组分为30g三氧化二铝、6g氧化锆;
其采用如下方法制备:
(1)称取所述增强层的物料组分注入模具,并使其平铺于模具底部作为底层;
(2)称取所述保温层的物料组分注入模具,并使其在步骤(1)所述底层的上面均匀铺开形成中间层;
(3)称取所述反辐射层的物料组分注入模具,并使其在步骤(2)所述中间层的上面均匀铺开;
(4)对模具中的三层物料进行缓慢加压,加压速度150mm/min,至8MPa,并保压3s;
(5)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
实施例2
本实施例提供一种纳米微孔绝热保温板,其从冷面到热面依次为保温层、反辐射层和增强层,所述保温层、反辐射层和增强层的厚度分别为15mm、0.5mm、0.5mm;其中所述保温层的物料组分为2400g的气相二氧化硅和150g陶瓷纤维;所述反辐射层的物料组分为100g纳米碳化硅和30g纳米二氧化钛;所述增强层的物料组分为100g三氧化二铝和50g无机粘土;
其采用如下方法制备:
(1)称取所述增强层的物料组分注入模具,并使其平铺于模具底部作为底层;
(2)称取所述保温层的物料组分注入模具,并使其在步骤(1)所述底层的上面均匀铺开形成中间层;
(3)称取所述反辐射层的物料组分注入模具,并使其在步骤(2)所述中间层的上面均匀铺开;
(4)对模具中的三层物料进行缓慢加压,加压速度300mm/min,至9.5MPa,并保压2s;
(5)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
实施例3
本实施例提供一种纳米微孔绝热保温板,其从冷面到热面依次为保温层、反辐射层和增强层,所述保温层、反辐射层和增强层的厚度分别为4mm、2mm、2mm;其中所述保温层的物料组分为650g的气相二氧化硅、20g玻璃纤维、10g陶瓷纤维、10g氧化铝纤维、5g碳纤维;所述反辐射层的物料组分为60g纳米碳化硅;所述增强层的物料组分为60g三氧化二铝;
其采用如下方法制备:
(1)称取所述增强层的物料组分注入模具,并使其平铺于模具底部作为底层;
(2)称取所述保温层的物料组分注入模具,并使其在步骤(1)所述底层的上面均匀铺开形成中间层;
(3)称取所述反辐射层的物料组分注入模具,并使其在步骤(2)所述中间层的上面均匀铺开;
(4)对模具中的三层物料进行缓慢加压,加压速度400mm/min,至10MPa,并保压4s;
(5)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
实施例4
本实施例提供一种纳米微孔绝热保温板,其从冷面到热面依次为保温层、反辐射层和增强层,所述保温层、反辐射层和增强层的厚度分别为50mm、2mm、2mm;其中所述保温层的物料组分为8000g的气相二氧化硅和500g陶瓷纤维;所述反辐射层的物料组分为300g纳米碳化硅和150g纳米二氧化钛;所述增强层的物料组分为200g三氧化二铝和200g无机粘土;
其采用如下方法制备:
(1)称取所述增强层的物料组分注入模具,并使其平铺于模具底部作为底层;
(2)称取所述保温层的物料组分注入模具,并使其在步骤(1)所述底层的上面均匀铺开形成中间层;
(3)称取所述反辐射层的物料组分注入模具,并使其在步骤(2)所述中间层的上面均匀铺开;
(4)对模具中的三层物料进行缓慢加压,加压速度500mm/min,至10MPa,并保压5s;
(5)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
进一步,如图1所示,将实施例1-4所述的纳米微孔绝热保温板采用外覆合层4进行包装形成复合保温板,有利于改善产品的机械强度,防止板材中粉末、纤维的散落,便于运输、安装,其中所述外覆合层为热收缩膜、铝箔、铝箔玻纤布、电子布、陶瓷纤维布、纤维纸中的一种或几种组合。
对比例1
本实施例提供一种保温板,其采用如下方法制备:
(1)分别取2400g的气相二氧化硅、150g的陶瓷纤维、100g纳米碳化硅、30g纳米二氧化钛、100g三氧化二铝和50g无机粘土,将以上物料充分混合均匀并注入模具,使其平铺于模具底部;
(2)对模具中的物料进行缓慢加压,加压速度300mm/min,至9.5MPa,并保压2s;
(3)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
对比例2
本对比例采用现有技术方法制备得到的一种多层复合隔热结构,其包括由内到外依次设置内隔热层、中间反辐射层、外隔热层、隔离层;所述内隔热层为疏水性或亲水性的气凝胶复合材料,所述外隔热层为疏水性的气凝胶复合材料,所述反辐射层为铝箔玻纤布,所述铝箔玻纤布的铝箔面与内隔热层贴合,所述铝箔玻纤布的玻纤面与外隔热层贴合,所述隔离层为热压成型的防水带粘性铝箔布。
实验例
将本发明实施例1-4制备得到的所述纳米微孔绝热保温板样品依次编号为A-D,对比例1-2制备得到保温板样品编号为E、F,分别按照以下三种实验方法进行检测:GB/T5486-2008加热永久线变化的测试(800℃,维持24小时),GB/T10294-2008,热导率测试(测试温度为800℃),GB/T7322-2008,耐火度测试。
其中,GB/T5988-2007的操作具体如下:
(1)分别制备规格尺寸为160mm×40mm×40mm的样品,各三组,将样品在电热干燥箱中于110±5℃烘干至恒量,将样品取出置于实验炉中;
(2)按照要求以5℃/分的速率将实验炉中温度提升到800℃,并维持恒定24小时;用三支热电偶测量记录炉膛样区的温度,且温度差不大于±10℃;
(3)实验结束后,自然冷却至室温,通过实验前后样品尺寸变化,计算样品的加热线永久线变化%。
GB/T7322-2008的操作具体如下:
将装有实验锥和标准测量锥的锥台置于实验炉均温带,在1.5-2小时内,将炉温升至比估计样品的耐火度低200℃的温度,再按平均2.5℃/分匀速升温,在任何时刻与规定的升温曲线的偏差小于10℃,直至试验结束。当任意实验锥弯倒至其尖端接触锥台时,应立即观察标准测量锥的弯曲程度,直至最后一个实验锥弯倒至其接触锥台时,即停止试验。从炉中取出锥台,并记录每个实验锥与标准测量锥的弯倒情况,以观察实验锥与标准测量锥的尖端同时接触锥台的标准温锥的锥号标识实验锥的耐火度。
GB/T10294-2008的操作具体如下:
(1)制备规格为200×200×20mm的标准样品,数量各3组,放置在烘箱内,维持110±5℃,至恒重;
(2)将样品取出放于干燥器内,冷却至室温,测量样品的厚度,精确至0.1mm;
(3)分别将样品放置于导热系数已校准的测定仪内,设定仪器温度,并维持检测温度30分钟,显示值即为产品在该温度下的热导率。
测量所得数据如下表1所示:
表1-不同样品的性能测试结果
样品 加热永久线变化% 热导率w/(m·K) 耐火度℃
A -0.45 0.045 1250
B -0.5 0.040 1300
C -0.2 0.048 1300
D -0.2 0.046 1300
E -2 0.055 1050
F -2.5 0.064 1050
表中数据显示,本发明所述纳米微孔绝热保温板(样品A-D)在800℃维持24小时后其加热永久线变化低于0.5%,热导率小于0.048w/(m·K)、耐火度高达1250℃以上,从而呈现较好的隔热保温性能,而对比例1、2中制备得到的保温板样品E、F在相同检测条件下,其加热永久线变化较大、热导率大、耐火度低,从而保温隔热性能较差。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

1.一种纳米微孔绝热保温板,其特征在于,包括从冷面到热面依次设置的保温层、反辐射层和增强层,所述保温层的物料组分为气相二氧化硅和耐高温超细纤维;所述反辐射层的物料组分为碳化硅、二氧化钛、炭黑、三氧化二铝、铝粉中的一种或几种的混合物;所述增强层的物料组分为三氧化二铝、氧化锆、硅酸钙、无机粘土中的一种或几种的混合物;
所述纳米微孔绝热保温板的制备方法,包括如下步骤:
(1)称取所述增强层的物料组分注入模具,并使其平铺于模具底部作为底层;
(2)称取所述反辐射层的物料组分注入模具,并使其在步骤(1)所述底层的上面均匀铺开形成中间层;
(3)称取所述保温层的物料组分注入模具,并使其在步骤(2)所述中间层的上面均匀铺开;
(4)对模具中的三层物料进行缓慢加压,加压速度150-500mm/min,至8-10MPa,并保压2-5s;
(5)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
2.根据权利要求1所述的纳米微孔绝热保温板,其特征在于,所述保温层、反辐射层和增强层的厚度比为2:1:1-30:1:1。
3.根据权利要求1或2所述的纳米微孔绝热保温板,其特征在于,所述反辐射层的厚度为0.5mm-2mm。
4.根据权利要求3所述的纳米微孔绝热保温板,其特征在于,所述耐高温超细纤维包括玻璃纤维、陶瓷纤维、氧化铝纤维、碳纤维中的一种或几种的混合物。
5.根据权利要求1或2或4所述的纳米微孔绝热保温板,其特征在于,所述反辐射层的物料组分为纳米级粉体。
6.根据权利要求5所述的纳米微孔绝热保温板,其特征在于,还设置有外覆合层,所述外覆合层对所述保温层、反辐射层和增强层的外表面形成包覆。
7.根据权利要求6所述的纳米微孔绝热保温板,其特征在于,所述外覆合层为热收缩膜、铝箔、铝箔玻纤布、电子布、陶瓷纤维布、纤维纸中的一种或几种的组合。
8.一种制备权利要求1-7任一所述纳米微孔绝热保温板的方法,其包括如下步骤:
(1)称取所述增强层的物料组分注入模具,并使其平铺于模具底部作为底层;
(2)称取所述反辐射层的物料组分注入模具,并使其在步骤(1)所述底层的上面均匀铺开形成中间层;
(3)称取所述保温层的物料组分注入模具,并使其在步骤(2)所述中间层的上面均匀铺开;
(4)对模具中的三层物料进行缓慢加压,加压速度150-500mm/min,至8-10MPa,并保压2-5s;
(5)脱模后,得到的板材经烘干处理,即得所述的纳米微孔绝热保温板。
CN201310713032.1A 2013-12-20 2013-12-20 一种纳米微孔绝热保温板及其制备方法 Active CN103807568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310713032.1A CN103807568B (zh) 2013-12-20 2013-12-20 一种纳米微孔绝热保温板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310713032.1A CN103807568B (zh) 2013-12-20 2013-12-20 一种纳米微孔绝热保温板及其制备方法

Publications (2)

Publication Number Publication Date
CN103807568A CN103807568A (zh) 2014-05-21
CN103807568B true CN103807568B (zh) 2015-12-02

Family

ID=50704741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310713032.1A Active CN103807568B (zh) 2013-12-20 2013-12-20 一种纳米微孔绝热保温板及其制备方法

Country Status (1)

Country Link
CN (1) CN103807568B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108724850A (zh) * 2017-04-18 2018-11-02 威赫热能技术(上海)有限公司 一种纳米微孔隔热环保组合保温装置
CN107780608A (zh) * 2017-10-13 2018-03-09 高海燕 一种建筑外墙用多功能一体式装置
CN109334141B (zh) * 2018-09-12 2023-11-10 中山波利马塑胶科技有限公司 一种保温箱的板材结构及其制备方法
WO2020087516A1 (zh) * 2018-11-02 2020-05-07 惠州市吉瑞科技有限公司深圳分公司 一种加热可抽吸材料的加热器及其加热不燃烧发烟设备
CN109797469A (zh) * 2019-02-19 2019-05-24 南京中奥航天应用技术研究院(有限合伙) 宇航服用提高免疫防辐射增强型碳纤维及其面料编织结构
CN110173053B (zh) * 2019-05-16 2020-07-28 英索来欣(苏州)新材料科技有限公司 一种低热导宽温域长寿命真空绝热材料
CN110805788B (zh) * 2019-12-03 2022-03-15 中发创新(北京)节能技术有限公司 一种高温环境中平面设备保温用的梯度结构绝热材料
CN111285662B (zh) * 2020-03-16 2021-12-28 南通福美新材料有限公司 一种高隔热纳米微孔绝热板的制备方法
CN117517335B (zh) * 2023-12-27 2024-03-29 国网辽宁省电力有限公司电力科学研究院 变电设备绝缘子污秽监测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911254B2 (en) * 2000-11-14 2005-06-28 Solutia, Inc. Infrared absorbing compositions and laminates
CN101245888A (zh) * 2008-03-20 2008-08-20 绍兴纳诺气凝胶新材料研发中心有限公司 一种高强度真空绝热板
CN103032653A (zh) * 2011-10-10 2013-04-10 福建赛特新材股份有限公司 一种真空绝热板用复合芯材、其制备方法及真空绝热板
CN202914905U (zh) * 2012-11-20 2013-05-01 江苏德威节能有限公司 一种采用三层保温结构的蒸汽输送管道
CN203099219U (zh) * 2012-11-06 2013-07-31 常州循天节能科技有限公司 一种管道的保温结构件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822381B2 (ja) * 2001-08-03 2011-11-24 株式会社翠光トップライン 放射熱遮断断熱板及びそれを用いた断熱方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911254B2 (en) * 2000-11-14 2005-06-28 Solutia, Inc. Infrared absorbing compositions and laminates
CN101245888A (zh) * 2008-03-20 2008-08-20 绍兴纳诺气凝胶新材料研发中心有限公司 一种高强度真空绝热板
CN103032653A (zh) * 2011-10-10 2013-04-10 福建赛特新材股份有限公司 一种真空绝热板用复合芯材、其制备方法及真空绝热板
CN203099219U (zh) * 2012-11-06 2013-07-31 常州循天节能科技有限公司 一种管道的保温结构件
CN202914905U (zh) * 2012-11-20 2013-05-01 江苏德威节能有限公司 一种采用三层保温结构的蒸汽输送管道

Also Published As

Publication number Publication date
CN103807568A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
CN103807568B (zh) 一种纳米微孔绝热保温板及其制备方法
CN103802438B (zh) 一种制备纳米孔绝热毡的方法
CN108940139A (zh) 一种蜂窝基材增强气凝胶复合材料、制品及制备方法
Xu et al. Characterization and engineering application of a novel ceramic composite insulation material
CN103613400B (zh) 一种碳纤维增强碳-碳化硅双元陶瓷基梯度复合材料的制备方法
CN102701700A (zh) 一种SiO2气凝胶/无机棉复合保温隔热毡及制备方法
Wang et al. Effect of glass phase content on structure and properties of gradient MoSi2–BaO–Al2O3–SiO2 coating for porous fibrous insulations
CN107954745A (zh) 耐腐蚀微孔莫来石轻质耐火砖及其制备方法
CN107954742A (zh) 微孔轻质耐火砖及其制备方法
CN106626581A (zh) 一种改进耐高温夹层结构隔热材料的应变性能的方法及由该方法制得的材料
Manocha et al. Oxidation behaviour of carbon/carbon composites impregnated with silica and silicon oxycarbide
JP6607839B2 (ja) 断熱材
Hu et al. Preparation of needled nonwoven enhanced silica aerogel for thermal insulation
CN107954700A (zh) 耐腐蚀刚玉耐火砖及其制备方法
CN107473761A (zh) 一种防隔热、承载一体化炭气凝胶/陶瓷层状复合材料及其制备方法和应用
CN107954741A (zh) 微孔莫来石轻质耐火砖及其制备方法
CN203381268U (zh) 一种防火隔热涂层玻璃纤维布
CN107954740A (zh) 耐腐蚀微孔高铝矾土轻质耐火砖及其制备方法
Shen et al. Mullite fiber sealing pad with favorable high-temperature rebound resilience fabricated through colloidal processing
CN112297532A (zh) 一种仿生层状隔热材料
CN102173161B (zh) 工业隔热卷材及其制备方法
CN107954746A (zh) 微孔焦宝石轻质耐火砖及其制备方法
CN204020120U (zh) 一种覆盖有铝膜的石英纤维保温材料
CN102432319A (zh) 适用于高温冶金容器的纳米超级绝热板及其制造方法
CN105669221A (zh) 一种含膨胀玻化微珠的复合耐火砖

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191025

Address after: 314500 Zhejiang Wuzhen City, Jiaxing, Tongxiang Wuzhen Town Industrial Park

Patentee after: TONGXIANG ZHONGYUAN BUILDING MATERIALS CO., LTD.

Address before: 261071, room 1, building 8418, No. 1207 Dongfeng East Street, Kuiwei District, Shandong, Weifang

Patentee before: WEIFANG NABOOU CHEMICAL SCIENCE & TECHNOLOGY CO., LTD.

TR01 Transfer of patent right