CN103776469A - Field programmable gate array (FPGA)-based temperature control and temperature compensation circuit device for silicon microgyroscope - Google Patents
Field programmable gate array (FPGA)-based temperature control and temperature compensation circuit device for silicon microgyroscope Download PDFInfo
- Publication number
- CN103776469A CN103776469A CN201410065841.0A CN201410065841A CN103776469A CN 103776469 A CN103776469 A CN 103776469A CN 201410065841 A CN201410065841 A CN 201410065841A CN 103776469 A CN103776469 A CN 103776469A
- Authority
- CN
- China
- Prior art keywords
- module
- temperature
- control
- circuit
- temperature compensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 25
- 239000010703 silicon Substances 0.000 title claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 60
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000005070 sampling Methods 0.000 claims description 20
- 230000003321 amplification Effects 0.000 claims description 16
- 238000001914 filtration Methods 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 230000003750 conditioning effect Effects 0.000 claims description 15
- 238000012937 correction Methods 0.000 claims description 11
- 230000010355 oscillation Effects 0.000 claims description 8
- 238000002955 isolation Methods 0.000 claims description 3
- 238000011896 sensitive detection Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
一种基于FPGA的硅微陀螺仪温控温补电路装置,包括集成了微型加热器和温度传感器的微陀螺、接口电路和FPGA处理电路,通过相互连接形成温控回路、驱动控制回路和检测控制回路,利用了微陀螺内部集成的温度传感器和微型加热器实现硅微陀螺仪芯片级温控温补,具有灵敏度高、重复性好、惯性小、温度信息可信度高、功耗小、控制精度高等优点;基于FPGA的数字温控温补平台,减少了模拟电路本身温度漂移的影响,同时数字化平台参数调整灵活,功能强大,可以灵活实现各种复杂的温控温补算法,有利于系统性能优化。
An FPGA-based silicon microgyroscope temperature control and temperature compensation circuit device, including a microgyroscope integrated with a micro heater and a temperature sensor, an interface circuit and an FPGA processing circuit, forming a temperature control loop, a drive control loop, and a detection control circuit through interconnection The circuit uses the temperature sensor and micro heater integrated in the micro gyroscope to realize the chip level temperature control and temperature compensation of the silicon micro gyroscope, which has high sensitivity, good repeatability, small inertia, high reliability of temperature information, low power consumption, and control High precision and other advantages; the FPGA-based digital temperature control and temperature compensation platform reduces the influence of the temperature drift of the analog circuit itself. At the same time, the parameters of the digital platform are flexible and powerful. Performance optimization.
Description
技术领域technical field
本发明涉及硅微陀螺仪温控领域,具体涉及一种基于FPGA的硅微陀螺仪温控温补电路装置。The invention relates to the field of silicon micro gyroscope temperature control, in particular to an FPGA-based silicon micro gyroscope temperature control and temperature compensation circuit device.
背景技术Background technique
硅微陀螺仪采用微机械加工技术和半导体集成电路制造工艺,器件体积小、功耗低、可靠性高,易于数字化和智能化,在军事和民用领域获得了广泛应用。硅微陀螺仪使用环境复杂,其性能易受环境温度变化影响。随着硅微陀螺仪精度的不断提高,其温度误差已经显得越来越突出。因此,校正硅微陀螺仪的温度误差对于提高硅微陀螺仪性能有着很重要的意义。Silicon micro gyroscope adopts micromachining technology and semiconductor integrated circuit manufacturing process. The device is small in size, low in power consumption, high in reliability, easy to digitize and intelligentize, and has been widely used in military and civilian fields. Silicon micro gyroscopes are used in complex environments, and their performance is easily affected by changes in ambient temperature. With the continuous improvement of silicon micro gyroscope precision, its temperature error has become more and more prominent. Therefore, correcting the temperature error of the silicon microgyroscope is of great significance for improving the performance of the silicon microgyroscope.
现有针对硅微陀螺仪温度误差的补偿和校正方法较多,目前常用的有三种:第一种是通过改进硅微陀螺仪的结构来消除或抑制温度误差,但其结构和工艺复杂,成本较高,仅能消除少部分温度误差。第二种方法是通过硬件电路或软件算法进行温度误差补偿,但是布置在微陀螺周围的温度传感器仅能近似反应微陀螺周围温度特性,温度误差较大,直接影响补偿效果。第三种方法是采用一定的硬件措施尽量使MEMS陀螺仪的工作环境温度恒定,如热屏蔽、温控等,常规温控一般将整个陀螺仪作为温控对象,升温速度慢,功耗大,惯性大,温控精度有限,温度均匀性差,且一般温控器件与MEMS工艺不兼容,不利于微陀螺小型化和集成化。There are many compensation and correction methods for the temperature error of the silicon micro gyroscope. At present, there are three commonly used methods: the first one is to eliminate or suppress the temperature error by improving the structure of the silicon micro gyroscope, but its structure and process are complex and costly. Higher, only a small part of the temperature error can be eliminated. The second method is to perform temperature error compensation through hardware circuits or software algorithms, but the temperature sensor arranged around the micro-gyroscope can only approximately reflect the temperature characteristics around the micro-gyroscope, and the large temperature error will directly affect the compensation effect. The third method is to use certain hardware measures to keep the temperature of the working environment of the MEMS gyroscope as constant as possible, such as heat shielding, temperature control, etc. Conventional temperature control generally uses the entire gyroscope as the temperature control object, with slow heating speed and high power consumption. Large inertia, limited temperature control accuracy, poor temperature uniformity, and general temperature control devices are not compatible with MEMS technology, which is not conducive to the miniaturization and integration of micro gyroscopes.
以上三种常规温度误差补偿和校正方法都有自身的缺陷,很难达到较好的效果。针对这一问题进行研究,成为了现有技术的发展方向。The above three conventional temperature error compensation and correction methods have their own defects, and it is difficult to achieve better results. Research on this problem has become the development direction of the prior art.
发明内容Contents of the invention
发明目的:为了克服现有技术的不足,本发明提供一种基于FPGA的硅微陀螺仪温控温补电路装置,该装置在现有集成了微型加热器和温度传感器的微陀螺基础上,采用FPGA平台来实现硅微陀螺仪的芯片级温控温补电路,解决了现有技术的问题。Purpose of the invention: In order to overcome the deficiencies in the prior art, the present invention provides a silicon micro-gyroscope temperature control and temperature compensation circuit device based on FPGA, which adopts The FPGA platform is used to realize the chip-level temperature control and temperature compensation circuit of the silicon microgyroscope, which solves the problems of the prior art.
技术方案:一种基于FPGA的硅微陀螺仪温控温补电路装置,包括集成了微型加热器和温度传感器的微陀螺、一组A/D采样电路、一组驱动接口电路、一组接口放大电路和一组D/A转换电路;Technical solution: An FPGA-based silicon microgyroscope temperature control and temperature compensation circuit device, including a microgyroscope integrated with a micro heater and a temperature sensor, a set of A/D sampling circuits, a set of drive interface circuits, and a set of interface amplifiers circuit and a set of D/A conversion circuits;
所述微陀螺包括检测谐振器、驱动谐振器、驱动检测电极、驱动电极和敏感电极;设置有两个输入端和三个输出端;其中,驱动谐振器与驱动电极构成驱动电容,驱动谐振器与驱动检测电极构成驱动检测电容,检测谐振器与敏感电极构成敏感电容;The micro-gyroscope includes a detection resonator, a drive resonator, a drive detection electrode, a drive electrode and a sensitive electrode; two input terminals and three output terminals are provided; wherein the drive resonator and the drive electrode constitute a drive capacitor, and the drive resonator The drive detection capacitor and the drive detection electrode are formed, and the detection resonator and the sensitive electrode form a sensitive capacitance;
其特征在于,包括FPGA处理电路,该电路包括三个输入端和三个输出端;微陀螺的三个输出端分别是温度传感器、检测谐振器和驱动谐振器的输出端,这三个输出端分别通过接口放大电路之后,经过A/D采样电路接入FPGA处理电路的三个输入端;It is characterized in that it includes an FPGA processing circuit, and the circuit includes three input terminals and three output terminals; the three output terminals of the micro-gyroscope are respectively the output terminals of the temperature sensor, the detection resonator and the driving resonator, and the three output terminals After respectively passing through the interface amplification circuit, the three input terminals of the FPGA processing circuit are connected through the A/D sampling circuit;
FPGA处理电路包括滤波模块、比较模块、PI控制模块、标度因数温补模块、幅度控制模块、频率控制模块、调制控制模块、检测信号调理模块和零偏温度补偿模块;The FPGA processing circuit includes a filter module, a comparison module, a PI control module, a scale factor temperature compensation module, an amplitude control module, a frequency control module, a modulation control module, a detection signal conditioning module and a zero bias temperature compensation module;
微陀螺和FPGA处理电路的连接分别构成三组回路:温控回路、驱动控制回路和检测控制回路;The connection of micro-gyroscope and FPGA processing circuit constitutes three groups of loops: temperature control loop, drive control loop and detection control loop;
温控回路为温度传感器用于测量温度信息,温度信号经过放大和A/D采样后接入滤波模块,滤波模块实现温度信号的滤波,滤波模块的输出端与比较模块的输入端连接实现设定温度与测量温度的比较,比较模块的输出端与PI控制模块的输入端连接实现校正控制,PI控制模块的输出端经D/A转换和驱动接口电路接入微型加热器的输入端,微型加热器实现加热;同时,滤波模块的输出端分别与标度因数温补模块和零偏温度补偿模块的输入端连接,为该两个模块提供温度信息;The temperature control circuit is a temperature sensor used to measure temperature information. The temperature signal is amplified and A/D sampled and then connected to the filter module. The filter module realizes the filtering of the temperature signal. The output terminal of the filter module is connected to the input terminal of the comparison module to realize the setting The comparison between the temperature and the measured temperature, the output terminal of the comparison module is connected with the input terminal of the PI control module to realize the correction control, the output terminal of the PI control module is connected to the input terminal of the micro heater through the D/A conversion and the drive interface circuit, and the micro heater At the same time, the output terminals of the filter module are respectively connected to the input terminals of the scale factor temperature compensation module and the zero bias temperature compensation module to provide temperature information for the two modules;
驱动控制回路为驱动检测电容信号通过驱动检测电极与接口放大电路和A/D采样电路连接之后输入FPGA处理电路,分为两路,一路接入频率控制模块后,进入频率控制模块,实现频率控制和相位跟踪;另一路进入标度因数温补模块,实现标度因数补偿控制;标度因数温补模块输出端和频率控制模块的一个输出端接入幅度控制模块,实现幅度检测和控制;幅度控制模块的输出端接入调制控制模块,频率控制模块的另一个输出端也接入调制控制模块,实现幅度调制控制;调制控制模块的输出端经D/A转换和驱动接口电路与驱动谐振器驱动电极连接,实现闭环驱动控制;The drive control loop is to drive the detection capacitance signal to the FPGA processing circuit after being connected to the interface amplifier circuit and the A/D sampling circuit through the drive detection electrode, which is divided into two circuits. and phase tracking; the other channel enters the scale factor temperature compensation module to realize scale factor compensation control; the output terminal of the scale factor temperature compensation module and one output terminal of the frequency control module are connected to the amplitude control module to realize amplitude detection and control; The output end of the control module is connected to the modulation control module, and the other output end of the frequency control module is also connected to the modulation control module to realize amplitude modulation control; the output end of the modulation control module is converted by D/A and drives the interface circuit and the drive resonator Drive electrode connection to realize closed-loop drive control;
检测控制回路为敏感检测电容信号通过敏感电极经过放大和A/D采样后接入检测信号调理模块,同时频率控制模块的一个输出端也接入检测信号调理模块,实现检测信号放大、解调和滤波;检测信号调理模块的输出端和滤波模块的输出端分别与零偏温度补偿模块的两个输入端连接,实现零偏温度补偿;零偏温度补偿模块的输出端与输出信号端口Vout连接实现信号输出;The detection control loop is that the sensitive detection capacitance signal is connected to the detection signal conditioning module after being amplified and A/D sampled through the sensitive electrode. At the same time, one output terminal of the frequency control module is also connected to the detection signal conditioning module to realize the detection signal amplification, demodulation and Filtering; the output terminal of the detection signal conditioning module and the output terminal of the filtering module are respectively connected to the two input terminals of the zero bias temperature compensation module to realize zero bias temperature compensation; the output terminal of the zero bias temperature compensation module is connected to the output signal port Vout to realize signal output;
在驱动控制回路中,所述标度因数温补模块为受到温度信息控制的可变增益放大器;当温度信息的温度系数为正系数时,标度因数温补模块将采取负系数进行补偿;当所述温度系数为负系数时,标度因数温补模块将采取正系数进行补偿;In the drive control loop, the scaling factor temperature compensation module is a variable gain amplifier controlled by temperature information; when the temperature coefficient of the temperature information is a positive coefficient, the scaling factor temperature compensation module will take a negative coefficient for compensation; when When the temperature coefficient is a negative coefficient, the scaling factor temperature compensation module will take a positive coefficient for compensation;
在检测控制回路中,所述零偏温度补偿模块为加法电路;当所述温度系数为正系数时,零偏温度补偿模块的零偏温度系数为正系数,零偏温度补偿模块采取负系数进行补偿;当所述温度系数为负系数时,零偏温度补偿模块的零偏温度系数为负系数,零偏温度补偿模块采取正系数进行补偿。In the detection control loop, the zero-bias temperature compensation module is an addition circuit; when the temperature coefficient is a positive coefficient, the zero-bias temperature compensation module has a positive coefficient, and the zero-bias temperature compensation module adopts a negative coefficient to perform Compensation; when the temperature coefficient is a negative coefficient, the zero bias temperature coefficient of the zero bias temperature compensation module is a negative coefficient, and the zero bias temperature compensation module adopts a positive coefficient for compensation.
述频率控制模块包括延时调整模块、幅度饱和器、解调器、滤波器、PI控制器和压控振荡模块;The frequency control module includes a delay adjustment module, an amplitude saturator, a demodulator, a filter, a PI controller and a voltage-controlled oscillation module;
延时调制模块的输入端作为频率控制模块的输入端,接收驱动检测电容信号经过放大和A/D采样后的信号,延时调制模块实现相位调整;延时调制模块输出端接入幅度饱和器,实现幅度信息隔离,将交流信号的频率和相位信息接入解调器,同时压控震荡模块的一个输出端也接入解调器,实现相位解调;解调器的输出端与滤波器的输入端连接,实现相位信息滤波;滤波器的输出端与PI控制器的输入端连接,实现相位校正控制;PI控制器的输出端与压控振荡模块的输入端连接,实现输出交流信号的频率和相位调整;压控振荡模块两个输出端作为频率控制模块的输出端分别输入幅度控制模块和调制控制模块。The input terminal of the delay modulation module is used as the input terminal of the frequency control module to receive the amplified and A/D sampled signal of the drive detection capacitance signal, and the delay modulation module realizes phase adjustment; the output terminal of the delay modulation module is connected to the amplitude saturator , to achieve amplitude information isolation, and connect the frequency and phase information of the AC signal to the demodulator, and at the same time, an output terminal of the voltage-controlled oscillator module is also connected to the demodulator to realize phase demodulation; the output terminal of the demodulator is connected to the filter The input terminal of the PI controller is connected to realize phase information filtering; the output terminal of the filter is connected to the input terminal of the PI controller to realize phase correction control; the output terminal of the PI controller is connected to the input terminal of the voltage-controlled oscillation module to realize the output AC signal Frequency and phase adjustment; the two output ends of the voltage-controlled oscillation module are used as the output ends of the frequency control module to input the amplitude control module and the modulation control module respectively.
压控振荡模块两个输出端的输出信号相位差90o。The phase difference of the output signals at the two output terminals of the voltage-controlled oscillation module is 90o.
温度传感器包括采用恒流源的敏感接口电路。采用恒流源的温度传感器敏感接口电路,线性度好,电路结构简单,消除了多余电阻温度系数影响;输出直接,便于后续对接口部分电阻残余温度系数进行校正和补偿。The temperature sensor includes a sensitive interface circuit using a constant current source. The temperature sensor sensitive interface circuit using a constant current source has good linearity and a simple circuit structure, which eliminates the influence of the redundant temperature coefficient of resistance; the output is direct, which is convenient for subsequent correction and compensation of the residual temperature coefficient of the interface part.
有益效果:Beneficial effect:
1、利用微陀螺内部集成的温度传感器和微型加热器实现硅微陀螺仪芯片级温控温补灵敏度高、重复性好、惯性小、温度信息可信度高、功耗小、控制精度高;1. Using the temperature sensor and micro heater integrated inside the micro gyroscope to realize the chip level temperature control and temperature compensation of the silicon micro gyroscope has high sensitivity, good repeatability, small inertia, high reliability of temperature information, low power consumption, and high control accuracy;
2、基于FPGA的数字温控温补平台,减少了模拟电路本身温度漂移的影响,同时数字化平台参数调整灵活,功能强大,可以灵活实现各种复杂的温控温补算法,有利于系统性能优化;2. The FPGA-based digital temperature control and temperature compensation platform reduces the influence of the temperature drift of the analog circuit itself. At the same time, the parameters of the digital platform are flexible and powerful. It can flexibly implement various complex temperature control and temperature compensation algorithms, which is conducive to system performance optimization. ;
3、在驱动控制回路里,通过温度控制的可变增益补偿模块实现驱动速度恒定控制,来完成标度因数补偿,具有补偿直接,线性度小,同时可以部分消除由于驱动速度温度漂移导致零偏温度漂移;3. In the drive control loop, the temperature-controlled variable gain compensation module realizes the constant control of the drive speed to complete the scale factor compensation. It has direct compensation and small linearity. At the same time, it can partially eliminate the zero deviation caused by the temperature drift of the drive speed. temperature drift;
4、采用恒流源的温度传感器敏感接口电路,线性度好,电路结构简单,消除了多余电阻温度系数影响;输出直接,便于后续对接口部分电阻残余温度系数进行校正和补偿。4. The temperature sensor sensitive interface circuit with constant current source has good linearity and simple circuit structure, which eliminates the influence of redundant resistance temperature coefficient; the output is direct, which is convenient for subsequent correction and compensation of the residual temperature coefficient of the interface part resistance.
附图说明Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图2为驱动控制回路结构示意图Figure 2 is a schematic diagram of the structure of the drive control loop
图3为检测控制回路结构示意图Figure 3 is a schematic diagram of the detection control loop structure
图4为集成微型加热器驱动接口电路示意图Figure 4 is a schematic diagram of the integrated micro heater drive interface circuit
图5为集成温度传感器敏感接口放大电路示意图Figure 5 is a schematic diagram of the amplifying circuit of the sensitive interface of the integrated temperature sensor
具体实施方式Detailed ways
下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.
如图1所示,结合图1,一种基于FPGA的硅微陀螺1仪温控温补电路装置,包括集成了微型加热器和温度传感器的微陀螺1、一组A/D采样电路、一组驱动接口电路、一组接口放大电路和一组D/A转换电路;利用微陀螺内部集成的温度传感器和微型加热器实现硅微陀螺仪芯片级温控温补,具有灵敏度高、重复性好、惯性小、温度信息可信度高、功耗小、控制精度高等优点;同时基于FPGA的数字温控温补平台,减少了模拟电路本身温度漂移的影响,同时数字化平台参数调整灵活,功能强大,可以灵活实现各种复杂的温控温补算法,有利于系统性能优化。As shown in Figure 1, combined with Figure 1, an FPGA-based silicon micro-gyroscope temperature control and temperature compensation circuit device includes a micro-gyroscope integrated with a micro-heater and a temperature sensor, a set of A/D sampling circuits, a A set of drive interface circuits, a set of interface amplifier circuits and a set of D/A conversion circuits; use the temperature sensor and micro heater integrated inside the micro gyroscope to realize the chip-level temperature control and temperature compensation of the silicon micro gyroscope, with high sensitivity and good repeatability , small inertia, high reliability of temperature information, low power consumption, high control precision and other advantages; at the same time, the FPGA-based digital temperature control and temperature compensation platform reduces the influence of the temperature drift of the analog circuit itself, and at the same time, the parameters of the digital platform can be adjusted flexibly and powerful. , can flexibly implement various complex temperature control and temperature compensation algorithms, which is conducive to system performance optimization.
微陀螺1包括检测谐振器、驱动谐振器、微型加热器、温度传感器、驱动检测电极C、驱动电极D和敏感电极S;设置有两个输入端和三个输出端;其中,驱动谐振器与驱动电极D构成驱动电容,驱动谐振器与驱动检测电极C构成驱动检测电容,检测谐振器与敏感电极S构成敏感电容。Micro-gyroscope 1 comprises detection resonator, driving resonator, micro-heater, temperature sensor, driving detection electrode C, driving electrode D and sensitive electrode S; It is provided with two input ends and three output ends; Wherein, driving resonator and The driving electrode D constitutes a driving capacitance, the driving resonator and the driving detection electrode C constitute a driving detection capacitance, and the detection resonator and the sensitive electrode S constitute a sensitive capacitance.
用于控制的是FPGA处理电路2,该电路包括三个输入端和三个输出端;微陀螺1的三个输出端分别是温度传感器、检测谐振器和驱动谐振器的输出端,这三个输出端分别通过接口放大电路之后,经过A/D采样电路接入FPGA处理电路2的三个输入端;The
FPGA处理电路2包括滤波模块、比较模块、PI控制模块、标度因数温补模块、幅度控制模块、频率控制模块、调制控制模块、检测信号调理模块和零偏温度补偿模块;The
微陀螺1和FPGA处理电路2的连接分别构成三组回路:温控回路、驱动控制回路和检测控制回路;The connection of the
在芯片级的温控回路里,集成温度传感器与温度接口放大电路的输入端连接用于测量温度信息,温度接口放大电路的输出端与A/D采样电路的输入端连接实现模数转换,A/D采样电路的输出端与温度信号滤波模块的输入端连接实现温度信号的滤波,温度信号滤波模块的输出端与比较模块的输入端连接实现设定温度与测量温度的比较,同时温度信号滤波模块的输出端分别与标度因数温补模块和零偏温度补偿模块的输入端连接为标度因数和零偏补偿提供温度信息,比较模块的输出端与PI控制模块的输入端连接实现校正控制,PI控制模块的输出端与D/A转换模块的输入端连接实现数模转换,D/A转换模块的输出端与温度驱动接口电路的输入端连接,温度驱动接口电路的输出端与集成微型加热器连接实现加热。其中温度信号滤波模块、比较模块和PI控制模块在FPGA处理电路2内通过硬件电路描述语言编程实现。In the chip-level temperature control loop, the integrated temperature sensor is connected to the input end of the temperature interface amplifier circuit to measure temperature information, and the output end of the temperature interface amplifier circuit is connected to the input end of the A/D sampling circuit to realize analog-to-digital conversion. A The output terminal of the /D sampling circuit is connected to the input terminal of the temperature signal filter module to realize the filtering of the temperature signal, and the output terminal of the temperature signal filter module is connected to the input terminal of the comparison module to realize the comparison between the set temperature and the measured temperature, and the temperature signal is filtered The output terminal of the module is respectively connected with the input terminal of the scale factor temperature compensation module and the zero bias temperature compensation module to provide temperature information for the scale factor and zero bias compensation, and the output terminal of the comparison module is connected with the input terminal of the PI control module to realize correction control , the output of the PI control module is connected to the input of the D/A conversion module to realize digital-to-analog conversion, the output of the D/A conversion module is connected to the input of the temperature-driven interface circuit, and the output of the temperature-driven interface circuit is connected to the integrated micro Heater connection for heating. The temperature signal filter module, the comparison module and the PI control module are implemented in the
在驱动控制回路里,驱动检测电容信号通过驱动检测电极C与驱动接口放大电路的输入端连接实现驱动检测信号放大,驱动接口放大电路的输出端与A/D采样电路的输入端连接实现模数转换,A/D采样电路的输出端和温度信号滤波模块的输出端分别与标度因数温补模块的两个输入端连接实现标度因数补偿控制,A/D采样电路的输出端同时与频率控制模块的输入端连接实现频率控制和相位跟踪,标度因数温补模块的输出端和频率控制模块的输出端B分别与幅度控制模块的两个输入端连接实现幅度检测和控制,同时相位控制模块的输出端A与检测信号调理模块的一个输入端连接,相位控制模块的输出端A与幅度控制模块的输出端分别与调制控制模块的两个输入端连接实现幅度调制控制,调制控制模块的输出端与D/A转换电路的输入端连接实现数模转换,D/A转换电路的输出端与驱动接口电路的输入端连接,驱动接口电路的输出端与驱动电极D连接实现闭环驱动控制。其中,标度因数温补模块、幅度控制模块、频率控制模块和调制控制模块在FPGA处理电路2内通过硬件电路描述语言编程实现。In the drive control loop, the drive detection capacitance signal is connected to the input end of the drive interface amplifier circuit through the drive detection electrode C to realize the drive detection signal amplification, and the output end of the drive interface amplifier circuit is connected to the input end of the A/D sampling circuit to realize the modulus Conversion, the output end of the A/D sampling circuit and the output end of the temperature signal filter module are respectively connected to the two input ends of the scale factor temperature compensation module to realize the scale factor compensation control, and the output end of the A/D sampling circuit is simultaneously connected with the frequency The input terminal of the control module is connected to realize frequency control and phase tracking, the output terminal of the scale factor temperature compensation module and the output terminal B of the frequency control module are respectively connected to the two input terminals of the amplitude control module to realize amplitude detection and control, and at the same time phase control The output terminal A of the module is connected to an input terminal of the detection signal conditioning module, the output terminal A of the phase control module and the output terminal of the amplitude control module are respectively connected to the two input terminals of the modulation control module to realize the amplitude modulation control, and the modulation control module The output end is connected to the input end of the D/A conversion circuit to realize digital-to-analog conversion, the output end of the D/A conversion circuit is connected to the input end of the drive interface circuit, and the output end of the drive interface circuit is connected to the drive electrode D to realize closed-loop drive control. Among them, the scale factor temperature compensation module, the amplitude control module, the frequency control module and the modulation control module are implemented in the
在检测控制回路里,敏感检测电容信号通过敏感电极S与敏感接口放大电路的输入端连接实现敏感信号放大,敏感接口放大电路的输出端与A/D采样电路的输入端连接实现模数转换,A/D采样电路的输出端和频率控制模块的输出端A分别与检测信号调理模块的两个输入端连接实现检测信号放大、解调和滤波,检测信号调理模块的输出端和温度信号滤波模块的输出端分别与零偏温度补偿模块的两个输入端连接实现零偏温度补偿,零偏温度补偿模块的输出端与输出信号端口Vout连接实现信号输出。其中检测信号调理模块和零偏温度补偿模块在FPGA处理电路2内通过硬件电路描述语言编程实现。In the detection control loop, the sensitive detection capacitance signal is connected to the input end of the sensitive interface amplifying circuit through the sensitive electrode S to realize sensitive signal amplification, and the output end of the sensitive interface amplifying circuit is connected to the input end of the A/D sampling circuit to realize analog-to-digital conversion. The output terminal of the A/D sampling circuit and the output terminal A of the frequency control module are respectively connected with the two input terminals of the detection signal conditioning module to realize detection signal amplification, demodulation and filtering, and the output terminal of the detection signal conditioning module and the temperature signal filtering module The output terminals of the zero-bias temperature compensation module are respectively connected to the two input terminals of the zero-bias temperature compensation module to realize the zero-bias temperature compensation, and the output terminals of the zero-bias temperature compensation module are connected to the output signal port Vout to realize signal output. The detection signal conditioning module and the zero-bias temperature compensation module are implemented in the
结合图2,在标度因数补偿电路里,A/D采样电路的输出端和温度信息T分别与标度因数温补模块的两个输入端连接实现标度因数补偿控制,A/D采样电路的输出端同时与频率控制模块的输入端连接实现频率控制和相位跟踪。其中频率控制模块包括延时调整模块,幅度饱和器,解调器,滤波器,PI控制器和压控振荡器DCO模块,压控振荡器DCO模块的两个输出端A和B相位相差90o。A/D采样电路的输出端与延时调整模块的输入端连接实现相位调整,延时调整模块的输出端与幅度饱和器的输入端连接实现幅度信息隔离,只保留交流信号的频率和相位信息,幅度饱和器的输出端和压控振荡器DCO模块的输出端分别与解调器的两个输入端连接实现相位解调,解调器的输出端与滤波器的输入端连接实现相位信息滤波,滤波器的输出端与PI控制器的输入端连接实现相位校正控制,PI控制器的输出端与压控振荡器DCO模块的输入端连接实现输出交流信号的频率和相位调整。标度因数温补模块的输出端与幅度控制模块的输入端连接实现幅度控制,其中幅度控制模块包括幅度解调模块、滤波电路和幅度PI控制。标度因数温补模块的输出端与幅度解调模块的输入端连接实现幅度信息提取,标度因数温度补偿模块的输出端与压控振荡器DCO模块的输出端B分别与幅度解调模块的两个输入端连接实现幅度信息提取,幅度解调模块的输出端与滤波电路的输入端连接信息滤波,滤波电路的输出端与幅度PI控制的输入端连接实现幅度控制,幅度PI控制的输出端与压控振荡器DCO模块的输出端A分别与调制控制模块的两个输入端连接实现幅度调制。Combined with Figure 2, in the scale factor compensation circuit, the output terminal of the A/D sampling circuit and the temperature information T are respectively connected to the two input terminals of the scale factor temperature compensation module to realize the scale factor compensation control, and the A/D sampling circuit The output terminal of the frequency control module is connected with the input terminal of the frequency control module to realize frequency control and phase tracking. The frequency control module includes a delay adjustment module, an amplitude saturator, a demodulator, a filter, a PI controller and a voltage-controlled oscillator DCO module, and the phase difference between the two output terminals A and B of the voltage-controlled oscillator DCO module is 90°. The output terminal of the A/D sampling circuit is connected to the input terminal of the delay adjustment module to realize phase adjustment, and the output terminal of the delay adjustment module is connected to the input terminal of the amplitude saturator to realize amplitude information isolation, and only the frequency and phase information of the AC signal are retained , the output of the amplitude saturator and the output of the voltage-controlled oscillator DCO module are respectively connected to the two input terminals of the demodulator to realize phase demodulation, and the output terminal of the demodulator is connected to the input terminal of the filter to realize phase information filtering , the output terminal of the filter is connected with the input terminal of the PI controller to realize the phase correction control, and the output terminal of the PI controller is connected with the input terminal of the voltage-controlled oscillator DCO module to realize the frequency and phase adjustment of the output AC signal. The output terminal of the scale factor temperature compensation module is connected with the input terminal of the amplitude control module to realize amplitude control, wherein the amplitude control module includes an amplitude demodulation module, a filter circuit and an amplitude PI control. The output terminal of the scale factor temperature compensation module is connected with the input terminal of the amplitude demodulation module to realize amplitude information extraction, the output terminal of the scale factor temperature compensation module and the output terminal B of the voltage controlled oscillator DCO module are respectively connected with the amplitude demodulation module The two input terminals are connected to realize amplitude information extraction, the output terminal of the amplitude demodulation module is connected to the input terminal of the filter circuit for information filtering, the output terminal of the filter circuit is connected to the input terminal of the amplitude PI control to realize amplitude control, and the output terminal of the amplitude PI control The output terminal A of the voltage-controlled oscillator DCO module is respectively connected with the two input terminals of the modulation control module to realize amplitude modulation.
标度因数随温度变化主要原因是由于结构或电路的温度系数导致硅微陀螺1仪的驱动速度发生变化。在驱动控制回路里,频率和相位控制模块与幅度控制模块分别控制硅微陀螺1的驱动频率和驱动幅度,因此,可以在幅度控制回路里对结构和电路的温度系数补偿。由于幅度控制模块将幅度解调模块的输入电压控制在某一恒定值,标度因数温补模块为受温度信息T控制的可变增益放大器。当结构和电路的温度系数为正系数时,标度因数的温度系数为负系数,标度因数温补模块将采取负系数进行补偿,同样当结构和电路的温度系数为负系数时,标度因数的温度系数为正系数,标度因数温补模块将采取正系数进行补偿。The main reason for the change of scale factor with temperature is that the driving speed of the silicon microgyroscope changes due to the temperature coefficient of the structure or circuit. In the driving control loop, the frequency and phase control module and the amplitude control module respectively control the driving frequency and driving amplitude of the
结合图3,在零偏补偿电路,A/D采样电路的输出端与检测信号调理模块的输入端连接实现检测信号放大、解调和滤波,检测信号调理模块包括信号放大电路敏感信号解调模块和滤波器,A/D采样电路的输出端与信号放大电路的输入端连接实现信号放大,信号放大电路的输出端和压控振荡器DCO模块的输出端Vref分别与敏感信号解调模块的两个输入端连接实现敏感信号解调,敏感信号解调模块的输出端与滤波器的输入端相连实现解调后信号滤波,滤波器的输出端和温度信号滤波模块的输出端T分别与零偏温度补偿模块的两个输入端连接实现零偏温度补偿,零偏温度补偿模块的输出端与输出信号端口Vout连接实现信号输出。Combined with Figure 3, in the zero offset compensation circuit, the output of the A/D sampling circuit is connected to the input of the detection signal conditioning module to realize detection signal amplification, demodulation and filtering. The detection signal conditioning module includes a signal amplification circuit sensitive signal demodulation module and filter, the output end of the A/D sampling circuit is connected to the input end of the signal amplification circuit to realize signal amplification, the output end of the signal amplification circuit and the output end Vref of the voltage-controlled oscillator DCO module are respectively connected to the two sensitive signal demodulation modules The output terminal of the sensitive signal demodulation module is connected with the input terminal of the filter to realize the signal filtering after demodulation, and the output terminal of the filter and the output terminal T of the temperature signal filtering module are respectively connected to the zero bias Two input terminals of the temperature compensation module are connected to realize zero-bias temperature compensation, and an output terminal of the zero-bias temperature compensation module is connected to an output signal port Vout to realize signal output.
零偏随温度变化主要原因是由于结构或电路的温度系数导致硅微陀螺1仪的敏感共模误差发生变化。在检测控制回路里,输出信号Vout直接反应零偏温度变化,零偏温度补偿是一个加法电路,温度信号T和滤波器输出的零偏信号分别输入加法电路实现加减运算,当结构和电路的温度系数为正系数时,零偏的温度系数为正系数,零偏温补模块将采取负系数进行补偿,同样当结构和电路的温度系数为负系数时,零偏的温度系数为负系数,零偏温补模块将采取正系数进行补偿。The main reason for the change of zero bias with temperature is that the sensitive common mode error of the silicon microgyroscope changes due to the temperature coefficient of the structure or circuit. In the detection control loop, the output signal Vout directly reflects the temperature change of the zero bias. The zero bias temperature compensation is an addition circuit. The temperature signal T and the zero bias signal output by the filter are respectively input into the addition circuit to realize addition and subtraction. When the structure and circuit When the temperature coefficient is a positive coefficient, the temperature coefficient of the zero bias is a positive coefficient, and the zero bias temperature compensation module will take a negative coefficient for compensation. Similarly, when the temperature coefficient of the structure and circuit is a negative coefficient, the temperature coefficient of the zero bias is a negative coefficient. The zero bias temperature compensation module will take a positive coefficient for compensation.
结合图4,集成微型加热驱动接口电路主要将D/A输出信号转换成集成加热器需要的控制电压,D/A的输出与电阻R4的一端连接,电阻R4另一端接运算放大器U2的反向端,U2的同向端接地,电阻R5跨接在运算放大器U2的反向端和输出端,运算放大器U2主要实现输入电压Input的符号转换;电阻R1一端接+5V偏置电压,另一端接运算放大器U1的反向端,电阻R2一端接地,另一端接运算放大器U1的同向端,电阻R3跨接在接运算放大器U1的同向端和输出端,运算放大器U1主要产生偏置电压用于补偿运算放大器U3输入端的直流偏置;R6一端接U1的输出端,另一端接运算放大器U3的反向端,R7一端接U2的输出端,另一端接运算放大器U3的反向端,电阻R8跨接在运算放大器U3的反向端和输出端,集成微型加热电阻R9一端接地,一端接运算放大器U3的输出端,运算放大器U3主要是实现信号合成,产生合适的信号驱动集成微型加热电阻R9。Combined with Figure 4, the integrated micro heating drive interface circuit mainly converts the D/A output signal into the control voltage required by the integrated heater. The output of the D/A is connected to one end of the resistor R4, and the other end of the resistor R4 is connected to the reverse of the operational amplifier U2. terminal, the same end of U2 is grounded, and resistor R5 is connected across the inverting end and output end of the operational amplifier U2. The operational amplifier U2 mainly realizes the sign conversion of the input voltage Input; The inverting end of the operational amplifier U1, one end of the resistor R2 is grounded, the other end is connected to the same-inverting end of the operational amplifier U1, and the resistor R3 is connected across the same-inverting end and the output end of the operational amplifier U1. The operational amplifier U1 is mainly used for bias voltage generation. To compensate the DC bias of the input terminal of the operational amplifier U3; one end of R6 is connected to the output terminal of U1, the other end is connected to the reverse terminal of the operational amplifier U3, one terminal of R7 is connected to the output terminal of U2, and the other end is connected to the negative terminal of the operational amplifier U3. R8 is connected across the reverse terminal and output terminal of the operational amplifier U3, one end of the integrated micro heating resistor R9 is grounded, and the other end is connected to the output terminal of the operational amplifier U3. The operational amplifier U3 mainly realizes signal synthesis and generates a suitable signal to drive the integrated micro heating resistor. R9.
结合图5,集成温度传感器敏感接口电路采用恒流源,优点是线性度好,电路结构简单,消除了多余电阻温度系数影响;输出直接,便于后续对接口部分电阻残余温度系数进行校正和补偿。集成温度传感器敏感接口电路主要实现温度传感器的信号提取和放大,恒流源I1的一端接地,另一端接仪表放大器U4的正向输入端,为集成温度传感器R13转换成电压信号提供恒定的电流,集成温度传感器R13一端接仪表放大器U4的正向输入端,另一端接地,恒流源I2的一端接地,另一端接仪表放大器U4的反向输入端,电阻R12一端接仪表放大器U4的反向输入端,另一端与电阻R14一端连接,电阻R14的另一端接地,电阻R15跨接在仪表放大器U4的3脚和4脚实现增益调整。电阻R12和R14串联支路是电阻R13的差动补偿支路,主要用来消除仪表放大器的共模输出。Combined with Figure 5, the integrated temperature sensor sensitive interface circuit adopts a constant current source, which has the advantages of good linearity, simple circuit structure, and eliminates the influence of redundant temperature coefficient of resistance; the output is direct, which is convenient for subsequent correction and compensation of the residual temperature coefficient of the interface part. The integrated temperature sensor sensitive interface circuit mainly realizes the signal extraction and amplification of the temperature sensor. One end of the constant current source I1 is grounded, and the other end is connected to the positive input end of the instrumentation amplifier U4 to provide a constant current for the integrated temperature sensor R13 to convert into a voltage signal. One end of the integrated temperature sensor R13 is connected to the positive input end of the instrumentation amplifier U4, the other end is grounded, one end of the constant current source I2 is grounded, the other end is connected to the reverse input end of the instrumentation amplifier U4, and one end of the resistor R12 is connected to the reverse input end of the instrumentation amplifier U4 The other end is connected to one end of the resistor R14, the other end of the resistor R14 is grounded, and the resistor R15 is connected across
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410065841.0A CN103776469B (en) | 2014-02-26 | 2014-02-26 | A kind of silicon micro-gyroscope temperature control temperature compensation circuit arrangement based on FPGA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410065841.0A CN103776469B (en) | 2014-02-26 | 2014-02-26 | A kind of silicon micro-gyroscope temperature control temperature compensation circuit arrangement based on FPGA |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103776469A true CN103776469A (en) | 2014-05-07 |
CN103776469B CN103776469B (en) | 2016-08-03 |
Family
ID=50568991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410065841.0A Expired - Fee Related CN103776469B (en) | 2014-02-26 | 2014-02-26 | A kind of silicon micro-gyroscope temperature control temperature compensation circuit arrangement based on FPGA |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103776469B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104282643A (en) * | 2014-09-28 | 2015-01-14 | 武汉飞恩微电子有限公司 | Microsensor temperature control system based on TEC |
CN104678126A (en) * | 2015-02-04 | 2015-06-03 | 浙江大学 | Phase-shift temperature compensation method based on parasitic resistance for micro-mechanical capacitive accelerometer |
CN104764559A (en) * | 2015-03-20 | 2015-07-08 | 西北工业大学 | Closed-loop control circuit of silicon resonant pressure sensor and realization method thereof |
CN105091883A (en) * | 2015-08-14 | 2015-11-25 | 宋长峰 | MEMS-integrated IMU temperature compensation improving method |
CN105258689A (en) * | 2015-10-19 | 2016-01-20 | 北京航天控制仪器研究所 | Signal control processing system of digital gyroscope |
CN105424979A (en) * | 2015-11-23 | 2016-03-23 | 东南大学 | Closed-loop driving control and frequency detection circuit for single-chip double-shaft microfabircated resonant accelerometer |
CN105892293A (en) * | 2016-04-06 | 2016-08-24 | 苏州大学 | Silicon micro-machined gyroscope digital driving closed loop control system |
CN106160688A (en) * | 2016-07-18 | 2016-11-23 | 华南理工大学 | A kind of automatic gain control circuit based on photoconductive resistance |
CN109211275A (en) * | 2018-10-22 | 2019-01-15 | 中国兵器工业集团第二四研究所苏州研发中心 | A kind of zero bias temperature compensation method of gyroscope |
CN110631570A (en) * | 2019-10-17 | 2019-12-31 | 东南大学 | A system and method for improving temperature stability of silicon microgyroscope scale factor |
CN111412907A (en) * | 2019-12-30 | 2020-07-14 | 南京理工大学 | Full-angle measurement and control circuit system of micro-electromechanical multi-ring gyroscope |
CN112504300A (en) * | 2020-12-28 | 2021-03-16 | 瑞声声学科技(深圳)有限公司 | Method and system for measuring bandwidth of micromechanical gyroscope |
CN112833921A (en) * | 2020-12-31 | 2021-05-25 | 广州导远电子科技有限公司 | A single-axis gyroscope circuit |
CN114509058A (en) * | 2021-12-29 | 2022-05-17 | 北京航天自动控制研究所 | Optical gyroscope starting section zero temperature error compensation method and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201173781Y (en) * | 2007-11-14 | 2008-12-31 | 贾世聪 | Gyroscopes signal processing circuits |
CN101738204A (en) * | 2009-12-31 | 2010-06-16 | 上海亨通光电科技有限公司 | Temperature compensation method for optical fiber gyroscope |
JP2010223885A (en) * | 2009-03-25 | 2010-10-07 | Rohm Co Ltd | Temperature compensation circuit and acceleration or angular velocity sensor |
CN102519617A (en) * | 2012-01-09 | 2012-06-27 | 北京理工大学 | Digitalized detection method for temperature information of micromechanical quartz gyroscope sensitive device |
CN103256941A (en) * | 2013-04-19 | 2013-08-21 | 中国兵器工业集团第二一四研究所苏州研发中心 | Practical method of high order temperature compensation for MEMS (Micro Electro Mechanical Systems) gyroscope |
-
2014
- 2014-02-26 CN CN201410065841.0A patent/CN103776469B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201173781Y (en) * | 2007-11-14 | 2008-12-31 | 贾世聪 | Gyroscopes signal processing circuits |
JP2010223885A (en) * | 2009-03-25 | 2010-10-07 | Rohm Co Ltd | Temperature compensation circuit and acceleration or angular velocity sensor |
CN101738204A (en) * | 2009-12-31 | 2010-06-16 | 上海亨通光电科技有限公司 | Temperature compensation method for optical fiber gyroscope |
CN102519617A (en) * | 2012-01-09 | 2012-06-27 | 北京理工大学 | Digitalized detection method for temperature information of micromechanical quartz gyroscope sensitive device |
CN103256941A (en) * | 2013-04-19 | 2013-08-21 | 中国兵器工业集团第二一四研究所苏州研发中心 | Practical method of high order temperature compensation for MEMS (Micro Electro Mechanical Systems) gyroscope |
Non-Patent Citations (3)
Title |
---|
曹慧亮等: "MEMS陀螺仪芯片级温控系统的设计", 《东南大学学报(自然科学版)》, vol. 43, no. 1, 31 January 2013 (2013-01-31) * |
王玉良等: "基于FPGA的硅微陀螺仪零偏温度补偿系统的研究", 《计算机与数字工程》, vol. 37, no. 6, 31 December 2009 (2009-12-31) * |
程龙等: "硅微机械振动陀螺零偏温度补偿研究", 《传感技术学报》, vol. 21, no. 3, 31 March 2008 (2008-03-31) * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104282643A (en) * | 2014-09-28 | 2015-01-14 | 武汉飞恩微电子有限公司 | Microsensor temperature control system based on TEC |
CN104282643B (en) * | 2014-09-28 | 2017-01-11 | 武汉飞恩微电子有限公司 | Microsensor temperature control system based on TEC |
CN104678126A (en) * | 2015-02-04 | 2015-06-03 | 浙江大学 | Phase-shift temperature compensation method based on parasitic resistance for micro-mechanical capacitive accelerometer |
CN104678126B (en) * | 2015-02-04 | 2018-12-07 | 浙江大学 | Capacitance type micromechanical accelerometer phase shift temperature-compensation method based on dead resistance |
CN104764559A (en) * | 2015-03-20 | 2015-07-08 | 西北工业大学 | Closed-loop control circuit of silicon resonant pressure sensor and realization method thereof |
CN104764559B (en) * | 2015-03-20 | 2017-04-26 | 西北工业大学 | Closed-loop control circuit of silicon resonant pressure sensor and realization method thereof |
CN105091883A (en) * | 2015-08-14 | 2015-11-25 | 宋长峰 | MEMS-integrated IMU temperature compensation improving method |
CN105258689A (en) * | 2015-10-19 | 2016-01-20 | 北京航天控制仪器研究所 | Signal control processing system of digital gyroscope |
CN105424979A (en) * | 2015-11-23 | 2016-03-23 | 东南大学 | Closed-loop driving control and frequency detection circuit for single-chip double-shaft microfabircated resonant accelerometer |
CN105424979B (en) * | 2015-11-23 | 2018-09-18 | 东南大学 | A kind of control of single-chip twin shaft integrated silicone micro-resonance type accelerometer close-loop driven and frequency detection circuit |
CN105892293B (en) * | 2016-04-06 | 2018-07-24 | 苏州大学 | A kind of silicon micro-gyroscope digital driving closed-loop control system |
CN105892293A (en) * | 2016-04-06 | 2016-08-24 | 苏州大学 | Silicon micro-machined gyroscope digital driving closed loop control system |
CN106160688A (en) * | 2016-07-18 | 2016-11-23 | 华南理工大学 | A kind of automatic gain control circuit based on photoconductive resistance |
CN109211275A (en) * | 2018-10-22 | 2019-01-15 | 中国兵器工业集团第二四研究所苏州研发中心 | A kind of zero bias temperature compensation method of gyroscope |
CN110631570A (en) * | 2019-10-17 | 2019-12-31 | 东南大学 | A system and method for improving temperature stability of silicon microgyroscope scale factor |
CN110631570B (en) * | 2019-10-17 | 2021-03-26 | 东南大学 | System and method for improving temperature stability of silicon micro gyroscope scale factor |
CN111412907A (en) * | 2019-12-30 | 2020-07-14 | 南京理工大学 | Full-angle measurement and control circuit system of micro-electromechanical multi-ring gyroscope |
CN111412907B (en) * | 2019-12-30 | 2022-10-14 | 南京理工大学 | A full-angle measurement and control circuit system of a microelectromechanical multi-ring gyroscope |
CN112504300A (en) * | 2020-12-28 | 2021-03-16 | 瑞声声学科技(深圳)有限公司 | Method and system for measuring bandwidth of micromechanical gyroscope |
CN112833921A (en) * | 2020-12-31 | 2021-05-25 | 广州导远电子科技有限公司 | A single-axis gyroscope circuit |
CN114509058A (en) * | 2021-12-29 | 2022-05-17 | 北京航天自动控制研究所 | Optical gyroscope starting section zero temperature error compensation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN103776469B (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103776469B (en) | A kind of silicon micro-gyroscope temperature control temperature compensation circuit arrangement based on FPGA | |
CN102072737B (en) | High accuracy capacitive readout circuit with temperature compensation | |
CN107085124B (en) | A kind of fully differential dynamic balance mode MEMS acceleration transducer signals processing circuit | |
CN104049109B (en) | A MEMS acceleration sensor servo readout circuit | |
CN105892293B (en) | A kind of silicon micro-gyroscope digital driving closed-loop control system | |
CN103399201B (en) | Universal detection chip system for weak signals of sensor | |
CN108270408B (en) | Low-noise linear Hall sensor reading circuit and working method thereof | |
CN103178828B (en) | High-order sigma-delta closed-loop accelerometer interface circuit capable of self-checking harmonic distortion | |
CN104101368B (en) | Test using capacitance sensor reading circuit based on fully differential switching capacity principle | |
CN101281220A (en) | Capacitance detection circuit and its capacitive sensor interface circuit chip | |
CN104931077B (en) | Circuit for reducing residual offset of integrated hall sensor | |
CN103441764B (en) | A kind of power frequency change-over circuit | |
CN102297688A (en) | Full-differential capacitance reading circuit for crosswise sampling secondary charge summation | |
CN111220139B (en) | Micro-electro-mechanical multi-ring gyro force balance mode measurement and control circuit system | |
CN104201992B (en) | Dual-loop compensation orthogonal signal source phase noise restraining circuit based on lock-in amplifier | |
CN107449414A (en) | Closed-loop phase-locked driving circuit of MEMS gyroscope | |
CN207218667U (en) | A satellite navigation time correction device | |
CN203550961U (en) | Low-cost flexible gyroscopic force balancing circuit | |
CN109029437A (en) | Three Degree Of Freedom closed loop gyro digital interface circuit | |
CN103048922B (en) | Based on the simulation pi controller circuit of transconductance-capacitor structure | |
CN114646412A (en) | Temperature self-compensation resonant pressure sensor control circuit and implementation method thereof | |
CN203224306U (en) | Single-chip microcomputer control-based intelligent flat-panel acquisition system for thermal electromotive force | |
WO2012051877A1 (en) | Method and device for controlling oven-controlled crystal oscillator using microcomputer | |
CN102332829B (en) | Zero drift digital suppression device for sampling practical value of AC-AC (Alternating-Current-Alternating-Current) frequency converter | |
CN203166875U (en) | Modular servo device and atomic frequency standard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160803 Termination date: 20200226 |