CN103772091B - 由甲醇生产低碳烯烃的方法 - Google Patents

由甲醇生产低碳烯烃的方法 Download PDF

Info

Publication number
CN103772091B
CN103772091B CN201210412515.3A CN201210412515A CN103772091B CN 103772091 B CN103772091 B CN 103772091B CN 201210412515 A CN201210412515 A CN 201210412515A CN 103772091 B CN103772091 B CN 103772091B
Authority
CN
China
Prior art keywords
breeding blanket
reaction
catalyzer
methanol
enters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210412515.3A
Other languages
English (en)
Other versions
CN103772091A (zh
Inventor
齐国祯
钟思青
张惠明
杨远飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201210412515.3A priority Critical patent/CN103772091B/zh
Publication of CN103772091A publication Critical patent/CN103772091A/zh
Application granted granted Critical
Publication of CN103772091B publication Critical patent/CN103772091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种由甲醇生产低碳烯烃的方法,主要解决现有技术中低碳烯烃收率较低的问题。本发明通过采用一种由甲醇生产低碳烯烃的方法,包括主要为甲醇的原料进入甲醇转化反应区,与催化剂接触,形成的待生催化剂经待生斜管进入第一再生区,第一再生区的催化剂进入第二再生区,第二再生区的催化剂至少分为两部分,一部分返回甲醇转化反应区,一部分进入第三再生区,第三再生区的催化剂进入烃类裂解反应区,烃类裂解反应区的催化剂返回第二再生区的技术方案较好地解决了上述问题,可用于低碳烯烃的工业生产中。

Description

由甲醇生产低碳烯烃的方法
技术领域
本发明涉及一种由甲醇生产低碳烯烃的方法。
背景技术
低碳烯烃,即乙烯和丙烯,是两种重要的基础化工原料,其需求量在不断增加。一般地,乙烯、丙烯是通过石油路线来生产,但由于石油资源有限的供应量及较高的价格,由石油资源生产乙烯、丙烯的成本不断增加。近年来,人们开始大力发展替代原料转化制乙烯、丙烯的技术。其中,一类重要的用于低碳烯烃生产的替代原料是含氧化合物,例如醇类(甲醇、乙醇)、醚类(二甲醚、甲乙醚)、酯类(碳酸二甲酯、甲酸甲酯)等,这些含氧化合物可以通过煤、天然气、生物质等能源转化而来。某些含氧化合物已经可以达到较大规模的生产,如甲醇,可以由煤或天然气制得,工艺十分成熟,可以实现上百万吨级的生产规模。由于含氧化合物来源的广泛性,再加上转化生成低碳烯烃工艺的经济性,所以由含氧化合物转化制烯烃(OTO)的工艺,特别是由甲醇转化制烯烃(MTO)的工艺受到越来越多的重视。
US4499327专利中对磷酸硅铝分子筛催化剂应用于甲醇转化制烯烃工艺进行了详细研究,认为SAPO-34是MTO工艺的首选催化剂。SAPO-34催化剂具有很高的低碳烯烃选择性,而且活性也较高,可使甲醇转化为低碳烯烃的反应时间达到小于10秒的程度,更甚至达到提升管的反应时间范围内。
US6166282中公布了一种甲醇转化为低碳烯烃的技术和反应器,采用快速流化床反应器,气相在气速较低的密相反应区反应完成后,上升到内径急速变小的快分区后,采用特殊的气固分离设备初步分离出大部分的夹带催化剂。由于反应后产物气与催化剂快速分离,有效的防止了二次反应的发生。经模拟计算,与传统的鼓泡流化床反应器相比,该快速流化床反应器内径及催化剂所需藏量均大大减少。但该方法中低碳烯烃碳基收率一般均在77%左右,存在低碳烯烃收率较低的问题。
CN1723262中公布了带有中央催化剂回路的多级提升管反应装置用于氧化物转化为低碳烯烃工艺,该套装置包括多个提升管反应器、气固分离区、多个偏移元件等,每个提升管反应器各自具有注入催化剂的端口,汇集到设置的分离区,将催化剂与产品气分开。该方法中低碳烯烃碳基收率一般均在75~80%之间,同样存在低碳烯烃收率较低的问题。
现有技术均存在低碳烯烃收率较低的问题,本发明有针对性的解决了该问题。
发明内容
本发明所要解决的技术问题是现有技术中存在的低碳烯烃收率较低的问题,提供一种新的由甲醇生产低碳烯烃的方法。该方法用于低碳烯烃的生产中,具有低碳烯烃收率较高的优点。
为解决上述问题,本发明采用的技术方案如下:一种由甲醇生产低碳烯烃的方法,包括主要为甲醇的原料进入甲醇转化反应区,与包括硅铝磷分子筛的催化剂接触,生成的气相物流进入分离工段,形成的待生催化剂经待生斜管进入第一再生区,第一再生区的催化剂进入第二再生区,第二再生区的催化剂至少分为两部分,一部分经再生斜管返回甲醇转化反应区,一部分进入第三再生区,第三再生区的催化剂进入烃类裂解反应区,烃类裂解反应区的气相物流进入所述分离工段,催化剂返回第二再生区;其中,第一再生区为下行床和提升管串联连接结构,下行床与提升管高度之比为1~4:10,且下行床部分位于第三再生区内,提升管部分位于第三再生区、第二再生区内;第一再生区位于第三再生区内的部分的外壁缠绕取热盘管。
上述技术方案中,所述待生催化剂首先进入第一再生区的下行床部分,然后通过管道进入提升管部分,下行床与提升管平行布置;所述硅铝磷分子筛包括SAPO-34;所述甲醇转化反应区反应条件为:反应温度为400~500℃,反应压力以表压计为0.01~0.3MPa,气相线速为0.5~3米/秒;烃类裂解反应区反应条件为:反应温度为550~650℃,反应压力以表压计为0.01~0.3MPa,气相线速为1~8米/秒;第一再生区反应条件为:再生温度为500~630℃,气相线速为3~12米/秒;第二再生区反应条件为:再生温度为580~660℃,气相线速为0.4~0.9米/秒;第三再生区反应条件为:再生温度为600~700℃,气相线速为0.4~1米/秒;所述第二再生区再生后的催化剂平均积碳量质量分数为0.4~1.5%;第三再生区再生后的催化剂平均积碳量质量分数为0.01~0.3%;所述第二再生区的催化剂至少分为两部分,以质量分数计,20~50%经再生斜管返回甲醇转化反应区,50~80%进入第三再生区;所述烃类包括C4烯烃,C4烯烃质量分数大于60%;所述取热盘管内的取热介质为水或甲醇;所述第三再生区位于第二再生区下部,第三再生区与第二再生区之间设有分布板;所述第一再生区的提升管出口设有粗旋。
本发明所述平均积炭量的计算方法为催化剂上的积炭质量除以所述的催化剂质量。催化剂上的积炭质量测定方法如下:将混合较为均匀的带有积炭的催化剂混合,然后称量0.1~1克的带碳催化剂,放到高温碳分析仪中燃烧,通过红外测定燃烧生成的二氧化碳质量,从而得到催化剂上的碳质量。
本发明所采用的硅铝磷分子筛的制备方法是:首先制备分子筛前驱体,将摩尔配比为0.03~0.6R∶(Si0.01~0.98∶Al0.01~0.6∶P0.01~0.6)∶2~500H2O,其中R代表模板剂,模板剂为三乙胺,组成原料混合液,在100-250℃的温度下经过1~10小时的晶化后获得;再次,将分子筛前驱体、磷源、硅源、铝源、模板剂、水等按照一定的比例混合后在110~260℃下水热晶化至少0.1小时后,最终得到SAPO分子筛。将制备的分子筛与所需比例的粘结剂混合,经过喷雾干燥、焙烧等操作步骤后得到最终的SAPO催化剂,粘结剂在分子筛中的重量百分数在10~90%之间。
本发明中,粗旋是指位于提升管或下行床出口可以实现气固快速分离的初级旋风分离器,由于其分离效率较低(一般在70~90%之间),因此本领域的技术人员一般简称之为“粗旋”。而下行床是指在固体颗粒自身重力或气流作用力下固体颗粒呈现自上而下流动方式的床型。
本发明人通过研究发现,甲醇转化为低碳烯烃的过程中,催化剂需要一定量的积碳,如果再生催化剂含有一定量的积碳,将有效提高低碳烯烃的选择性。而甲醇转化的副产物,如C4以上烃,如果继续转化为低碳烯烃的话,需要高活性、高温度的催化剂,这时催化剂就不需要积碳。因此,本发明在转化甲醇和烃类的反应系统中,设置三级再生区,严格控制积碳再生程度,同时控制再生温度。第一再生区除了完成部分烧炭的作用外,同时将部分热量留在第三再生区,采用下行床和提升管串联结构,还可以降低再生系统的总高度,第一再生区位于第二、第三再生区内,有效利用了第二、第三再生区的热量;第二再生区主要继续进行烧炭,同时作为催化剂分配器,将一部分催化剂返回甲醇转化区,将一部分催化剂输送至第三再生区;第三再生区用于继续烧完第二再生区未烧完的积碳,获得高活性、高温的再生催化剂,提供给烃类裂解反应区用。第一再生区位于第三再生区的部分的外壁缠绕取热盘管,用以控制第一再生区和第三再生区的温度。所以,本发明的方法可以提供两种积碳的再生催化剂,分别用于甲醇转化反应区和烃类裂解反应区,同时优化了能量利用。因此,采用本发明的方法,不但有效利用了能量,而且达到提高低碳烯烃收率的目的。
采用本发明的技术方案:所述待生催化剂首先进入第一再生区的下行床部分,然后通过管道进入提升管部分,下行床与提升管平行布置;所述硅铝磷分子筛包括SAPO-34;所述甲醇转化反应区反应条件为:反应温度为400~500℃,反应压力以表压计为0.01~0.3MPa,气相线速为0.5~3米/秒;烃类裂解反应区反应条件为:反应温度为550~650℃,反应压力以表压计为0.01~0.3MPa,气相线速为1~8米/秒;第一再生区反应条件为:再生温度为500~630℃,气相线速为3~12米/秒;第二再生区反应条件为:再生温度为580~660℃,气相线速为0.4~0.9米/秒;第三再生区反应条件为:再生温度为600~700℃,气相线速为0.4~1米/秒;所述第二再生区再生后的催化剂平均积碳量质量分数为0.4~1.5%;第三再生区再生后的催化剂平均积碳量质量分数为0.01~0.3%;所述第二再生区的催化剂至少分为两部分,以质量分数计,20~50%经再生斜管返回甲醇转化反应区,50~80%进入第三再生区;所述烃类包括C4烯烃,C4烯烃质量分数大于60%;所述取热盘管内的取热介质为水或甲醇;所述第三再生区位于第二再生区下部,第三再生区与第二再生区之间设有分布板;所述第一再生区的提升管出口设有粗旋,低碳烯烃碳基收率达到86.55%(重量),比现有技术的低碳烯烃碳基收率高出可达到3个百分点以上,取得了较好的技术效果。
附图说明
图1为本发明所述方法的流程示意图;
图1中,1为第三再生区再生空气管线;2为第三再生区空气分布板;3为第三再生区;4为取热盘管;5为待生斜管;6为第一再生区下行床再生空气管线;7为分布板;8为第二再生区再生空气管线;9为催化剂输送管;10为第二再生区;11为第一再生区;12为粗旋;13为沉降区;14为旋风分离器;15为烟气出口;16为烃类原料进料管线;17为第三再生区催化剂输送至烃类裂解反应去的管线;18为预混合段;19为甲醇进料管线;20为烃类裂解反应区;21为甲醇转化反应区;22为产品气出口;23为再生斜管;24为烃类裂解反应区催化剂返回第二再生区的管线;25为汽提蒸汽;26为汽提区;27为粗旋;28为沉降区;29为旋风分离器;30为烃类裂解反应区产品气管线。
主要为甲醇的原料进入甲醇转化反应区21,与包括硅铝磷分子筛的催化剂接触,生成的气相物流进入分离工段,形成的待生催化剂经待生斜管5进入第一再生区11,第一再生区的催化剂进入第二再生区10,第二再生区10的催化剂至少分为两部分,一部分经再生斜管23返回甲醇转化反应区21,一部分进入第三再生区3,第三再生区3的催化剂进入烃类裂解反应区20,烃类裂解反应区20的催化剂经汽提后返回第二再生区10。
下面通过实施例对本发明作进一步的阐述,但不仅限于本实施例。
具体实施方式
【实施例1】
在如图1所示的反应装置上,纯度为99.5%的甲醇原料进入甲醇转化反应区,与SAPO-34分子筛催化剂接触,生成的气相物流进入分离工段,形成的待生催化剂经待生斜管进入第一再生区,第一再生区的催化剂进入第二再生区,第二再生区的催化剂分为两部分,以质量分数计,20%经再生斜管返回甲醇转化反应区,80%进入第三再生区,第三再生区的催化剂进入烃类裂解反应区,烃类裂解反应区的催化剂经汽提后返回第二再生区。第一再生区为下行床和提升管串联连接结构,下行床与提升管高度之比为1:10,且下行床部分位于第三再生区内,提升管部分位于第三再生区、第二再生区内;第一再生区位于第三再生区内的部分的外壁缠绕取热盘管,取热盘管内的取热介质为水。待生催化剂首先进入第一再生区的下行床部分,然后通过管道进入提升管部分,下行床与提升管平行布置。第三再生区位于第二再生区下部,第三再生区与第二再生区之间设有分布板,第一再生区的提升管出口设有粗旋。甲醇转化反应区反应条件为:反应温度为400℃,反应压力以表压计为0.01MPa,气相线速为0.5米/秒;烃类裂解反应区反应条件为:反应温度为550℃,反应压力以表压计为0.01MPa,气相线速为1米/秒;第一再生区反应条件为:再生温度为500℃,气相线速为3米/秒;第二再生区反应条件为:再生温度为580℃,气相线速为0.4米/秒;第三再生区反应条件为:再生温度为600℃,气相线速为0.4米/秒;第二再生区再生后的催化剂平均积碳量质量分数为0.4%,第三再生区再生后的催化剂平均积碳量质量分数为0.01%,烃类裂解反应区进料的烃类包括C4烯烃,C4烯烃质量分数为60%。反应产品采用在线气相色谱分析,低碳烯烃碳基收率为83.01%(重量)。
【实施例2】
按照实施例1所述的条件和步骤,第二再生区的催化剂分为两部分,以质量分数计,50%经再生斜管返回甲醇转化反应区,50%进入第三再生区,第一再生区为的下行床与提升管高度之比为2:5,第一再生区位于第三再生区内的部分的外壁缠绕取热盘管,取热盘管内的取热介质为甲醇。甲醇转化反应区反应条件为:反应温度为500℃,反应压力以表压计为0.01MPa,气相线速为3米/秒;烃类裂解反应区反应条件为:反应温度为650℃,反应压力以表压计为0.01MPa,气相线速为8米/秒;第一再生区反应条件为:再生温度为630℃,气相线速为12米/秒;第二再生区反应条件为:再生温度为660℃,气相线速为0.9米/秒;第三再生区反应条件为:再生温度为700℃,气相线速为1米/秒;第二再生区再生后的催化剂平均积碳量质量分数为1.5%,第三再生区再生后的催化剂平均积碳量质量分数为0.3%,烃类裂解反应区进料的烃类包括C4烯烃,C4烯烃质量分数为76%。反应产品采用在线气相色谱分析,低碳烯烃碳基收率为84.77%(重量)。
【实施例3】
按照实施例1所述的条件和步骤,第二再生区的催化剂分为两部分,以质量分数计,40%经再生斜管返回甲醇转化反应区,60%进入第三再生区,第一再生区为的下行床与提升管高度之比为1:5,甲醇转化反应区反应条件为:反应温度为480℃,反应压力以表压计为0.01MPa,气相线速为1.5米/秒;烃类裂解反应区反应条件为:反应温度为610℃,反应压力以表压计为0.01MPa,气相线速为1.6米/秒;第一再生区反应条件为:再生温度为580℃,气相线速为7米/秒;第二再生区反应条件为:再生温度为625℃,气相线速为0.6米/秒;第三再生区反应条件为:再生温度为650℃,气相线速为0.7米/秒;第二再生区再生后的催化剂平均积碳量质量分数为1.0%,第三再生区再生后的催化剂平均积碳量质量分数为0.1%,烃类裂解反应区进料的烃类包括C4烯烃,C4烯烃质量分数为76%。反应产品采用在线气相色谱分析,低碳烯烃碳基收率为86.55%(重量)。
【实施例4】
按照实施例3所述的条件和步骤,甲醇转化反应区反应条件为:反应温度为480℃,反应压力以表压计为0.3MPa,气相线速为1.25米/秒;烃类裂解反应区反应条件为:反应温度为610℃,反应压力以表压计为0.3MPa,气相线速为1.2米/秒;第一再生区反应条件为:再生温度为580℃,气相线速为5米/秒;第二再生区反应条件为:再生温度为625℃,气相线速为0.5米/秒;第三再生区反应条件为:再生温度为650℃,气相线速为0.61米/秒;第二再生区再生后的催化剂平均积碳量质量分数为0.8%,第三再生区再生后的催化剂平均积碳量质量分数为0.1%。反应产品采用在线气相色谱分析,低碳烯烃碳基收率为84.49%(重量)。
【比较例1】
按照实施例3所述的条件和步骤,只设置一个再生区,该再生区的再生催化剂的40%返回甲醇转化反应区,60%进入烃类裂解反应区,再生催化剂的平均积碳量质量分数为0.1%,低碳烯烃收率为83.65%(重量)。
【比较例2】
按照实施例3所述的条件和步骤,只设置一个再生区,不设置烃类裂解反应区,再生后的催化剂全部返回甲醇转化反应区,低碳烯烃收率为82.50%(重量)。
显然,采用本发明的方法,可以达到提高低碳烯烃收率的目的,具有较大的技术优势,可用于低碳烯烃的工业生产中。

Claims (6)

1.一种由甲醇生产低碳烯烃的方法,包括主要为甲醇的原料进入甲醇转化反应区,与包括硅铝磷分子筛的催化剂接触,生成的气相物流进入分离工段,形成的待生催化剂经待生斜管进入第一再生区,第一再生区的催化剂进入第二再生区,第二再生区的催化剂至少分为两部分,一部分经再生斜管返回甲醇转化反应区,一部分进入第三再生区,第三再生区的催化剂进入烃类裂解反应区,烃类裂解反应区的气相物流进入所述分离工段,催化剂返回第二再生区;其中,第一再生区为下行床和提升管串联连接结构,下行床与提升管高度之比为1~4:10,且下行床部分位于第三再生区内,提升管部分位于第三再生区、第二再生区内;第一再生区位于第三再生区内的部分的外壁缠绕取热盘管;
其中,硅铝磷分子筛包括SAPO-34;
其中,甲醇转化反应区反应条件为:反应温度为400~500℃,反应压力以表压计为0.01~0.3MPa,气相线速为0.5~3米/秒;烃类裂解反应区反应条件为:反应温度为550~650℃,反应压力以表压计为0.01~0.3MPa,气相线速为1~8米/秒;第一再生区反应条件为:再生温度为500~630℃,气相线速为3~12米/秒;第二再生区反应条件为:再生温度为580~660℃,气相线速为0.4~0.9米/秒;第三再生区反应条件为:再生温度为600~700℃,气相线速为0.4~1米/秒;
其中,第二再生区再生后的催化剂平均积碳量质量分数为0.4~1.5%;第三再生区再生后的催化剂平均积碳量质量分数为0.01~0.3%;
其中,取热盘管内的取热介质为水或甲醇。
2.根据权利要求1所述由甲醇生产低碳烯烃的方法,其特征在于所述待生催化剂首先进入第一再生区的下行床部分,然后通过管道进入提升管部分,下行床与提升管平行布置。
3.根据权利要求1所述由甲醇生产低碳烯烃的方法,其特征在于所述第二再生区的催化剂至少分为两部分,以质量分数计,20~50%经再生斜管返回甲醇转化反应区,50~80%进入第三再生区。
4.根据权利要求1所述由甲醇生产低碳烯烃的方法,其特征在于所述烃类包括C4烯烃,C4烯烃质量分数大于60%。
5.根据权利要求1所述由甲醇生产低碳烯烃的方法,其特征在于所述第三再生区位于第二再生区下部,第三再生区与第二再生区之间设有分布板。
6.根据权利要求1所述由甲醇生产低碳烯烃的方法,其特征在于所述第一再生区的提升管出口设有粗旋。
CN201210412515.3A 2012-10-25 2012-10-25 由甲醇生产低碳烯烃的方法 Active CN103772091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210412515.3A CN103772091B (zh) 2012-10-25 2012-10-25 由甲醇生产低碳烯烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210412515.3A CN103772091B (zh) 2012-10-25 2012-10-25 由甲醇生产低碳烯烃的方法

Publications (2)

Publication Number Publication Date
CN103772091A CN103772091A (zh) 2014-05-07
CN103772091B true CN103772091B (zh) 2016-04-13

Family

ID=50564924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210412515.3A Active CN103772091B (zh) 2012-10-25 2012-10-25 由甲醇生产低碳烯烃的方法

Country Status (1)

Country Link
CN (1) CN103772091B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218288B (zh) * 2014-07-03 2017-05-17 中国石油化工股份有限公司 用于甲醇制烯烃的高效气固快速分离与沉降方法
CN104667836B (zh) * 2015-02-12 2016-08-24 中国天辰工程有限公司 一种等高布置的流化床甲醇制烯烃组合装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050038635A (ko) * 2002-08-26 2005-04-27 엑손모빌 케미칼 패턴츠 인코포레이티드 탄소 원자 대 산 부위 비가 조절된 산성 분자체를 포함하는촉매하에서 옥시게네이트를 올레핀으로 전환시키는 방법
WO2005078064A1 (en) * 2004-02-09 2005-08-25 Exxonmobil Chemical Patents Inc. Method for stabilizing catalyst activity during mto unit operation
CN102276402A (zh) * 2010-06-11 2011-12-14 中国石油化工股份有限公司 生产低碳烯烃的组合反应装置
CN102274760A (zh) * 2010-06-11 2011-12-14 中国石油化工股份有限公司 用于甲醇制烯烃的催化剂再生装置
CN102463138A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Sapo-34催化剂的两段再生方法
CN102464523A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 轻质烯烃的生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190550B (zh) * 2010-03-03 2016-02-10 中国石油化工股份有限公司 低碳烯烃的生产方法
CN102276386B (zh) * 2010-06-11 2013-12-25 中国石油化工股份有限公司 低碳烯烃的生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050038635A (ko) * 2002-08-26 2005-04-27 엑손모빌 케미칼 패턴츠 인코포레이티드 탄소 원자 대 산 부위 비가 조절된 산성 분자체를 포함하는촉매하에서 옥시게네이트를 올레핀으로 전환시키는 방법
WO2005078064A1 (en) * 2004-02-09 2005-08-25 Exxonmobil Chemical Patents Inc. Method for stabilizing catalyst activity during mto unit operation
CN102276402A (zh) * 2010-06-11 2011-12-14 中国石油化工股份有限公司 生产低碳烯烃的组合反应装置
CN102274760A (zh) * 2010-06-11 2011-12-14 中国石油化工股份有限公司 用于甲醇制烯烃的催化剂再生装置
CN102463138A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 Sapo-34催化剂的两段再生方法
CN102464523A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 轻质烯烃的生产方法

Also Published As

Publication number Publication date
CN103772091A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN103772092B (zh) 甲醇转化为低碳烯烃的反应装置
CN102875296B (zh) 甲醇制低碳烯烃的反应装置
CN103739420B (zh) 提高低碳烯烃收率的方法
CN104628506A (zh) 甲醇转化为低碳烯烃的方法
CN103739419B (zh) 甲醇制低碳烯烃的方法
CN103537235B (zh) 含氧化合物制低碳烯烃的反应装置
CN103772091B (zh) 由甲醇生产低碳烯烃的方法
CN103739428B (zh) 以甲醇为原料生产低碳烯烃的装置
CN102463079B (zh) 由甲醇生产低碳烯烃的反应装置
CN102464526B (zh) 由甲醇生产低碳烯烃的方法
CN103772105B (zh) 提高低碳烯烃收率的反应装置
CN102875281B (zh) 甲醇催化转化为低碳烯烃的方法
CN103739430B (zh) 转化甲醇为低碳烯烃的反应装置
CN102875291B (zh) 由甲醇生产低碳烯烃的方法
CN103772088B (zh) 提高乙烯、丙烯收率的方法
CN103664449A (zh) 含氧化合物制低碳烯烃的方法
CN103739427B (zh) 以甲醇为原料制备低碳烯烃的反应装置
CN103539609B (zh) 低碳烯烃的生产方法
CN103664439B (zh) 由甲醇制备低碳烯烃的装置
CN103664441B (zh) 由甲醇制备低碳烯烃的方法
CN102875293B (zh) 甲醇催化转化为低碳烯烃的反应装置
CN103664442B (zh) 以甲醇和乙醇为原料制备低碳烯烃的方法
CN102875305B (zh) 甲醇制低碳烯烃的方法
CN102875292B (zh) 由甲醇生产低碳烯烃的反应装置
CN103772104B (zh) 甲醇制低碳烯烃的反应装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant