CN103764948B - 用于水力破碎的自-悬浮支撑剂 - Google Patents

用于水力破碎的自-悬浮支撑剂 Download PDF

Info

Publication number
CN103764948B
CN103764948B CN201280042615.XA CN201280042615A CN103764948B CN 103764948 B CN103764948 B CN 103764948B CN 201280042615 A CN201280042615 A CN 201280042615A CN 103764948 B CN103764948 B CN 103764948B
Authority
CN
China
Prior art keywords
suspended prop
polymer
proppant
modification
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280042615.XA
Other languages
English (en)
Other versions
CN103764948A (zh
Inventor
R·P·马奥尼
D·S·索恩
M·K·赫凌
K·P·金凯德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soane Energy LLC
Original Assignee
Soane Energy LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soane Energy LLC filed Critical Soane Energy LLC
Publication of CN103764948A publication Critical patent/CN103764948A/zh
Application granted granted Critical
Publication of CN103764948B publication Critical patent/CN103764948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)
  • Cosmetics (AREA)

Abstract

本发明提供改性支撑剂和它们的制造方法。在实施方式中,改性支撑剂含有支撑剂颗粒和水凝胶涂层,其中,将所述水凝胶涂层施覆于支撑剂颗粒的表面,并且在该表面上局部化以生产改性支撑剂。在实施方式中,公开了含有改性颗粒的制剂,并且公开了使用所述制剂的方法。

Description

用于水力破碎的自-悬浮支撑剂
相关申请
本申请要求2011年8月31日提交的美国临时申请序列号61/529,600、2012年4月19日提交的美国临时申请序列号61/635,612和2012年6月21日提交的美国临时申请序列号61/662,681的权益。以上相关的申请通过引用全文并入本文。
技术领域
本申请一般性涉及用于破碎技术的系统和方法。
背景技术
在从井获得油和/或气体的过程中,通常需要经由水力破碎(fracturing)刺激烃的流动。术语"破碎"指将流体泵至井中的方法,直至压力提高至足以破碎含有截留的材料的地下地质学地层的水平。该过程导致毁坏下面的层的裂缝和破裂,以允许烃产物以显著较高的速率被携带至井钻孔。然而,除非压力保持,否则新形成的孔口关闭。为了打开路径和保持路径,与水力流体一起注射支撑试剂或"支撑剂",以产生保持孔口所需的支撑。当形成裂缝时,支撑剂在浆料中通过释放水力压力时传递,支撑剂在此形成用于保持打开裂缝的填充或支撑。
为了完成在裂缝内部放置支撑剂,将这些颗粒在流体中悬浮,随后泵至地下目的地。为了防止颗粒沉降,通常需要高粘度流体来悬浮颗粒。通常通过加入基于合成的或天然的聚合物来操控流体的粘度。存在三种常见类型的聚合物-增强的流体系统通常用于在水力破碎操作期间悬浮和输送支撑剂:滑动水(slickwater)、线性凝胶和交联的凝胶。
在滑动水系统中,通常加入阴离子或阳离子聚丙烯酰胺作为摩擦降低剂添加剂(friction reducer additive),允许最大流体以最小泵送能量流动。由于水力破碎的泵送能量要求高(10,000-100,000马力左右),向滑动水流体中加入摩擦降低剂,使得具有高泵送速率,同时避免需要甚至更高的泵送能量。虽然这些聚合物作为摩擦降低剂是有效的,但是它们作为增粘剂和悬浮剂并不是高度有效的。滑动水聚合物溶液通常含有0.5-2.0加仑摩擦降低剂聚合物/1000加仑滑动水流体,并且溶液具有低粘度,通常为3-15cps左右。在该低粘度下,一旦湍流流动停止,悬浮的支撑剂颗粒能够容易地从悬浮液沉降出来。出于该原因,滑动水流体用于不具有支撑剂、具有小粒径的支撑剂或低支撑剂载荷的破碎阶段。
第二种类型的聚合物增强的流体系统称为线性凝胶系统。线性凝胶系统通常含有碳水化合物聚合物,例如瓜耳(guar)、羟乙基纤维素、羟乙基瓜耳、羟丙基瓜耳和羟丙基纤维素。这些线性凝胶聚合物通常以10-50磅聚合物/1000加仑线性凝胶流体的使用速率加入。线性凝胶聚合物的这些浓度导致相对于滑动水流体具有改进的支撑剂悬浮特性的流体。在约0.1-1磅支撑剂/加仑流体的载荷水平下,线性凝胶流体用于输送支撑剂。超过该支撑剂载荷水平,通常需要更粘稠的溶液来制备稳定的悬浮液。
交联的凝胶是用于输送支撑剂的最粘稠类型的聚合物-增强的流体。在交联的凝胶系统中,如上所述的线性凝胶流体在碱金属存在下与加入的试剂(例如硼酸盐、锆酸盐和钛酸盐)交联。当线性凝胶流体交联成为交联的凝胶流体时,粘度高得多,并且支撑剂可有效悬浮。线性凝胶和交联的凝胶流体具有某些优点,但是它们需要高剂量速率的昂贵的聚合物。
对支撑剂颗粒的改性可有利地用于改进它们在水力破碎系统中的性能。首先,如果支撑剂颗粒更加有浮力,可使用较少粘稠的悬浮液流体,这仍可以将颗粒运输至标靶区域,但是更容易泵至地层中。第二,在已注入破碎管线之后,在井的整个使用期限中,期望支撑剂保持在放置的地方。如果在井的生产期间储器内的变化迫使支撑剂离开位置,生产设备可能破坏,并且随着储器孔被已位移的支撑剂堵塞,储器地层的传导率可能下降。第三,一旦将它们放置在裂缝中,系统中的支撑剂应该耐闭合应力。在某些页岩气井中闭合应力可在1700psi至高达并且超过15,000psi(对于深的高温井)范围。必须小心,在该应力下支撑剂不能失灵,以免它们被压碎成为可迁移至井内不期望的位置的细颗粒,从而影响生产。期望地,在破碎处理期间支撑剂应耐成岩作用。高压力和温度与用于压裂流体的化学品的结合可不利地影响支撑剂颗粒,导致它们的成岩作用,随着时间这可最终生产细颗粒物质,该细颗粒物质可超出尺寸范围并且降低井的生产力。
当前的支撑剂系统和聚合物-增强的破碎流体致力于解决这些忧虑,使得支撑剂可被破碎流体携带,一旦达到它们的标靶目的地,可保持在适当的位置,并且可耐地层中的闭合应力。制备合适的支撑剂的一种方法包括使用树脂涂布支撑剂材料。涂布树脂的支撑剂可完全固化或部分固化。通过帮助在晶粒颗粒中分布应力,完全固化的树脂能够提供对支撑剂基体的压碎抗性。通过包封支撑剂颗粒,完全固化的树脂还能够帮助降低细屑(fine)迁移。如果最初部分固化,一旦放置在裂缝内,树脂可变得完全固化。该方法可得到与开始时使用完全固化的树脂相同的益处。
制备合适的支撑剂的另一种方法涉及使添加剂与支撑剂本身(例如纤维、弹性颗粒等)混合。但是添加剂可影响输送浆料的流变学性质,使其更加难以将支撑剂递送至裂缝内的期望的位置。此外,使用添加剂可干扰在破碎部位内的支撑剂混合物的均匀放置。
此外,存在与支撑剂的加工相关的健康、安全性和环境忧虑。例如,在天然存在的沙子沉积物中通常发现细颗粒("细屑"),例如结晶二氧化硅灰尘。在处理和加工支撑剂沙子期间这些细屑可作为可吸入的灰尘释放。当长期暴露时,该灰尘可能对工人有害,导致各种与吸入相关的状况,例如矽肺病、慢性梗阻性肺病、肺癌等。除了这些健康影响以外,细屑可引起"公害灰尘"问题例如污损设备和污染环境。
虽然本领域存在已知的方法来解决支撑剂系统的限制,但是仍存在某些问题。因此,本领域需要改进的支撑剂系统,该改进的支撑剂系统允许精确放置、在放置后保持裂缝传导率、保护井生产效率和设备寿命以及促进工人健康和安全性。还期望这样的改进的系统成本高效。
发明内容
在实施方式中,本文公开了改性支撑剂,所述改性支撑剂含有支撑剂颗粒和水凝胶涂层,其中,将所述水凝胶涂层施覆于支撑剂颗粒的表面,并且在该表面上局部化以生产改性支撑剂。水凝胶涂层可含有水可溶胀的聚合物。在实施方式中,水凝胶涂层以液体施覆于可含有溶剂或载体流体的表面;通过除去溶剂或载体流体,液体水凝胶涂层可变为干燥的水凝胶涂层。在实施方式中,水凝胶涂层含有通过坍塌(collapsing)体积或厚度来响应升高的温度或盐水条件的水可溶胀的聚合物。在实施方式中,水凝胶涂层含有选自由以下组成的组的疏水性共聚单体:烷基丙烯酸酯、N-烷基丙烯酰胺、N-异丙基丙烯酰胺、环氧丙烷、苯乙烯和乙烯基己内酰胺。在实施方式中,与含水流体接触,干燥的水凝胶涂层能膨胀体积,以形成具有大于干燥的水凝胶涂层至少约10%的厚度的溶胀的水凝胶涂层。在实施方式中,水凝胶涂层含有选自由以下组成的组的聚合物:聚丙烯酰胺、聚丙烯酸、丙烯酰胺与丙烯酸盐的共聚物、羧甲基纤维素、羟乙基纤维素、羟丙基纤维素、瓜耳胶、羧甲基瓜耳胶、羧甲基羟丙基瓜耳胶、疏水关联可溶胀的乳液聚合物和胶乳聚合物。在实施方式中,水凝胶涂层还含有选自由以下组成的组的化学添加剂:阻垢剂(scale inhibitors)、杀菌剂(biocides)、破乳剂、蜡控制剂、沥青烯控制剂和示踪剂。
在实施方式中,所述改性支撑剂还含有阳离子/阴离子聚合物对,该阳离子/阴离子聚合物对含有阳离子聚合物和高分子量阴离子聚合物;所述阳离子聚合物可以选自由以下组成的组:聚-DADMAC、LPEI、BPEI、壳聚糖和阳离子聚丙烯酰胺。在实施方式中,改性支撑剂还含有交联剂;所述交联剂可以含有共价交联剂,并且所述共价交联剂可以含有选自由以下组成的组的官能团:环氧化物、酸酐、醛、二异氰酸酯和碳二亚胺。在实施方式中,共价交联剂可选自由以下组成的组:聚乙二醇、二缩水甘油基醚、表氯醇、马来酸酐、甲醛、乙二醛、戊二醛、甲苯二异氰酸酯和亚甲基二苯基二异氰酸酯、1-乙基-3-(3-二甲基氨基丙基)碳二亚胺。在实施方式中,所述改性支撑剂还可含有延迟的水合添加剂;所述延迟的水合添加剂可选自由以下组成的组:低亲水-亲油平衡表面活性剂、能排除修饰(finishing)表面活性剂的排斥剂、光离子交联剂、光共价交联剂和一价盐电荷屏蔽剂。在实施方式中,所述改性支撑剂还含有选自由以下组成的组的醇:乙二醇、丙二醇、甘油、丙醇和乙醇。在实施方式中,改性支撑剂还含有防结块剂。
本文公开了含有如上所述的改性支撑剂的水力破碎制剂。在实施方式中,该制剂还可以含有未涂布的沙子和/或纤维。在实施方式中,本文公开了用于破碎井的方法,所述方法包括制备如上所述的水力破碎制剂,和以有效体积并且在用于水力破碎的有效压力下,向井中引入所述水力破碎制剂,从而破碎井。
在实施方式中,本文还公开了形成改性支撑剂的方法,所述方法包括提供支撑剂颗粒;和将水凝胶涂层施覆于支撑剂颗粒的表面,使得水凝胶涂层在表面上局部化。在实施方式中,水凝胶涂层以液体施覆于所述表面。所述方法还可以包括通过干燥过程将所述表面上的水凝胶涂层干燥的步骤,其可以包括加热水凝胶涂层。在实施方式中,水凝胶涂层含有溶剂或载体流体,并且通过除去溶剂或载体流体,水凝胶涂层在表面上干燥,以形成干燥的水凝胶涂层。在实施方式中,所述方法还可以进一步包括将干燥的水凝胶涂层暴露于含水流体,以形成溶胀的水凝胶涂层的步骤,其中,所述溶胀的水凝胶涂层膨胀体积,以具有大于干燥的水凝胶涂层的厚度至少约10%的厚度。
此外,本文公开了用于制造改性支撑剂的方法,所述方法包括提供支撑剂基体颗粒和流体聚合的涂层组合物,在所述支撑剂基体颗粒上施覆流体聚合的涂层组合物,使支撑剂基体颗粒和流体聚合物涂层组合物混合,以形成改性支撑剂,和干燥改性支撑剂,其中,所述流体聚合的涂层组合物含有水凝胶聚合物,并且其中,所述水凝胶聚合物在所述支撑剂基体颗粒的表面上局部化,以生产改性支撑剂。在实施方式中,所述制造在使用改性支撑剂的点处或附近发生。在实施方式中,支撑剂基体颗粒含有沙子。在实施方式中,沙子在使用改性支撑剂的点处或附近得到。这些方法还可以包括在支撑剂基体颗粒和流体聚合物涂层组合物混合的步骤期间或之前加入选自由以下组成的组的醇:乙二醇、丙二醇、甘油、丙醇和乙醇。这些方法还可以包括在支撑剂基体颗粒和流体聚合物涂层组合物混合的步骤期间或之后加入转化(inversion)促进剂。这些方法还可包括向改性支撑剂中加入防结块剂。
附图说明
图1为用于自-悬浮支撑剂的制造过程的流程图。
图2为对于三组自-悬浮支撑剂样品的床高度相对于剪切时间的图。
图3为对于两组自-悬浮支撑剂样品的床高度相对于混合时间的图。
图4为对于两组自-悬浮支撑剂样品的床高度相对于混合时间的图。
图5为对于一系列经处理的自-悬浮支撑剂样品的床高度相对于混合时间的图。
图6为对于不同量的硅酸钙加入到自-悬浮支撑剂样品的床高度的图。
图7为对于一系列预处理的和未预处理的支撑剂样品的床高度相对于干燥时间的图。
图8显示在各种温度下的床高度相对于干燥时间的图。
图9显示对于一系列经处理的自-悬浮支撑剂样品的温度相对于混合时间的图。
图10显示床高度和点火损失(LOI)相对于干燥时间的图。
具体实施方式
1.改性支撑剂颗粒
本文公开了用于形成和使用具有水凝胶表面层的支撑剂颗粒的系统和方法,以在流体输送期间增强支撑剂颗粒的流体动力学体积,产生更加稳定的支撑剂悬浮液,在支撑剂能够到达裂缝中的预期的标靶目的地之前,耐沉降、分离和筛出。本文公开的涂布水凝胶的支撑剂的其它益处包括较低倾向地腐蚀设备,在湿状态下较低的摩擦系数,放置在裂缝部位之后彼此良好的结合粘着,阻止不受控的细屑的形成,和可归因于亲水表面的抗污损性质。在实施方式中,用于形成支撑剂颗粒的所公开的系统可施用于最广泛使用的支撑剂基体的类型,例如,沙子、涂布树脂的沙子,和陶瓷。在其它实施方式中,支撑剂颗粒可由本领域普通技术人员可利用的多种基体形成,包括纤维质材料。在某些实施方式中,可制造支撑剂颗粒,使得它们耐压碎或变形,使得它们耐位移,并且使得它们可悬浮于较少粘稠的流体载体,用于输送至地层中。
本发明包括一种改性支撑剂,所述改性支撑剂含有支撑剂颗粒和水凝胶涂层,其中,所述水凝胶涂层在支撑剂颗粒的表面上局部化,以生产改性支撑剂。在实施方式中,这些自-悬浮支撑剂通过使用水可溶胀的聚合物涂层(例如水凝胶)改性颗粒基体而形成。在实施方式中,在将颗粒基体引入到破碎流体中之前,颗粒基体可使用聚合物涂层改性。在实施方式中,基于支撑剂的重量,水凝胶聚合物涂层的量可在约0.1%至约10%范围。在实施方式中,在支撑剂基体的表面上施覆的水凝胶层可具有支撑剂基体平均直径的约0.01%至约20%的涂层厚度。当水凝胶层在破碎流体中水合和溶胀后,水凝胶层可被水膨胀,使得水凝胶层厚度可为支撑剂基体平均直径的约10%至约1000%。
用于使支撑剂改性的方法包括在支撑剂基体上喷洒或饱和液体聚合物制剂,接着干燥,以除去水或其它载体流体。通过施用热量或真空,并且通过在干燥过程期间翻转或搅动改性支撑剂,可加速干燥过程。通过强制热空气、对流、摩擦、传导、燃烧、放热反应、微波加热或红外辐射可施用加热。在支撑剂改性过程期间,搅动具有在支撑剂材料上提供更均匀的涂层的进一步优点。
图1示意性说明根据本公开用于制备自-悬浮支撑剂130的制造过程100。在描述的实施方式中,沙子132(例如,具有少于0.1%水分的干沙子)经由运输带122运输至混合容器124中,并且液体聚合物组合物120沿着运输带122经由泵和喷洒喷嘴设备134在沙子132上喷洒。暴露于液体聚合物120的沙子132报道(reports)至低剪切混合容器124,在这里将成分进一步共混,以形成改性沙子128。混合后,将含有液体聚合物的改性沙子送至干燥器126,以除去与液体聚合物120关联的水和/或有机载体流体。在干燥步骤后,干燥的改性沙子132经过最终化步骤134,其可包括振动器和/或其它尺寸分类设备例如筛,以除去过大尺寸的聚集体。最终化步骤134也可使干燥的改性沙子132经历机械混合机、剪切装置、研磨机、压碎机等,以粉碎聚集体,以允许材料经过适当尺寸的筛。成品材料130随后储存用于船运或使用。
在实施方式中,在被水凝胶聚合物改性之前,将用于生产自-悬浮支撑剂的沙子预先干燥至<1%的水分含量,并优选<0.1%。在实施方式中,在与液体聚合物混合时,沙子温度在约10℃至约200℃范围,优选在约15℃至约80℃范围。
在实施方式中,借助喷洒或注射,使沙子与液体聚合物组合物接触。加入的液体聚合物组合物的量在沙子的约1重量%至约20重量%范围内,优选约2重量%至约10重量%。将沙子和液体聚合物共混0.1-10分钟的时间段。在一个优选的实施方式中,混合设备为相对低剪切类型的混合机,例如翻转器、垂直圆锥螺杆共混机、v-圆锥共混机、双圆锥共混机、捏和碾磨机、叶片混合机或带状共混机。在实施方式中,混合设备可配备有强制空气、强制热空气、真空、外部加热或引起载体流体蒸发的其它方式。
在实施方式中,将含有液体聚合物的改性沙子干燥,以除去与液体聚合物关联的水和/或有机载体流体。干燥器设备可以为运输机烘箱、微波或旋转窑类型。在一个实施方式中,进行干燥步骤,其方式使得干燥的改性沙子含有少于1重量%的残余的液体,包括与液体聚合物组合物关联的水和任何有机载体流体。
在实施方式中,相同的设备可用于使沙子与液体聚合物共混,和在单一加工阶段或在连续生产管线中干燥共混的产物。在一个实施方式中,将基体(例如沙子)转化为自-悬浮支撑剂的过程可在使用点处或附近进行,例如在准备水力破碎中在油气井部位处。该方法具有以下优点:使用高的材料处理成本(例如沙子),将日用品材料转化为具有增加的特性的专门的材料。沙子可由当地资源获得或从沙子开采区或仓库直接船运,用于在使用点处改性。这样避免必须首先将沙子船运至共混设备,随后二次从共混设备船运至使用点处。在沙子的情况下,船运成本可能高于材料成本,因此为了控制成本,期望避免额外的船运。
在一个示例性的制造过程中,可将沙子和改性化学品加入到连续混合机。在混合完成后,混合物可(a)准备使用或(b)送至干燥步骤。干燥步骤可包括热干燥过程或真空干燥过程,并且其可包括加入防结块剂。成品可储存在井部位处的容器中。混合设备的一个实例为连续带状共混机或捏和碾磨机。干燥步骤可以为与混合单独的过程,并且干燥步骤可设计为避免过度剪切成品例如运输机或隧道干燥器。其它类型的干燥机械装置包括旋转窑、微波干燥器、叶片干燥器和真空干燥器。
引入根据本文公开的系统和方法可用于改性支撑剂的水凝胶聚合物,在实施方式中,可作为油基乳液、悬浮液、水基乳液、胶乳、溶液和分散体。在实施方式中,水凝胶聚合物可作为蒸馏的乳液引入,例如已部分蒸发的油基乳液,以除去一部分载体流体。与常规的乳液相比,这可以提供降低的干燥要求的优点。在实施方式中,水凝胶聚合物可为碱性可溶胀的乳液,其中,聚合物的水凝胶性质未完全发展,直至聚合物与碱接触。在该实施方式中,碱性可溶胀的乳液可在支撑剂基体上涂布,以形成改性支撑剂,并且在碱性材料存在下,该改性支撑剂可悬浮于破碎流体中。
在实施方式中,在支撑剂基体颗粒和液体聚合物涂层组合物混合的步骤期间或之前,可加入例如选自由以下组成的组的醇的添加剂:乙二醇、丙二醇、甘油、丙醇和乙醇。在实施方式中,在用于自-悬浮支撑剂的聚合物涂层制剂中,可用作添加剂的转化促进剂可包括高HLB表面活性剂,例如聚氧乙烯月桂醇表面活性剂(polyethylene oxide laurylalcohol surfactant),(ETHAL LA-12/80%,来自ETHOX)、乙二醇、丙二醇、水、碳酸钠、碳酸氢钠、氯化铵、尿素、氯化钡和它们的混合物。
在其它实施方式中,支撑剂基体可以使用聚合物制剂改性,无需干燥步骤。这可通过使用不含溶剂的聚合物制剂或可固化的制剂来完成。在某些简化的方法中,干的或液体聚合物制剂可在经由在线混合的支撑剂基体上施用,并且这样制备的改性材料无需进一步加工可直接使用。通过加入或除去水,或加入其它液体,可改变支撑剂基体的水分含量,以允许基体被有效涂布,处理,并且递送至破碎流体中。
改性支撑剂还可以使用湿润剂例如表面活性剂或其它亲水材料改性,以允许在破碎流体中有效分散。当水凝胶-改性支撑剂悬浮于破碎流体中时,如果它们需要较低粘度流体以防止颗粒从悬浮液中沉降出来,认为它们自-悬浮。
改性支撑剂还可以使用防结块剂(例如硅酸钙、硅酸镁、胶态二氧化硅、碳酸钙或微晶纤维素)改性,以改进改性支撑剂材料的流动性和处理性质。
与使得整个流体中等粘稠的传统的方法相反,本发明的水凝胶-改性支撑剂可以有利地在支撑剂表面上使用局部化的聚合物浓度。例如与常规的聚合物-增强的破碎流体(例如滑动水、线性凝胶和交联的凝胶)相比,该局部化的水凝胶层可以允许更加有效地使用聚合物,使得较低总量的聚合物可用于悬浮支撑剂。虽然认为水凝胶-改性支撑剂自-悬浮,但是它们可与摩擦降低剂、线性凝胶和交联凝胶组合使用。
本文公开的水凝胶-改性支撑剂可具有以下优点:向破碎流体递送摩擦-降低聚合物,使得当水凝胶-改性支撑剂用于水力破碎操作时,可能不需或者可能需要较少量的其它摩擦降低剂聚合物。在实施方式中,一些水凝胶聚合物可从支撑剂的表面脱附,以向破碎流体递送摩擦降低的益处或粘度特性。
在实施方式中,用于制备水凝胶-改性支撑剂的水凝胶聚合物可含有聚合物例如聚丙烯酰胺、丙烯酰胺与阴离子和阳离子共聚单体的共聚物、丙烯酰胺与疏水性共聚单体的共聚物、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素、羟乙基纤维素、羟丙基纤维素、瓜耳胶、藻酸盐、角叉菜胶、刺槐豆胶、羧甲基瓜耳胶、羧甲基羟丙基瓜耳胶、疏水关联可溶胀的乳液(HASE)聚合物、胶乳聚合物、淀粉等。在实施方式中,水凝胶聚合物可交联,以增强聚合物的水吸收和溶胀性质。交联剂可作为基于水凝胶的聚合物的要素引入,或者它们可作为用于预先形成的聚合物的化学改性剂引入。
围绕本文描述的支撑剂表面使聚合物局部化可导致更加有效地利用聚合物,并且可防止支撑剂从聚合物溶液中沉降出来。在实施方式中,聚合物层围绕支撑剂水合,有效防止支撑剂/支撑剂(颗粒间)接触。这可防止支撑剂形成致密的沉降床,并且可导致更容易再次悬浮于破碎流体中的支撑剂。如果在水力破碎操作期间中断流体流动,改性支撑剂的再悬浮性质可能是重要的。重要的是,在这种情况下,当流动恢复时,支撑剂可再悬浮,以避免损失支撑剂或没有预期到的阻断流体路径。
当聚合物溶胀时,本文描述的聚合物表面改性可引起支撑剂颗粒的有效流体动力学半径提高。这可导致在支撑剂上提高的拖曳(drag)以及有效改变总体水凝胶/颗粒密度。二者均可导致具有较慢的沉降速率和优良的输送性质的支撑剂颗粒。
在实施方式中,聚合物配对或离子交联可用于改进水凝胶聚合物在支撑剂颗粒的表面上的滞留(retention)。例如,阳离子聚合物可在支撑剂上沉积作为第一层,以将含有水凝胶(例如高分子量阴离子聚合物)的第二层“锁定在合适的位置”。在实施方式中,阳离子聚合物可为聚二烯丙基二甲基氯化铵(聚-DADMAC)、线性聚乙烯亚胺(LPEI)、支链的聚乙烯亚胺(BPEI)、壳聚糖、表氯醇/二甲基胺聚合物、二氯乙烷二甲基胺聚合物或阳离子聚丙烯酰胺。在支撑剂表面被阴离子水凝胶层改性之前或之后,可将阳离子聚合物层放置在支撑剂上。离子相互作用可作为交联机理,以帮助防止阴离子聚合物在高剪切环境中脱附,例如通过泵或在泵送通过井孔期间。通过引起延迟的水合和伸长阴离子聚合物链,阳离子聚合物还可改进聚合物滞留。相信在泵送过程期间较少的聚合物链伸长将在支撑剂上得到较高的聚合物滞留(即,较少的解吸)。
在支撑剂表面上的共价交联水凝胶聚合物层可改进聚合物的溶胀性质和剪切耐受以防止从支撑剂中过早释放水凝胶。共价交联剂可包括以下官能团:环氧化物、酸酐、醛、二异氰酸酯、碳二亚胺、二乙烯基或二烯丙基。这些共价交联剂的实例包括:PEG二缩水甘油基醚、表氯醇、马来酸酐、甲醛、乙二醛、戊二醛、甲苯二异氰酸酯、亚甲基二苯基二异氰酸酯、1-乙基-3-(3-二甲基氨基丙基)碳二亚胺和亚甲基双丙烯酰胺。在支撑剂表面上的共价交联水凝胶聚合物层可围绕支撑剂有效产生可溶胀的"聚合物笼"。共价键防止聚合物完全脱附进入溶液。轻微不溶性聚合物层能溶胀和生产水合的聚合物层。
可期望聚合物层的延迟的/受控的水合以在支撑剂的处理和初始泵送通过井孔期间延迟聚合物表面改性的水合。环境因素(例如湿度和雨)可引起聚合的涂层过早水合,这可使得难以有效计量在水力破碎操作期间进入共混机的支撑剂剂量。还相信完全水合的聚合物层在与向下管状泵送破碎流体关联的高剪切条件下可更易于解吸。出于这些原因,可有利地设计具有较慢的或延迟的水合性质的表面-改性支撑剂。在实施方式中,通过以下方式可实现延迟的水合:通过加入低亲水-亲油平衡(HLB)表面活性剂、排斥高HLB修饰表面活性剂、离子交联、共价交联、使用一价盐电荷屏蔽或者通过掺入疏水性层(例如脂肪酸或脂肪醇)。
在实施方式中,疏水性基团可掺入到水凝胶聚合物中,以允许疏水性相互作用。该方法可改进水凝胶层的盐耐受性,使得水凝胶层即使在含有升高的盐浓度的含水流体中也保持可溶胀。
本文还公开了一种使用涂布水凝胶的支撑剂与非-涂布水凝胶的支撑剂组合破碎井的方法。例如,涂布水凝胶的支撑剂可以使用作用于非涂布水凝胶的支撑剂的悬浮剂。
本文还公开了一种使用涂布水凝胶的支撑剂,通过改进的支撑剂布局,改进井生产力的方法。涂布水凝胶的支撑剂可更有效地被输送至裂缝的远端以确保较高的来自井的油和气体的生产力。由于本文公开的表面-改性支撑剂可较少倾斜,以从流体沉降出来,并且更容易再悬浮和通过裂缝输送,相信支撑剂布局将更有效。将支撑剂进一步输送至裂缝的能力可显著提高破碎刺激操作的效力,导致较大体积的较高密度裂缝。这些裂缝通道可有利地允许气体/冷凝物更容易从储器流入井孔。
本文还公开了一种使用低粘度流体,支撑剂布局的改进的方法。本文公开的表面改性支撑剂更有效地利用聚合物来悬浮/输送支撑剂颗粒。表面改性使得支撑剂自-悬浮,从而降低或消除对高度粘稠的流体/凝胶来输送支撑剂的需要。因此,较低的粘度流体可与表面-改性支撑剂组合使用,以将支撑剂输送至裂缝中。这将有利地简化与支撑剂一起使用的破碎凝胶的制剂。
本文还公开了使用较少的支撑剂破碎井的更加有效的方法。由于使用本文公开的可容易输送的表面-改性支撑剂可实现高度有效的支撑剂布局,与使用传统的支撑剂的系统相比,对于任何给定的破碎操作,预期将需要较少量的这些表面-改性支撑剂。由于对于破碎级别沙子/支撑剂的要求的提高和用于支撑剂应用的期望-形状的沙子供应的降低,它将有利地提供例如本文公开的那些系统和方法,其中可以使用较少的支撑剂实现与使用当前技术的结果可比较或较之优良的结果。
在已将本发明的涂布水凝胶的支撑剂泵送至井中之后,水凝胶层可通过化学、热、机械和生物机理降解。特别是,借助化学破乳剂(例如,过硫酸铵、过氧化镁或其它氧化剂),可破坏在支撑剂上的聚合的表面的改性。借助环境储器条件(例如升高的盐水含量、升高的温度)和与烃接触,也可破坏在支撑剂上的聚合的表面的改性。当在流体中达到标靶温度或时间量后,受控破坏水凝胶层可用作引导支撑剂放置在裂缝中的期望的位置的方式。水凝胶层的降解也是有益的,以确保在完成水力破碎操作之后,支撑的裂缝的足够的传导率。在实施方式中,水凝胶层可证明刺激-应答性质,使得当暴露于第一组条件(例如某些第一温度或pH)时其与水溶胀,并且当经历某一组条件(例如第二温度或pH)时,其失去水,损失体积,损失厚度或甚至坍塌。
例如,在一个实施方式中,温度-应答水凝胶可在支撑剂材料上涂布。当在第一组条件(例如50-100°F的水温)下暴露于水时,温度应答水凝胶层可溶胀,随后当暴露于第二组条件(例如110-450°F的水温)时,其可坍塌。使用该刺激-应答机理,温度应答涂布水凝胶的支撑剂可具有自-悬浮性质,因为当在初始水温(例如50-100°F)下时,破碎流体携带其进入地下裂缝的位置。当涂布的支撑剂遇到地下地层的较高温度区域(例如110-450°F)时,水凝胶层可坍塌,允许支撑剂在裂缝中沉积和巩固。温度应答水凝胶可以为含有选自由以下组成的组的疏水性单体的水溶性聚合物或共聚物组合物:烷基丙烯酸酯、N-烷基丙烯酰胺、环氧丙烷、苯乙烯和乙烯基己内酰胺。N-烷基取代的丙烯酰胺可为N-异丙基丙烯酰胺、N-丁基丙烯酰胺、N-辛基丙烯酰胺等。烷基丙烯酸酯可被具有从1至约30个碳的烷基链取代。在一个优选的实施方式中,温度应答水凝胶聚合物含有N-异丙基丙烯酰胺并且含有最多约90%的亲水共聚单体单元。水凝胶聚合物中的疏水性单体取代基的类型和量可通过经验优化技术来选择,以调节水溶解度和水凝胶聚合物的温度应答性质。
本文还公开了一种通过向改性支撑剂的水凝胶层中掺入化学添加剂或与之关联,向支撑剂包装中递送化学添加剂的方法。可经由水凝胶层有利地递送的化学添加剂包括阻垢剂、杀菌剂、破乳剂、蜡对照物、沥青烯对照物和示踪剂。化学添加剂可为水溶性材料、水不溶性颗粒、纤维、金属粉末或薄片等形式。可选择化学添加剂使得它们缓慢溶解或分解,以释放它们的化学活性。在实施方式中,通过物理夹带、逐层分解、共价连接、离子关联、疏水性关联或包封,化学添加剂可掺入到水凝胶层中或与之关联。化学添加剂可单独于水凝胶加入到支撑剂中,或者它们可在制造涂布的支撑剂时与水凝胶涂层制剂组合。在该递送方法中可加入破乳剂化学品,例如过硫酸盐、过氧化物、高锰酸盐、高氯酸盐、过碘酸盐或过碳酸盐。使用涂布水凝胶的支撑剂输送和递送这些化学品具有将化学品标靶递送至裂缝或支撑剂包装的优点。该方法提供在需要它们的功能的位置浓缩化学添加剂的优点,从而降低需要的化学添加剂的总量。某些破乳剂例如过氧化物和过硫酸盐在较高的温度下具有加速的活性。使用该方法,通过携带石油的储器的升高的温度,当放置在裂缝中时,在水凝胶层中掺入的破乳剂化学品将被活化。
在实施方式中,支撑剂颗粒基体的表面可涂布有选择的聚合物,作为单一层或者作为一系列多个涂层。涂层(单一层或多层)在某些情况下可显示可变换的行为。本文使用的术语"可变换的行为"或"变换行为"是指当情况变化时性质的变化,例如,从在输送阶段期间的一组性质变为在裂缝内部的另一组性质。例如,当颗粒在破碎流体中证明具有亲水性质以及当放置在裂缝内具有粘合剂性质时,可看到变换行为。这样的行为可通过如在裂缝部位内部高封闭压力的情况触发,使得涂层的外层本身重排,以呈现更加有利的性质。
在一个实施方式中,当在裂缝内部经历高压力时,涂布的颗粒可从亲水性转化为疏水性。在一个示例性实施方式中,在输送阶段期间,当颗粒的亲水覆盖物暴露于水基破碎流体时,其倾向于完全膨胀。结果是,在该状态下涂层可提供具有润滑的颗粒,促进其移动通过支撑剂浆料。当已将颗粒运输至在地层中裂缝内的目的地时,高压力将克服外部亲水聚合物链的空间排斥,迫使外层本身重排,使得内层暴露。在实施方式中,可变换的内层可以为疏水的或粘性的,或二者。当内层暴露时,其性质可本身显现。如果内层具有粘性性质,例如,其可使颗粒彼此固定以防止它们回流。该内层还可设置为在支撑剂颗粒失灵的情况下捕集细屑。此外,存在于外涂层中的残余的完整的亲水基团可允许油容易流动通过支撑剂包装。
在实施方式中,可生产携带以下层的涂层涂布的支撑剂颗粒。第一,压力-活化的固定剂聚合物可用于涂布支撑剂基体。该涂层可为弹性的,从而通过帮助聚集体支撑剂颗粒和分布应力为支撑剂包装提供强度。此外,该涂层可包封基体颗粒和保留在基体失灵的情况下生产的任何细屑。第二,嵌段共聚物可吸附或另外在涂层的第一层上布置。共聚物可具有相对于第一聚合的层具有高亲和力的部分,允许强相互作用(疏水性相互作用),并且可具有亲水的另一部分,允许在输送流体中容易输送支撑剂。
在某些实施方式中,第一涂层和第二涂层之间的较强的相互作用可能有用。为了实现这一点,可实施溶胀-去溶胀技术。例如,嵌段共聚物可在涂布弹性的颗粒的表面上吸附。随后,第一涂层可使用少量的有机溶剂溶胀,该有机溶剂允许共聚物的疏水性嵌段更深地渗透至第一涂层中并且卷入弹性涂层中。通过除去有机溶剂,成层的聚合的复合物将去溶胀,导致共聚物与弹性颗粒更强的相互作用。可用的用于溶胀-去溶胀技术的方法描述于"用于制备稳定的、官能化的聚合物胶体的基于溶胀的方法(Swelling-Based Methodfor Preparing Stable,Functionalized Polymer Colloids)"A.Kim等人,J.Am.Chem.Soc.(2005)127:1592-1593,其内容通过引用并入本文。
在实施方式中,使用本文公开的涂层的支撑剂系统可降低与支撑剂制造关联的空气传播的颗粒的量。例如,在它们的加工期间,通过支撑剂涂层可捕集和保持与处理和加工支撑剂沙子关联的可吸入的灰尘(包括细结晶二氧化硅灰尘)。在实施方式中,可加入在可能不利地影响工人安全性或产生公害灰尘问题的环境中对于颗粒具有特定亲和力的涂布剂。在实施方式中,通过机械截留或粘附于灰尘颗粒,在支撑剂颗粒上的水凝胶涂层可用作粘合剂或捕集剂。
虽然本文描述的系统涉及两层涂层系统,应理解的是,可存在多个(即,多于两个)形成本文公开的复合物支撑剂颗粒的涂层,其中多个涂层的每一个具有如上所述的两个涂层的一些或所有特性,其中多个涂层的一个或多个提供另外的性质或特性。
2.颗粒基体材料
根据这些系统和方法的复合物支撑剂颗粒可使用各种各样的支撑剂基体颗粒形成。用于本发明的支撑剂颗粒基体可包括降解的沙子、涂布树脂的沙子、铝土矿、陶瓷材料、玻璃材料、胡桃壳、聚合的材料、树脂材料、橡胶材料等和它们的组合。本文公开的自-悬浮支撑剂("SSP")还可使用专用支撑剂制备,例如陶瓷、铝土矿和涂布树脂的沙子。通过将沙子SSP与专用SSP组合,支撑剂注射可具有有利的强度、透过性、悬浮和输送性质。在实施方式中,基体可包括天然存在的材料,例如已切碎、研磨、粉碎或压碎至合适尺寸的坚果壳(例如,胡桃、山核桃、椰子、杏仁、象牙坚果、巴西坚果等),或者例如已切碎、研磨、粉碎或压碎至合适尺寸的种子外壳或水果核(例如,梅子、橄榄、桃、樱桃、杏等),或者例如来自其它植物(例如玉米穗轴)的切碎、研磨、粉碎或压碎的材料。在实施方式中,基体可衍生自木材或加工的木材,包括但不限于木材例如橡树、山核桃、胡桃、桃花心木、白杨等。在实施方式中,使用与有机材料接合或结合的无机材料,可形成聚集体。期望支撑剂颗粒基体含有具有筛孔尺寸4-100(每个标准筛数量)左右的尺寸的颗粒(无论是单个的物质或者两种或更多种物质的聚集体)。本文使用的术语"颗粒"包括所有已知形状的材料,例如但不限于球形材料、伸长的材料、多边形材料、纤维质材料、不规则材料和它们的任何混合物。
在实施方式中,颗粒基体可作为复合物由粘合剂和填料材料形成。合适的填料材料可包括无机材料例如固体玻璃、玻璃微球体、飞灰、二氧化硅、氧化铝、热解法碳、炭黑、石墨、云母、硼、氧化锆、滑石、高岭土、二氧化钛、硅酸钙等。在某些实施方式中,支撑剂颗粒基体可被增强,以提高它们耐地层的高压力,该高压力可压碎或使它们变形。增强材料可选自能为支撑剂颗粒基体增加结构强度的那些材料,例如高强度颗粒,例如陶瓷、金属、玻璃、沙子等,或者能与颗粒基体组合以提供另外的强度的任何其它材料。
在某些实施方式中,支撑剂颗粒基体可作为提供不同性质的两种或更多种不同材料的聚集体制造。例如,具有高压缩强度的芯颗粒基体可与比高-压缩-强度材料具有较低密度的有浮力的材料组合。这两种材料的组合作为聚集体可提供具有适量强度的芯颗粒,同时具有相对较低的密度。作为较低密度颗粒,其可在较少粘稠的破碎流体中充分悬浮,允许破碎流体更容易泵送,并且由于它们被较少粘稠的流体推动至更远的区域,允许支撑剂在地层内更加分散。用作支撑剂颗粒基体的高密度材料(例如沙子、陶瓷、铝土矿等)可与较低密度材料组合,所述较低密度材料例如空心玻璃颗粒、其它空心芯颗粒、某些聚合的材料和天然存在的材料(坚果外壳、种子外壳、水果核、木材或者已切碎、研磨、粉碎或压碎的其它天然存在的材料),得到仍具有足够的压缩强度的较少致密的聚集体。
使用将两种组分彼此连接的技术,可形成适合用作支撑剂颗粒基体的聚集体。作为一种制备方法,可将支撑剂颗粒基体与具有与支撑剂颗粒基体的尺寸类似的粒径的有浮力的材料混合。两种类型的颗粒可随后混合在一起,并且通过粘合剂(例如蜡、酚醛清漆树脂等)结合,使得形成一群成对的聚集体颗粒,一个子群体具有与另一个类似的颗粒连接的支撑剂颗粒基体,一个子群体具有与有浮力的颗粒连接的支撑剂颗粒基体,一个子群体具有与另一个有浮力的颗粒连接的有浮力的颗粒。三个群体可通过它们的密度差来分离:第一子群体在水中下沉,第二子群体保持在液体中悬浮,而第三子群体将漂浮。
在其它实施方式中,可设计支撑剂颗粒基体,通过用泡沫材料覆盖颗粒基体的表面使其较少致密。可设计泡沫材料的厚度,以得到有效地中立地有浮力的复合物。为了生产这样的涂布的支撑剂颗粒,具有期望的压缩强度的颗粒可涂布有用于发泡反应的反应物,接着暴露于其它反应物。当触发泡沫形成时,将生产涂布泡沫的支撑剂颗粒。
作为一个实例,水-吹制的聚氨酯泡沫可用于围绕颗粒提供将降低总体颗粒密度的涂层。为了制备这样的涂布的颗粒,颗粒可初始涂布有反应物A,例如一种或多种多元醇与合适的催化剂(例如,胺)的混合物。该颗粒可随后暴露于含有二异氰酸酯的反应物B。在颗粒上将形成最终的泡沫,例如当在振动下使用蒸汽处理时;由于在它们的表面上形成泡沫,搅动将防止颗粒附聚。
在实施方式中,纤维(包括可生物降解的纤维)可与SSP一起加入到破碎流体中。纤维(包括可生物降解的纤维)可形成帮助流体携带支撑剂的纤维网络。多种纤维类型为用于加入到破碎流体的专业技术人员熟悉的。如专业技术人员所理解的,加入到破碎流体的纤维可在井底条件下降解,并且在支撑剂包装中形成通道。通道则具有较高的透过性,因此为烃从地层行进至井孔的流动通道。
术语"纤维"可指合成的纤维或天然纤维。本文使用的术语"合成的纤维"包括全部或部分制造的纤维或微纤维。合成的纤维包括人造纤维,这里将天然前体材料改性以形成纤维。例如,纤维素(衍生自天然材料)可形成为人造纤维,例如人造丝(Rayon)或莱赛尔(Lyocell)。纤维素还可改性,以生产乙酸纤维素纤维。这些人造纤维为合成纤维的实例。合成的纤维可由无机或有机的合成的材料形成。示例性合成的纤维可由例如取代或未取代的丙交酯、乙交酯、聚乳酸、聚乙醇酸或它们的共聚物的材料形成。形成纤维的其它材料包括乙醇酸的聚合物或与之形成的共聚物,如专业技术人员熟悉的。
本文使用的术语"天然纤维"是指衍生自天然来源未经人造改性的纤维或微纤维。天然纤维包括植物-衍生的(vegetable-derived)纤维、动物-衍生的纤维和矿物-衍生的纤维。植物-衍生的纤维可主要为纤维素,例如,棉、黄麻、亚麻、大麻、剑麻、苎麻等。植物-衍生的纤维可包括衍生自种子或种子壳体的纤维,例如棉或木棉。植物-衍生的纤维可包括衍生自叶子的纤维,例如剑麻和龙舌兰。植物-衍生的纤维可包括衍生自围绕植物的茎的外皮或韧皮的纤维,例如亚麻、黄麻、洋麻(kenaf)、大麻、苎麻、藤、大豆纤维、蔓纤维(vinefiber)、黄麻、洋麻、工业大麻、苎麻、藤、大豆纤维和香蕉纤维。植物-衍生的纤维可包括衍生自植物的果实的纤维,例如椰子纤维。植物-衍生的纤维可包括衍生自植物的杆的纤维,例如小麦、水稻、大麦、竹子和草。植物-衍生的纤维可包括木质纤维。动物-衍生的纤维通常含有蛋白质,例如,羊毛、蚕丝、马海毛等。动物-衍生的纤维可衍生自动物毛发,例如,绵羊的羊毛、山羊毛、羊驼毛、马毛等。动物-衍生的纤维可衍生自动物身体部位,例如,羊肠线、肌腱等。动物-衍生的纤维可由昆虫或它们的茧的干燥的唾液或其它分泌物收集,例如,由丝虫茧得到的丝。动物-衍生的纤维可衍生自鸟类的羽毛。矿物-衍生的天然纤维得自矿物质。矿物-衍生的纤维可衍生自石棉。矿物-衍生的纤维可为玻璃或陶瓷纤维,例如,玻璃棉纤维、石英纤维、氧化铝、碳化硅、碳化硼等。
可有利地选择或形成纤维,使得它们在指定的pH或温度下降解,或随着时间而降解,和/或与用于支撑剂输送的指定的载体流体具有化学相容性。有用的合成的纤维可由例如固体环状二聚物或有机酸的固体聚合物制成,已知其在pH、温度、时间等特定的或可调节的条件下水解。有利地,纤维可在已在预定的条件下输送的位置分解。有利地,纤维的分解可得到环保的分解产物。
实施例
材料
·30/70筛目压裂沙子
·30/50筛目压裂沙子
·40/70筛目压裂沙子
·聚二烯丙基二甲基氯化铵(Aldrich,St.Louis,MO)
·LPEI500(Polymer Chemistry Innovations,Tucson,AZ)
·乙醇,200Proof(Aldrich,St.Louis,MO)
·己烷(VWR,Radnor,PA)
·FLOP AM EM533(SNF)
·聚乙二醇二缩水甘油基醚(Aldrich,St.Louis,MO)
·乙二醛,40重量%溶液(Aldrich,St.Louis,MO)
·HFC-44(Polymer Ventures,Charleston,SC)
·羧甲基纤维素钠盐(Sigma-Aldrich,St.Louis,MO)
·过硫酸铵(Sigma-Aldrich,St.Louis,MO)
·乙氧基化的月桂醇表面活性剂(Ethal LA-12/80%))(Ethox Chemical Co,SC)
·甘油(US Glycerin,Kalamazoo,MI)
·氯化钾(Morton Salt,Chicago,IL)
·热解法二氧化硅(Cabot,Boston,MA)
实施例1:制备内聚合物层
通过向FlackTek Max100长的罐中加入200g30/70筛目压裂沙子,在沙子样品上制备100ppm浓度的内聚合物层。向沙子中加入85g自来水和2g1%聚二烯丙基二甲基氯化铵(PDAC)溶液。随后将样品手动振动约5分钟,真空过滤,并且在80℃的烘箱中干燥。随后从烘箱中除去沙子样品并且用于随后的测试。
使用如上所述相同的方法来配制10ppm内聚合物层涂层,不同之处在于仅使用0.2g1%的PDAC溶液。
在最大聚合物载荷("Max PDAC")下,使用如上所述相同的方法来配制内聚合物层,不同之处在于使用1g20重量%PDAC溶液。处理后,沙子用过量的自来水洗涤,真空过滤,并且在80℃的烘箱中干燥。随后从烘箱中除去沙子样品并且用于随后的测试。
实施例2:制备内聚合物层
通过在10g乙醇中溶解0.2g LPEI500,以形成2%LPEI500的乙醇溶液,在沙子样品上制备100ppm浓度的内聚合物层。在250mL圆底烧瓶中,向70g乙醇中加入0.75g2%LPEI500溶液。随后将150g30/70筛目压裂沙子加入到圆底烧瓶中。使用65℃水浴,使用旋转蒸发器除去溶剂。随后从烧瓶除去样品并且用于随后的测试。
实施例3:制备外聚合物层
通过在不同的条件下,将沙子与液体Flopam EM533聚合物混合,将外聚合物层施用于沙子样品。在一种涂布方法中,加入纯聚合物产物。在另一个涂布方法中,通过用己烷稀释,延伸聚合物产物。对于己烷稀释,在40mL玻璃瓶中,将10g聚合物加入到10g己烷中,涡流混合,直至均质。随后在FlackTek Max100罐中,将聚合物加入到30g30/70筛目压裂沙子样品中。将样品在FlackTek DAC150SpeedMixer中在2600rpm下放置约25秒。从SpeedMixer除去样品,并且在80℃的烘箱中干燥过夜。
实施例4:外聚合物层的性能、沉降(settling)时间
在沉降测试中评价在前面的实施例中制备的沙子样品的性能。在测试前,将所有沙子样品通过25网筛筛选。通过在100mL量筒中向100mL自来水中加入1g沙子样品,得到沉降时间。随后将量筒转化约8次,随后记录所有沙子在量筒底部沉降所需的时间。对于每一个样品记录三次。沉降时间在表1中报道。
表1
实施例5:外聚合物层的性能,沉降的床高度
通过观察在水中沉降的床高度,也评价使用外聚合物层在实施例3中制备的沙子样品。在20mL玻璃瓶中,向10g自来水中加入1g沙子样品。将小瓶倒转约10次,以充分湿润沙子处理物。随后让小瓶保持未受干扰达约30分钟。数字卡尺随后用于记录在瓶中沙子床的高度。结果在表2中报道。
表2
实施例6:外聚合物层的离子交联
通过在FlackTek Max100罐中向40g沙子中加入1.3g Flopam EM533聚合物,并且将罐手动振动2分钟,40g30/70筛目压裂沙子样品用外聚合物层处理。沙子随后通过25网筛筛分。为了评价在剪切下在沙子上的聚合物滞留,通过在300mL玻璃烧杯中,向具有不同水平的PDAC的200g自来水中加入10g经处理的沙子,进行测试。相信PDAC将通过离子相互作用,以在沙子上稳定聚合物层。使用平的推进器类型混合叶片,使用顶部混合机,随后将浆料在900rpm下搅拌5分钟。随后停止混合,让样品沉降10分钟。随后使用具有LV-II转子的Brookfield DV-III+流变仪,在60rpm下测量上清液的粘度。使用数字卡尺也记录在烧杯中沉降的沙子的床高度。结果在表3中报道。
表3
样品 PDAC圆锥,(ppm) 粘度(cP) 床高度(mm)
12 0 25 4.5
13 60 10 8.6
14 200 2.5 6.3
实施例7:共价交联外聚合物层-PEGDGE
通过在FlackTek Max100罐中向20g沙子中加入0.66g聚合物,并且手动振动2分钟,四个30/70筛目压裂沙子样品用Flopam EM533处理。随后将不同量的新的1%聚乙二醇二缩水甘油基醚的去离子水溶液加入到经处理的沙子样品中。将样品再次手动振动2分钟,随后在100℃的烘箱中放置1小时。随后从烘箱除去样品,并且通过25网筛筛分。如下测量四个样品的床高度:通过在20mL玻璃瓶中向10g自来水中加入1g沙子样品,将瓶倒转约10次,以充分湿润沙子,并且让瓶保持未受干扰达约10分钟。随后使用数字卡尺测量床高度。结果列举于表4。
表4
样品 1%PEGDGE(g) 床高度(mm)
15 0.1 9.3
16 0.2 8.8
17 1.0 6.2
18 0 12.7
实施例8:共价交联外聚合物层-乙二醛
在FlackTek Max100罐中,通过向20g沙子中加入0.66g聚合物,并且手动振动2分钟,四个30/70筛目压裂沙子样品用Flopam EM533处理。通过向20mL玻璃瓶中加入0.25g40重量%乙二醛,并且用乙醇稀释至10g,配制1%乙二醛的乙醇溶液。随后将不同量的1%乙二醛溶液加入到经处理的沙子样品中,将样品手动振动2分钟,并且在100℃的烘箱中放置30分钟。从烘箱除去沙子样品,并且通过25网筛筛分。对于沉降的床高度测量,在20mL瓶中,向10g自来水中加入1g沙子,倒转约10次,保持约10分钟,以沉降。使用数字卡尺测量床高度。结果列举于表5。
表5
样品 1%乙二醛g) 床高度(mm)
19 0.2 3.8
20 0.5 3.5
21 1.0 2.7
22 2.0 2.7
实施例9:阳离子/阴离子聚合物处理物
在FlackTek Max100罐中,三个30g30/70筛目压裂沙子样品用Polymer VenturesHCF-44处理。将罐手动振动2分钟。随后将Flopam EM533加入到每一个样品中。将罐再次手动振动2分钟。样品随后在80℃下干燥过夜。从烘箱除去沙子样品,并且通过25网筛筛分。对于沉降的床高度测量,在20mL瓶中,向10g自来水中加入1g沙子,倒转约10次,保持约10分钟,以沉降。使用数字卡尺测量床高度。结果在表6中给出。
表6
样品 HCF-44(g) Flopam EM533(g) 床高度(mm)
23 0 0.45 10.26
24 0.07 0.38 8.08
25 1.0 0.35 5.08
26 1.5 0.30 3.94
实施例10:涂布有大分子颗粒的沙子
向FlackTek Max100罐中加入30g30/70筛目压裂沙子样品。向沙子中加入0.3g石蜡。将样品放置在FlackTek DAC150SpeedMixer中,并且在2500rpm下混合2分钟。混合后,向样品中加入1g羧甲基纤维素。将样品再次放置在FlackTek DAC150SpeedMixer中,并且在2500rpm下混合1分钟。沙子样品通过25网筛筛分。对于沉降的床高度测量,在20mL瓶中,向10g自来水中加入1g沙子,倒转约10次,保持约10分钟,以沉降。在该样品中的沙子立即凝结在一起,并且在水中不分散,并且不能精确测量床高度。
实施例11:改性沙子烧杯测试
向FlackTek Max100罐中加入30g30/70筛目压裂沙子样品。通过向罐中加入0.45g聚合物,并且手动振动2分钟,沙子用Flopam EM533处理。随后将样品在80℃下干燥过夜。干燥后,从烘箱除去样品,并且经25网筛筛分。筛分后,通过在20mL瓶中,向10g自来水加入1g经处理的沙子,制备四个样品。将小瓶倒转约10次,并且沉降10分钟。通过向18g自来水中加入2g过硫酸铵,制备10%过硫酸铵溶液。随后向样品瓶中加入不同量的10%过硫酸铵溶液。将样品倒转若干次以混合,随后在80℃的烘箱中放置1小时。1小时后,除去样品,并且观察沉降的床高度。表7显示结果。
表7
样品 10%APS(μL) 沙子悬浮
27 0 悬浮
28 180 沉降
29 90 沉降
30 18 沉降
实施例12:乳液添加剂
为了测定乳液添加剂对自-悬浮支撑剂("SSP")性能的影响,在涂布支撑剂沙子之前,向乳液聚合物EM533中加入甘油和十六烷醇(Ethal)LA-12/80%。如下制备三个不同聚合物样品:
·SSP聚合物:10g EM533,无添加剂
·SSP+甘油:9g EM533和1g甘油
·SSP+甘油+十六烷醇:9g EM533+0.9g甘油+0.1g十六烷醇LA-12/80%
将每一个上述样品涡流混合30秒,以确保均匀性。为了制备改性支撑剂,将50g40/70沙子与1.5g以上聚合物样品中的一种组合,随后混合30秒。在1升剪切测试中评价改性支撑剂样品的剪切稳定性。该测试包括在正方形塑料烧杯中向1升水中加入50g改性支撑剂,接着在叶片/罐混合机(EC Engineering,型号CLM-4)上以200rpm(相应于约550s-1的剪切速率)混合不同的时间量。随后将剪切的样品倒入1000mL量筒中,并且通过重力沉降10分钟,随后记录沉降的支撑剂沙子的床高度。为了比较,在以任何量的混合后,未改性的支撑剂沙子将产生10mm的床高度。由于包封沙子晶粒的水凝胶层,相对于未改性的支撑剂,自-悬浮支撑剂样品将产生较高的床液位。通常,由于水凝胶层从改性支撑剂的表面解吸的结果,提高剪切速率或时间可引起自-悬浮支撑剂的床高度降低。出于该原因,期望在该测试中床高度尽可能高,尤其是在剪切后。以下结果显示,加入甘油改进床高度和产品的剪切稳定性。加入甘油和十六烷醇,虽然改进初始床高度,但是长期剪切稳定性稍微降低。这些结果在图2中用图说明。
实施例13:甘油和加工性
该实验寻求测定甘油和其它添加剂对自-悬浮支撑剂(以下用SSP表示)的性能的影响。向安装叶片连接的型号KSM90WH的KitchenAid台式混合机的转筒中加入1kg干40/70沙子。将3.09g甘油与27.84g EM533乳液聚合物混合,随后将混合物加入到沙子的顶部,并且浸泡1分钟。在时间0时,以速度1(72rpm初级旋转)开始混合机。以1-2分钟间隔收集样品,并且在90℃下干燥1小时。随后,每一个样品经历1升剪切测试,其中在1L水中加入50g的SSP,并且在200rpm(约550s-1的剪切速率)下剪切20分钟。在将水/SSP混合物转移至1升量筒并且沉降10分钟后,记录床高度。使用单独加入到1kg沙子的30.93g EM533乳液聚合物,重复该实验。这些结果示于图3。如在图中显示的,甘油添加剂显著提高床高度。
当在较高的混合速度下重复实验时,性能差异甚至更显著。此时混合机设定为速度4(150rpm初级旋转)。在低混合时间下,样品未充分混合,导致在剪切测试期间不完全涂布沙子和聚合物容易从SSP的表面解吸。当涂布过程的混合时间提高时,性能也提高,直至达到理想的涂布,得到该样品的最大床高度。随后,在较高的混合时间时,看到日益恶化(降低)床高度,可能是在延长的混合期间涂层磨损的结果。在较高的混合速度下,该过程甚至更快地发生,使得单独的乳液聚合物的加工窗口少于1分钟。随着加入甘油和使用较低的混合速度,该加工窗口加宽至接近15分钟。与使用单独的乳液聚合物的测试相比,甘油引起加工窗口变宽,指示具有甘油的SSP制备物更稳健。同时,甘油允许聚合物乳液更完全倒转,导致更好的涂层和提高床高度。在较高的混合速度下,使用甘油和乳液聚合物EM533的组合的测试得到示于图4的结果。
实施例14:具有防结块剂的改性支撑剂
使用和不使用防结块剂制备改性支撑剂样品用于比较。对于样品A,向FlackTek罐中加入50g40/70沙子。向沙子中加入1.5g EM533乳液聚合物,并且将样品混合30秒。混合后,将0.25g硅酸钙向样品中加入,并且将样品再次混合30秒。随后将样品在85℃下干燥1小时。干燥后,将样品倒在25网筛上面并且轻微振动30秒。随后测量通过筛的沙子的量。对于样品B,向FlackTek罐中加入50g40/70沙子。向沙子中加入1.5g EM533乳液聚合物,并且将样品混合30秒。随后将样品在85℃下干燥1小时。干燥后,将样品倒在25网筛上面并且轻微振动30秒。随后测量通过筛的沙子的量。表8显示结果。
表8
样品 样品总质量,g 通过筛的质量,g %通过筛
样品A 50.5 50.16 99.3%
样品B 50.5 15.71 31.1%
筛测试的结果显示,掺入防结块剂有效改进改性支撑剂的处理性质。
向1L水中单独加入样品A和B,随后在EC Engineering混合机中在200rpm下剪切20分钟。剪切后,将样品转移至1L量筒中,并且沉降10分钟。沉降后,测量床高度,由于掺入防结块剂的结果,显示剪切稳定性没有显著损失。表9显示这些结果。
表9
样品 床高度,mm
样品A 56.21
样品B 59.67
实施例15:使用水凝胶层涂布支撑剂
通过在玻璃瓶中合并10g甘油和90g Flopam EM533,并且使用涡流混合机混合30秒,制备涂层组合物。接着,向KitchenAid混合机转筒中加入400g40/70筛目支撑剂沙子。向KitchenAid混合机转筒中加入16g涂层组合物。随后将混合机打开至最低设定,并且混合7分钟。混合后,将沙子分成50g样品,并且在80℃的强制空气烘箱中放置1小时。干燥后,将改性支撑剂通过25筛孔筛筛分。
实施例16:使用水凝胶层涂布支撑剂
向KitchenAid混合机转筒中加入400g40/70支撑剂沙子。向KitchenAid混合机转筒中加入16g SNF Flopam EM533。随后将混合机打开至最低设定,并且混合7分钟。混合后,将沙子分成50g样品,并且在80℃的强制空气烘箱中放置1小时。干燥后,将改性支撑剂通过25筛孔筛筛分。
实施例17:剪切稳定性测试
测试在实施例15和16中制备的涂布的沙子样品的剪切稳定性。向正方形1L烧杯中加入1L自来水。随后将烧杯放置在EC Engineering CLM4叶片混合机中。混合机设定为在300rpm下混合。一旦混合开始,向烧杯中加入50g涂布的沙子样品。在300rpm下混合30秒后,将混合降低至200rpm,并且继续20分钟。在该混合结束时,将混合物倒入1L量筒中,并且允许沉降。10分钟后,记录沉降的床的高度,如表10所示。较高的床高度指示较好的支撑剂性能。
表10
沙子样品 床高度,剪切后,mm
未经处理的40/70沙子 13.24
实施例2 70.4
实施例3 57.64
实施例18:盐水耐受
两个20mL瓶填充有10mL自来水。单独地,另两个20mL瓶填充有10mL1%KC1溶液。向含有自来水的瓶中加入1g在实施例15中制备的沙子,并且向含有1%KC1的瓶中加入1g。另外,向含有自来水的瓶中加入1g在实施例6中制备的沙子,并且向含有1%KC1的瓶中加入1g。将所有四个瓶倒转约7次,随后沉降10分钟。沉降后,测量床高度。结果示于表11。
表11
沙子样品 自来水床高度,mm 1%KCl床高度,mm
实施例2 10.39 5.02
实施例6 17.15 9.23
实施例19:磨损测试
三个250mL烧杯填充有50mL自来水。在每一个烧杯中放置一个质量为约5.5-6g的铝盘。还在每一个烧杯中放置一个2英寸搅拌棒。所有三个烧杯放置它们自己的磁力搅拌板,以及该板设定为速度设置5。向一个烧杯中加入6g40/70沙子。在第二个烧杯中放置6g在实施例15中制备的沙子。第三个烧杯根本不加入沙子。让每一个烧杯搅拌2小时。搅拌后,除去铝盘,洗涤,随后干燥。随后再次测量质量。示于表12的结果指示,与未改性的沙子相比,当接触时,在实施例15中制备的沙子导致金属表面较少磨损。
表12
初始质量,g 2小时后质量,g 总损失,g %损失
没有沙子 5.62 5.612 0.008 0.14%
40/70沙子,未涂布的 6.044 6.027 0.017 0.28%
实施例15沙子 5.673 5.671 0.002 0.04%
实施例20:甘油对混合的影响
向安装叶片连接的型号KSM90WH的KitchenAid台式混合机的转筒中加入1kg干40/70沙子。将3.09g甘油与27.84g乳液聚合物混合,随后向沙子的顶部加入混合物,并且浸泡1分钟。在时间0时,以速度4(150rpm初级旋转)开始混合机。以1-2分钟间隔收集样品,并且在90℃下干燥样品1小时。随后,每一个样品经历剪切测试,其中向1L水中加入50g SSP,并且在550s-1下剪切20分钟。沉降10分钟后,记录床高度。这些剪切测试的结果示于图5。该图证明混合不足和过度混合二者均可影响涂布的支撑剂的行为,导致在剪切测试期间聚合物从沙子解离。在该实施例中,混合的优化量为约5-20分钟。混合持续时间对性能的影响表明,涂层在湿的时候易碎,并且一旦将其干燥,则更持久。与使用单独的乳液聚合物的涂层测试相比,具有共混甘油的乳液的涂层看起来引起加工窗口(即,混合时间的可接受的量)加宽。此外,共混甘油的乳液涂层看起来更充分倒转,导致更好的涂层性质,例如提高的床高度。
实施例21:使用捏和碾磨机生产自-悬浮支撑剂
3立方英尺捏和碾磨机类型混合机用于制备自-悬浮支撑剂的批料。向捏和碾磨机中加入约50lbs的40/70筛目沙子。在1L烧杯中,加入约756g SNF Flopam EM533,并且将84g甘油混合至聚合物中。随后在捏和碾磨机中,在沙子的顶部均匀倒入整个混合物。将捏和碾磨机打开,并且在约70rpm下混合。在混合进行30、60、120、180、240、300、420和600秒后,取出样品。将样品干燥1小时。干燥后,向1L水中加入50g每一个样品,并且在EC EngineeringCLM4中在200rpm下混合20分钟。混合后,将样品倒入1L量筒中,并且沉降10分钟。沉降后,测量床高度。结果示于表13。
表13
捏和碾磨机混合时间(秒) 床高度,mm
30 29.34
60 23.49
120 48.9
180 57.58
240 55.71
300 44.88
420 57.21
600 57.25
实施例22:湿老化(Wet aging)
采用与实施例15相同的方式制造400g自-悬浮支撑剂(SSP)样品。将400g SSP分成50g样品并且放在封闭的容器中,并保持在室温。通过各种时间量干燥后,采用与实施例21相同的方式测试样品。结果示于表14。
表14
老化时间,小时 最终的床高度,mm
0 10.1
2 26.63
4 60.16
实施例23:SSP加上未涂布的支撑剂
向20mL瓶中加入10mL自来水。随后向瓶中加入支撑剂沙子,都根据实施例15制备的SSP和未改性的40/70。将瓶倒转若干次,随后沉降10分钟。沉降后,测量床高度。结果示于表15。
表15
SSP,g 40/70沙子,g 沉降的床高度,mm
0.5 0.5 5.46
0.75 0.25 5.71
0.9 0.1 8.23
实施例24:向SSP中加入防结块剂
采用与在实施例15中描述相同的方式生产400g SSP批料。将样品分成约50g子样品,并且随后在每一个样品中混合0.25g聚集体尺寸为80nm的热解法二氧化硅。随后将样品涂布,并且在室温下老化。采用与在实施例21中描述的相同的方式测试样品。结果示于表16。
表16
小时,老化 沉降的床高度,mm
18 57.3
24 41.28
42 44.29
48 44.76
72 45.48
实施例25:可吸入的灰尘
使用140筛目筛子筛分200g未涂布的和根据实施例15制备的水凝胶-涂布的沙子(40/70筛目)样品,收集通过140筛目筛的细颗粒,并称重。相对于未涂布的沙子样品,沙子的涂布的样品证明细颗粒的量降低86%。结果示于表17。
表17
样品的重量 灰尘的重量 灰尘的总百分比
未涂布的样品 200.011g 0.0779g 0.03895%
涂布的样品 200.005g 0.0108g 0.00540%
实施例26:具有不同粒径的防结块剂
使用速度混合机,在800rpm下,将50g40/70筛目沙子与2g SNF Flopam EM533混合30秒。随后加入0.625g防结块剂,将材料在速度混合机中再次混合30秒。让样品静置3小时,随后在20分钟剪切测试中测试,允许沉降10分钟,并且测量床高度。结果示于表18。在使用宽泛的粒径剪切测试后,防结块剂改进床高度。
表18
防结块剂 粒径 床高度(mm)
滑石(硅酸镁) 12微米 16.76
硅酸钙 1-3微米 39.78
热解法二氧化硅 80纳米 73.87
实施例27:防结块剂的化学组成
测试如在表19中列举的各种各样的防结块剂。对于每一个测试的试剂,在速度1(144rpm)下,将700g40/70沙子在KitchenAid混合机中与21.65g的10%甘油/90%EM533混合物混合。分离出50g样品,并且在速度混合机中与适量的防结块剂混合。立即在剪切测试中测试分别与1%硅酸钙、1.5%硅藻土和1.5%高岭土混合的三个样品,而将其它7样品与不含防结块剂的对照物样品一起在80℃烘箱中干燥1小时。均采用与实施例17相同的方式测试样品。表19-A显示具有施用的防结块剂的湿(非干燥的)样品在剪切测试后的床高度。表19-B显示具有施用的防结块剂的干燥的(在80℃下1小时)样品在剪切测试后的床高度。
表19-A
防结块剂 床高度(mm)
硅酸钙 0.5g(1%) 30.26
硅藻土(DE) 0.75g(1.5%) 12.95
高岭土粘土 0.75g(1.5%) 18.46
表19-B
防结块剂 床高度(mm)
-- 85.9
碳酸氢钠 0.5g(1%) 56.97
玉米淀粉 0.5g(1%) 32.29
婴儿粉(滑石) 0.5g(1%) 84.83
干-絮凝物AF(疏水性淀粉) 0.5g(1%) 32.24
木薯淀粉麦芽糊精 0.5g(1%) 27.08
微晶纤维素 0.5g(1%) 40.12
烘焙粉末 0.5g(1%) 39.88
实施例28:防结块剂:干燥所需的量
向小塑料罐中加入七个50g40/70沙子样品,接着在每一个罐中加入2g每一个10%甘油/90%乳液聚合物混合物。速度混合30秒后,向七个样品中加入0.25g、0.375g、0.5g、0.675g、0.75g、1g和2.5g硅酸钙粉末,将沙子再次混合30秒。无需进一步干燥步骤,将样品剪切测试,并且记录沉降的床高度(以mm计)。结果示于图6。使用二氧化硅作为防结块剂进行类似的实验。这些测试显示涂布有水凝胶的沙子可用防结块剂处理,得到不需要单独的干燥步骤来生产剪切测试后可接受的床高度的产物。
实施例29:二氧化硅防结块剂
向小罐中加入50g40/70沙子,接着加入2g的10%甘油/90%EM533。将罐在800rpm下速度混合30秒,随后加入适量的热解法二氧化硅,如在表20中描述的,将其混合另一个30秒。样品经历20分钟剪切测试,并且记录床高度。未使用烘箱干燥。结果示于表20。
表20
化合物名称 化学特性 加入的量 床高度
EH-5 无定形热解法二氧化硅 1% 136.25mm
M-5 未经处理的热解法二氧化硅 1% 123.52mm
TS-720 经处理的热解法二氧化硅、硅氧烷和硅酮 1% 26.21mm
PG001 30%阴离子胶态二氧化硅,25.9%固体 1%固体 15.30mm
将涂布的沙子的批料在KitchenAid混合机中混合,并且分离成为若干个50g样品。随后向3个样品的每一个中加入1重量%的各种尺寸的热解法二氧化硅,混合,并且剪切测试。这些测试结果示于表21。
表21
粉末 大致尺寸 加入的量 床高度
Aldrich热解法二氧化硅 7nm 1% 48.86mm
Aldrich二氧化硅纳米粉末 10nm 1% 35.48mm
Cabot EH-5 80nm聚集体 1% 59.10mm
实施例30:预热沙子
将500g30/50沙子在90℃烘箱中放置1小时,偶尔搅拌,直至沙子的温度平衡。沙子随后在商业行星式混合机中混合,直至其达到期望的预热温度(45℃、60℃或80℃),此时加入20.8g SNF Flopam EM533,并且将样品混合7分钟。随后将批料分开,并且在80℃的烘箱中干燥一定的时间。对于未预处理的样品,将500g30/50沙子与20.8g聚合物乳液一起放置在混合机转筒中,混合7分钟,随后干燥不同的时间量。使用标准程序剪切测试所有样品:向1000g自来水中加入50g沙子,以550s-1的剪切速率搅拌20分钟,随后在1L量筒中沉降10分钟。结果示于图7。这些结果表明,将沙子预热至45℃是可接受的,但是60-80℃导致在剪切测试中较低的床高度。
实施例31:强制空气干燥
使用速度混合机,将50g40/70沙子与根据实施例14制备的4%乳液聚合物(2g)混合30秒。将样品转移至配备设定在90℃、95℃或100℃的热空气枪的容器。让样品在加热枪中保持共30分钟,在5分钟、10分钟、15分钟和30分钟记号处,取出5g样品。这些样品随后使用小剪切测试来测试,如下进行:100mL自来水设定为在300mL烧杯中使用在500rpm下旋转的2英寸搅拌棒搅拌;向烧杯中加入5g沙子样品,并且剪切3分钟;将整个溶液转移至100mL量筒,倒转一次,沉降5分钟,并测量床高度。这些测试的结果示于图8。如在图中显示的,进入的强制空气的较高的温度引起更完全的干燥和更好的床高度。为了测试当使用强制空气干燥时SSP对剪切的敏感性,将七叉耙通过样品前后拉动,以模拟当干燥时的光剪切。制备两个50g SSP批料,并且在110℃空气下干燥30分钟。第一个完全静态,而第二个在30分钟干燥时间期间恒定耙动。使用大剪切测试来测试两个样品20分钟,沉降时间为10分钟。静态干燥的样品得到100.63mm的沉降床体积;而使用光剪切干燥的样品得到109.49mm的沉降床体积。
实施例32:使用垂直螺杆混合
构造小规模垂直螺杆共混机。向容器中加入沙子和SNF Flopam EM533,随后使用在约120rpm下旋转的螺杆混合。随后将样品分成两个50g份,一个在80℃烘箱中干燥,另一个与0.5g(l重量%)热解法二氧化硅混合。二者随后如在实施例17中描述的经历中剪切测试。床高度测量的结果如下:烘箱干燥1小时,得到101.34mm的床高度;未经干燥的,其中加入1%的7nm热解法二氧化硅,得到91.47mm的床高度。烘箱干燥和加入防结块剂二者以干燥产物得到高的床高度。
实施例33:微波干燥
向小塑料罐中加入50g40/70沙子,随后在速度混合机中,在800rpm下与2g含有(10%甘油/90%乳液聚合物)的共混物混合30秒。将样品放置在700W微波烘箱中,并且高火加热45秒。将样品筛分和冷却,随后在EC Engineering CLM4混合机中,在200rpm下剪切20分钟。混合后,将样品转移至1L烧杯中,并且沉降10分钟。沉降后,测量床高度(以毫米计),得到52.43mm的床高度。微波加热得到具有相对短的干燥时间的可接受的床高度。
实施例34:与防结块剂混合和加热
在KitchenAid混合机中,将500g40/70沙子与20g(20%甘油/80%乳液)混合8分钟。接着加入0.44%Cabot EH-5热解法二氧化硅,并且混合2分钟,随后样品使用加热枪加热。在13、18、24和26分钟混合时间时,收集50g样品。将这些剪切测试20分钟,并且记录床高度。结果示于图9。甘油和二氧化硅的组合使得加工窗口更长。
实施例35:微波干燥
将400g30/50沙子与根据实施例14制备的16g(4%重量)乳液聚合物组合,并且在KitchenAid台式混合机中混合7分钟。一个50g样品使用烘箱(80℃)干燥,而将其它7个样品在700W微波烘箱中分别放置5、10、20、30、45、60和120秒。对样品进行如在实施例12中描述的剪切测试(20分钟长)和点火损失(LOI)测试。LOI测试包括向配衡的坩埚中加入10g沙子,将其在960℃烘箱中放置1小时。加热1小时后,将坩埚在干燥器中冷却1小时,随后称重。干燥时间、床高度和LOI在表22中显示。初始重量和最终重量之间的差异用总初始沙子重量的百分比表示,如图10所示。
表22
干燥方法 干燥时间 床高度(mm) LOI(%)
烘箱 1小时 41.36 1.8
微波 5秒 15.54 3.33
微波 10秒 16.14
微波 20秒 24.68
微波 30秒 39.99 2.929
微波 45秒 53.31
微波 60秒 49.84
微波 120秒 57.81 2.279
这些测试表明,微波干燥技术从涂布的样品主要除去水,而不是油。
实施例36:真空干燥
将250g30/50沙子与10g如在实施例14中描述的乳液聚合物组合。将沙子混合物在KitchenAid台式混合机中在最慢速度下搅拌7分钟,随后分成50g样品,并且在真空烘箱中,在24英寸Hg真空下,分别在25℃、50℃和85℃下干燥1小时、1小时和30分钟。将样品冷却至室温,筛分,并剪切测试(如在实施例12中描述的)20分钟。结果示于表23。
表23
样品# 温度(℃) 时间 床高度(mm)
1 25 1小时 16.79
2 50 1小时 17.34
3 85 30分钟 18.04
在这些测试期间,没有样品完全干燥,尽管其它测试可以显示较高的温度可以实现更完全的干燥。
等价物
虽然本文已公开了本发明的具体实施方案,但是以上说明为说明性的而不是限制性的。虽然已参考其优选的实施方式具体显示和描述了本发明,但是本领域技术人员应理解的是,在不偏离所附权利要求包括的本发明的范围下,可进行形式和细节的各种变化。在回顾本说明书后,本发明的许多变体对于本领域技术人员来说是显而易见的。除非另外说明,否则用于本说明书和权利要求书的表示反应条件、成分的量等的所有数字应理解为在所有情况下被术语"约"修饰。因此,除非说明相反的情况,否则本文描述的数字参数为近似值,其可根据本发明寻求得到的期望的性质而变。

Claims (42)

1.一种改性自-悬浮支撑剂,所述改性自-悬浮支撑剂含有涂布有形成交联水凝胶的聚合物的支撑剂颗粒基体,所述形成交联水凝胶的聚合物局部化在所述支撑剂颗粒基体的表面上,其中,所述支撑剂是干燥的,并且进一步地,其中,当该干燥的改性自-悬浮支撑剂与含水破碎流体接触时,所述形成水凝胶的聚合物溶胀以在支撑剂颗粒基体周围形成水凝胶涂层,该水凝胶涂层具有支撑剂基体的平均直径的10%至1000%的厚度,并且,所述改性自-悬浮支撑剂在含水破碎流体中自-悬浮。
2.根据权利要求1所述的改性自-悬浮支撑剂,其中,当所述改性自-悬浮支撑剂与水混合时,所述形成水凝胶的聚合物溶胀,以在与水接触的30分钟内在支撑剂颗粒基体周围形成水凝胶涂层。
3.根据权利要求2所述的改性自-悬浮支撑剂,其中,在1克改性自-悬浮支撑剂与10克自来水混合并且允许保持未受干扰30分钟之后,所述改性自-悬浮支撑剂显示的沉降床高度比未用水凝胶涂层改性的其他方面相同的支撑剂的沉降床高度高7至28倍。
4.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述形成水凝胶的聚合物选自由以下组成的组:聚丙烯酰胺、丙烯酰胺与阴离子和阳离子共聚单体的共聚物、水解的聚丙烯酰胺、丙烯酰胺与疏水性共聚单体的共聚物、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素、羟乙基纤维素、羟丙基纤维素、瓜耳胶、藻酸盐、角叉菜胶、刺槐豆胶、羧甲基瓜耳胶、羧甲基羟丙基瓜耳胶、疏水关联可溶胀的乳液聚合物和淀粉。
5.根据权利要求4所述的改性自-悬浮支撑剂,其中,所述形成水凝胶的聚合物为阴离子的。
6.根据权利要求5所述的改性自-悬浮支撑剂,其中,所述形成水凝胶的聚合物选自由聚丙烯酰胺、丙烯酰胺共聚物、聚丙烯酸和聚丙烯酸盐组成的组。
7.根据权利要求6所述的改性自-悬浮支撑剂,其中,所述形成水凝胶的聚合物选自由聚丙烯酰胺和丙烯酰胺共聚物组成的组。
8.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述形成水凝胶的聚合物形成所述改性自-悬浮支撑剂的最外层。
9.根据权利要求1所述的改性自-悬浮支撑剂,其中,形成水凝胶的聚合物涂层是通过将支撑剂颗粒基体与含有形成水凝胶的聚合物的液体聚合物制剂和包括水的载体流体结合、随后通过干燥除去水来施覆的。
10.根据权利要求9所述的改性自-悬浮支撑剂,其中,搅拌所述支撑剂颗粒基体和液体聚合物制剂以改善水凝胶涂层的均一性。
11.根据权利要求9所述的改性自-悬浮支撑剂,其中,所述载体流体含有水和有机流体。
12.根据权利要求9所述的改性自-悬浮支撑剂,其中,所述水凝胶聚合物为阴离子聚丙烯酰胺。
13.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述形成水凝胶的聚合物通过足以防止所述改性自-悬浮支撑剂由于湿度而过早水合的量进行交联。
14.根据权利要求13所述的改性自-悬浮支撑剂,其中,所述形成水凝胶的聚合物通过随后施用交联剂的方式进行交联。
15.根据权利要求13所述的改性自-悬浮支撑剂,其中,所述交联剂为离子的。
16.根据权利要求13所述的改性自-悬浮支撑剂,其中,所述交联剂为共价的,且选自由环氧化物、酸酐、醛、二异氰酸酯和碳二亚胺组成的组。
17.根据权利要求16所述的改性自-悬浮支撑剂,其中,所述交联剂为二异氰酸酯。
18.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述改性自-悬浮支撑剂还含有用于水凝胶涂层的破碎剂。
19.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述改性自-悬浮支撑剂在经历550s-1的剪切速率剪切20分钟后持续地保持自-悬浮。
20.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述支撑剂颗粒基体上的形成水凝胶的聚合物涂层含有醇。
21.根据权利要求20所述的改性自-悬浮支撑剂,其中,所述醇为乙醇、丙醇、乙二醇、丙二醇和甘油中的至少一种。
22.根据权利要求21所述的改性自-悬浮支撑剂,其中,所述醇为乙二醇、丙二醇和甘油中的至少一种。
23.根据权利要求22所述的改性自-悬浮支撑剂,其中,所述醇为甘油。
24.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述支撑剂颗粒基体上的形成水凝胶的聚合物涂层含有高HLB表面活性剂。
25.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述改性自-悬浮支撑剂与防结块剂结合,该防结块剂能够改善所述改性自-悬浮支撑剂的流动性。
26.根据权利要求25所述的改性自-悬浮支撑剂,其中,所述防结块剂为硅酸钙、碳酸钙和微晶纤维素中的至少一种。
27.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述水凝胶涂层含有脂肪酸或脂肪醇。
28.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述改性自-悬浮支撑剂与防结块剂结合,该防结块剂能够改善所述改性自-悬浮支撑剂的流动性,并且进一步地,其中所述防结块剂为硅酸钙、硅酸镁、胶体二氧化硅、硅藻土、高岭土、碳酸钙和微晶纤维素中的至少一种。
29.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述改性自-悬浮支撑剂还含有化学添加剂。
30.根据权利要求29所述的改性自-悬浮支撑剂,其中,所述化学添加剂在水凝胶涂层中为选自由过硫酸盐、过氧化物、高锰酸盐、高氯酸盐、过碘酸盐和过碳酸盐组成的组的破乳剂化学品的形式。
31.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述水凝胶涂层含有水可溶胀的聚合物,该水可溶胀的聚合物通过坍塌体积或厚度来响应升高的温度或盐水条件。
32.根据权利要求1所述的改性自-悬浮支撑剂,其中,所述水凝胶涂层含有包括共聚单体的水可溶胀的聚合物,所述共聚单体选自由烷基丙烯酸酯、N-烷基丙烯酰胺、N-异丙基丙烯酰胺、环氧丙烷、苯乙烯和乙烯基己内酰胺组成的组。
33.根据权利要求1-32中任意一项所述的改性自-悬浮支撑剂,其中,当所述改性自-悬浮支撑剂与自来水混合时,所述形成水凝胶的聚合物溶胀,以在与水接触的10分钟内在支撑剂颗粒基体周围形成水凝胶涂层。
34.根据权利要求1-18和20-32中任意一项所述的改性自-悬浮支撑剂,其中,所述改性自-悬浮支撑剂在经历550s-1的剪切速率剪切10分钟后持续地保持自-悬浮。
35.根据权利要求34所述的改性自-悬浮支撑剂,其中,所述改性自-悬浮支撑剂在经历550s-1的剪切速率剪切20分钟后持续地保持自-悬浮。
36.根据权利要求1-2、4-32和35中任意一项所述的改性自-悬浮支撑剂,其中,在1克改性自-悬浮支撑剂与10克自来水混合并且允许保持未受干扰10分钟之后,所述改性自-悬浮支撑剂显示的沉降床高度比未用水凝胶涂层改性的其他方面相同的支撑剂的沉降床高度高3至16倍。
37.一种含水破碎流体,该含水破碎流体含有含水载体流体和权利要求1-36中任意一项所述的改性自-悬浮支撑剂。
38.根据权利要求37所述的含水破碎流体,其中,所述含水破碎流体通过将改性自-悬浮支撑剂与含水载体流体结合而制成,并且进一步地,其中所述水凝胶涂层由形成水凝胶的聚合物制备,该形成水凝胶的聚合物通过足以防止所述改性自-悬浮支撑剂由于湿度而在改性自-悬浮支撑剂与含水载体流体结合之前过早水合的量进行交联。
39.根据权利要求37所述的含水破碎流体,其中,所述含水破碎流体不含有增加粘度的聚合物。
40.根据权利要求37所述的含水破碎流体,其中,所述含水破碎流体含有增加粘度的聚合物以减低改性自-悬浮支撑剂在破碎流体中沉降的比率,并且进一步地,其中这种增加粘度的聚合物的量少于使用未涂布的支撑剂颗粒制备的支撑剂在其它方面相同的对照含水破碎流体中沉降实现相同比率所必须的量。
41.一种破碎地层的方法,该方法包括将含有含水载体流体和权利要求1-36中任意一项所述的改性自-悬浮支撑剂含水破碎流体注入地层。
42.根据权利要求41所述的方法,该方法还包括将含水破碎流体的改性自-悬浮支撑剂与足以降解改性自-悬浮支撑剂的水凝胶涂层的量的化学破乳剂接触。
CN201280042615.XA 2011-08-31 2012-08-30 用于水力破碎的自-悬浮支撑剂 Active CN103764948B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161529600P 2011-08-31 2011-08-31
US61/529,600 2011-08-31
US201261635612P 2012-04-19 2012-04-19
US61/635,612 2012-04-19
US201261662681P 2012-06-21 2012-06-21
US61/662,681 2012-06-21
PCT/US2012/053134 WO2013033391A1 (en) 2011-08-31 2012-08-30 Self-suspending proppants for hydraulic fracturing

Publications (2)

Publication Number Publication Date
CN103764948A CN103764948A (zh) 2014-04-30
CN103764948B true CN103764948B (zh) 2018-05-18

Family

ID=47756870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280042615.XA Active CN103764948B (zh) 2011-08-31 2012-08-30 用于水力破碎的自-悬浮支撑剂

Country Status (10)

Country Link
US (5) US9315721B2 (zh)
EP (1) EP2751387B1 (zh)
CN (1) CN103764948B (zh)
AU (1) AU2012301900B2 (zh)
BR (1) BR112014004314A2 (zh)
CA (1) CA2845840C (zh)
DK (1) DK2751387T3 (zh)
MX (1) MX365956B (zh)
RU (1) RU2602250C2 (zh)
WO (1) WO2013033391A1 (zh)

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057014B2 (en) * 2007-12-11 2015-06-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US9856415B1 (en) * 2007-12-11 2018-01-02 Superior Silica Sands, LLC Hydraulic fracture composition and method
US10920494B2 (en) 2007-12-11 2021-02-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US20170137703A1 (en) * 2007-12-11 2017-05-18 Superior Silica Sands, LLC Hydraulic fracture composition and method
US9845427B2 (en) 2009-10-20 2017-12-19 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
US9320601B2 (en) 2011-10-20 2016-04-26 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US20120101593A1 (en) 2010-10-20 2012-04-26 BIOS2 Medical, Inc. Implantable polymer for bone and vascular lesions
US10525169B2 (en) 2010-10-20 2020-01-07 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
WO2015095745A1 (en) 2010-10-20 2015-06-25 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11058796B2 (en) 2010-10-20 2021-07-13 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11484627B2 (en) 2010-10-20 2022-11-01 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11291483B2 (en) 2010-10-20 2022-04-05 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US11207109B2 (en) 2010-10-20 2021-12-28 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US9725645B2 (en) 2011-05-03 2017-08-08 Preferred Technology, Llc Proppant with composite coating
US8763700B2 (en) 2011-09-02 2014-07-01 Robert Ray McDaniel Dual function proppants
US9290690B2 (en) 2011-05-03 2016-03-22 Preferred Technology, Llc Coated and cured proppants
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
RU2602250C2 (ru) 2011-08-31 2016-11-10 Селф-Саспендинг Проппант Ллс Самосуспендирующиеся проппанты для гидравлического разрыва пласта
US20140000891A1 (en) * 2012-06-21 2014-01-02 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
US10538381B2 (en) 2011-09-23 2020-01-21 Sandbox Logistics, Llc Systems and methods for bulk material storage and/or transport
US9644140B2 (en) * 2011-10-27 2017-05-09 Baker Hughes Incorporated Method of reducing dust with particulates coated with a polycationic polymer
US9809381B2 (en) 2012-07-23 2017-11-07 Oren Technologies, Llc Apparatus for the transport and storage of proppant
US9718610B2 (en) 2012-07-23 2017-08-01 Oren Technologies, Llc Proppant discharge system having a container and the process for providing proppant to a well site
US8622251B2 (en) 2011-12-21 2014-01-07 John OREN System of delivering and storing proppant for use at a well site and container for such proppant
US8827118B2 (en) 2011-12-21 2014-09-09 Oren Technologies, Llc Proppant storage vessel and assembly thereof
US10464741B2 (en) 2012-07-23 2019-11-05 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
USD703582S1 (en) 2013-05-17 2014-04-29 Joshua Oren Train car for proppant containers
US9562187B2 (en) 2012-01-23 2017-02-07 Preferred Technology, Llc Manufacture of polymer coated proppants
US20130196884A1 (en) * 2012-02-01 2013-08-01 Trican Well Service, Ltd. Downhole Chemical Delivery For Oil And Gas Wells
US20190135535A9 (en) 2012-07-23 2019-05-09 Oren Technologies, Llc Cradle for proppant container having tapered box guides
US9421899B2 (en) 2014-02-07 2016-08-23 Oren Technologies, Llc Trailer-mounted proppant delivery system
US9340353B2 (en) 2012-09-27 2016-05-17 Oren Technologies, Llc Methods and systems to transfer proppant for fracking with reduced risk of production and release of silica dust at a well site
US9169433B2 (en) * 2012-09-27 2015-10-27 Halliburton Energy Services, Inc. Methods for enhancing well productivity and minimizing water production using swellable polymers
USD688350S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel
USD688351S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel
USD688349S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel base
USD688772S1 (en) 2012-11-02 2013-08-27 John OREN Proppant vessel
US9598927B2 (en) * 2012-11-15 2017-03-21 Halliburton Energy Services, Inc. Expandable coating for solid particles and associated methods of use in subterranean treatments
US9321956B2 (en) 2012-11-28 2016-04-26 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation
US20140262262A1 (en) * 2013-03-13 2014-09-18 Landec Corporation Compositions and Methods for the Controlled Release of Active Ingredients
US9555454B2 (en) * 2013-03-14 2017-01-31 Lehigh University Polymer coated sand and methods of manufacture and use
US9518214B2 (en) 2013-03-15 2016-12-13 Preferred Technology, Llc Proppant with polyurea-type coating
US9446801B1 (en) 2013-04-01 2016-09-20 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
USD688597S1 (en) 2013-04-05 2013-08-27 Joshua Oren Trailer for proppant containers
USD694670S1 (en) 2013-05-17 2013-12-03 Joshua Oren Trailer for proppant containers
US10100247B2 (en) 2013-05-17 2018-10-16 Preferred Technology, Llc Proppant with enhanced interparticle bonding
US10010609B2 (en) 2013-05-23 2018-07-03 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US20150060069A1 (en) * 2013-08-27 2015-03-05 Schlumberger Technology Corporation Swellable ball sealers
WO2015030805A1 (en) * 2013-08-30 2015-03-05 Halliburton Energy Services, Inc. Improved suspension of proppant particles in hydraulic fracturing fluid
US20160230083A1 (en) * 2013-09-25 2016-08-11 Board Of Regents, The University Of Texas System Lightweight Proppants for Hydraulic Fracturing
CN103471903B (zh) * 2013-09-29 2016-01-06 吴天骥 切片用固定液的配置方法及其应用
US20150119301A1 (en) * 2013-10-31 2015-04-30 Preferred Technology, Llc Flash Coating Treatments For Proppant Solids
WO2015072875A1 (en) * 2013-11-13 2015-05-21 Schlumberger Canada Limited Methods of treating a subterranean formations with fluids comprising proppant
BR112016010888B1 (pt) * 2013-11-15 2022-06-07 Rohm And Haas Company Propante para uso em fraturamento hidráulico, processo para preparar o propante e método para reduzir a geração de poeira associada com operações de fraturamento hidráulico
WO2015076693A1 (en) * 2013-11-25 2015-05-28 Schlumberger Canada Limited Controlled inhomogeneous proppant aggregate formation
WO2015088827A1 (en) 2013-12-10 2015-06-18 Schlumberger Canada Limited System and method of treating a subterranean formation with a diverting composition
US9410394B2 (en) 2013-12-11 2016-08-09 Schlumberger Technology Corporation Methods for minimizing overdisplacement of proppant in fracture treatments
MX2016006366A (es) * 2013-12-19 2016-08-01 Halliburton Energy Services Inc Copolimero de bloque hidrofilico doble en una superficie particulada en pozos para reducir el sarro.
US9890594B2 (en) * 2013-12-19 2018-02-13 John Hanback Advanced drilling systems and methods
US9149789B2 (en) 2014-02-03 2015-10-06 Psmg, Llc Dispersions of superabsorbent polymers, processing thereof and articles formed from the dispersions
US11352553B2 (en) 2014-11-18 2022-06-07 Powdermet, Inc. Polymer coated proppant
US9840660B2 (en) 2014-02-26 2017-12-12 Halliburton Energy Services, Inc. Crosslinker-coated proppant particulates for use in treatment fluids comprising gelling agents
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
CN104948159A (zh) * 2014-03-28 2015-09-30 北京仁创科技集团有限公司 一种天然水压裂施工方法
CN104944840A (zh) * 2014-03-28 2015-09-30 北京仁创科技集团有限公司 用于天然水压裂施工的自悬浮支撑剂的制备方法
CN104946233B (zh) * 2014-03-28 2018-12-04 北京仁创科技集团有限公司 一种用于天然水压裂的自悬浮支撑剂
CN104948160A (zh) * 2014-03-28 2015-09-30 北京仁创科技集团有限公司 自悬浮支撑剂及其制备和施工方法
CN104946234A (zh) * 2014-03-28 2015-09-30 北京仁创科技集团有限公司 一种自悬浮支撑剂及其制备方法
CA2948953A1 (en) * 2014-03-28 2015-10-01 Beijing Rechsand Science & Technology Group Co., Ltd Self-suspending proppant and preparation and use thereof
CN104948158A (zh) * 2014-03-28 2015-09-30 北京仁创科技集团有限公司 水力压裂的油气田开采方法
CN104948154A (zh) * 2014-03-28 2015-09-30 北京仁创科技集团有限公司 一种天然水压裂施工方法
US9969929B2 (en) 2014-03-28 2018-05-15 Arr-Maz Products, L.P. Attrition resistant proppant composite and its composition matters
US10508231B2 (en) 2014-03-28 2019-12-17 Arr-Maz Products, L.P. Attrition resistant proppant composite and its composition matters
US9790422B2 (en) 2014-04-30 2017-10-17 Preferred Technology, Llc Proppant mixtures
AU2015264448B2 (en) * 2014-05-21 2017-06-08 Shell Internationale Research Maatschappij B.V. Methods of making and using cement coated substrate
WO2015187631A1 (en) 2014-06-02 2015-12-10 Tethis, Inc. Modified biopolymers and methods of producing and using the same
US10106731B2 (en) 2014-06-19 2018-10-23 Halliburton Energy Services, Inc. Methods and compositions for providing proppant suspension and consolidation in subterranean treatment operations
WO2016003304A1 (ru) * 2014-06-30 2016-01-07 Шлюмберже Канада Лимитед Композитный проппант, способ изготовления композитного проппанта и способы его применения
US11873160B1 (en) 2014-07-24 2024-01-16 Sandbox Enterprises, Llc Systems and methods for remotely controlling proppant discharge system
WO2016025002A1 (en) 2014-08-15 2016-02-18 Halliburton Energy Services, Inc. Crosslinkable proppant particulates for use in subterranean formation operations
WO2016032447A1 (en) * 2014-08-27 2016-03-03 Halliburton Energy Services, Inc. Self-suspending proppant particulates using canola protein-based hydrogel
US9676554B2 (en) 2014-09-15 2017-06-13 Oren Technologies, Llc System and method for delivering proppant to a blender
US9670752B2 (en) 2014-09-15 2017-06-06 Oren Technologies, Llc System and method for delivering proppant to a blender
WO2016048291A1 (en) * 2014-09-24 2016-03-31 Halliburton Energy Services, Inc. Methods and compositions for suppressing bacterial growth in a subterranean environment
US10001002B2 (en) * 2014-10-14 2018-06-19 Halliburton Energy Services, Inc. Particle dust control with liquid binding agents
US20160102243A1 (en) * 2014-10-14 2016-04-14 Schlumberger Technology Corporation Expandable proppant
US20160108713A1 (en) * 2014-10-20 2016-04-21 Schlumberger Technology Corporation System and method of treating a subterranean formation
WO2016068928A1 (en) * 2014-10-30 2016-05-06 Halliburton Energy Services, Inc. Surface modification agent for control of dust from additive particles
CN104357033B (zh) * 2014-11-05 2017-03-29 成都理工大学 堵剂增效剂、含有该堵剂增效剂的凝胶及其制备方法与应用
WO2016089813A1 (en) * 2014-12-01 2016-06-09 Aramco Services Company A fracturing fluid for subterranean formations
WO2016133506A1 (en) * 2015-02-18 2016-08-25 Halliburton Energy Services, Inc. Salt tolerant settling retardant proppants
US9976390B2 (en) * 2015-03-30 2018-05-22 Baker Hughes, A Ge Company, Llc Drilling fluids with leakoff control and drill cuttings removal sweeps
AR104606A1 (es) 2015-05-13 2017-08-02 Preferred Tech Llc Partícula recubierta
US9862881B2 (en) 2015-05-13 2018-01-09 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity
CN104893707B (zh) * 2015-05-22 2018-09-21 河南天祥新材料股份有限公司 一种用于清水压裂的自悬浮支撑剂及其制备方法
CN107683319A (zh) * 2015-05-27 2018-02-09 路博润油田解决方案公司 聚合物组合物的附聚组合物、改进的固体材料及其制备和使用方法
US10023790B1 (en) * 2015-05-29 2018-07-17 Covia Holdings Corporation Dust free proppant and method of making same
US10000691B2 (en) 2015-06-08 2018-06-19 Halliburton Energy Services, Inc. Variably tacky proppants
WO2017039600A1 (en) * 2015-08-31 2017-03-09 Halliburton Energy Services, Inc. Self-supporting proppant with improved proppant pack conductivity
WO2017048222A1 (en) * 2015-09-14 2017-03-23 Halliburton Energy Services, Inc. Proppant comprising swellable coating thereon for treatment of subterranean formations
EP3359618A4 (en) * 2015-10-05 2019-06-26 Baker Hughes, a GE company, LLC SANDING COMPOSITIONS AND METHOD FOR USE THEREOF FOR DUST CONTROL
CN106566498B (zh) * 2015-10-13 2020-06-02 中国石油化工股份有限公司 一种复合颗粒、其制备方法和应用
US10662372B2 (en) 2015-10-22 2020-05-26 Halliburton Energy Services, Inc. Multifunctional brush photopolymerized coated proppant particulates use in subterranean formation operations
WO2017078560A1 (ru) * 2015-11-02 2017-05-11 Шлюмберже Канада Лимитед Способ гидроразрыва пласта (варианты)
WO2017091463A1 (en) 2015-11-23 2017-06-01 Tethis, Inc. Coated particles and methods of making and using the same
US20170174980A1 (en) * 2015-12-17 2017-06-22 Schlumberger Technology Corporation Bio-fiber treatment fluid
MX2018007615A (es) * 2015-12-22 2019-02-20 Mi Llc Polimeros de encapsulacion y activacion selectiva de estos.
CA3008905C (en) 2016-01-06 2020-07-07 Oren Technologies, Llc Conveyor with integrated dust collector system
WO2017119891A1 (en) * 2016-01-07 2017-07-13 Halliburton Energy Services, Inc. Petrified cellulosic materials as additives to treatment fluids
CN105754580B (zh) * 2016-03-25 2018-09-11 山东诺尔生物科技有限公司 压裂用低摩阻自悬浮支撑剂的制备方法
US10190040B2 (en) * 2016-04-01 2019-01-29 Step Energy Services Ltd. Self-suspending proppant for hydraulic fracturing
US10518828B2 (en) 2016-06-03 2019-12-31 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
CN106147746B (zh) * 2016-07-07 2021-03-02 新密市万力实业发展有限公司 一种应用于清水压裂体系的自悬浮支撑剂
US20190023979A1 (en) * 2016-07-27 2019-01-24 Baker Hughes, A Ge Company, Llc Methods and compositions for fabric-based suspension of proppants
CN106338456B (zh) * 2016-08-30 2018-11-02 重庆长江造型材料(集团)股份有限公司 自悬浮支撑剂悬浮性能检测方法
US10947438B2 (en) 2016-09-20 2021-03-16 Saudi Arabian Oil Company Method for monitoring cement using polymer-based capsules
US10377940B2 (en) 2016-09-20 2019-08-13 Saudi Arabian Oil Company Cement having cross-linked polymers
US10947437B2 (en) 2016-09-20 2021-03-16 Saudi Arabian Oil Company Chemical composition of superabsorbent vesicles, method for mortar cement admixture, and applications of the same
WO2018071636A1 (en) 2016-10-13 2018-04-19 Soane, David, S. Self-suspending proppants
US10836957B2 (en) * 2016-10-31 2020-11-17 Case Western Reserve University Suspending proppants with polymerized hydrogels
CN110023453A (zh) * 2016-11-03 2019-07-16 阿尔-马兹制品公司 耐磨损支撑剂复合物及其组成物质
EP3538166B1 (en) * 2016-11-10 2024-06-12 206 Ortho, Inc. Composite implants for treating bone fractures and fortifying bone
US11208591B2 (en) 2016-11-16 2021-12-28 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity
CN106526137A (zh) * 2016-11-17 2017-03-22 青岛科技大学 一种自悬浮支撑剂压裂导流性能物理模拟实验评价方法
US10696896B2 (en) 2016-11-28 2020-06-30 Prefferred Technology, Llc Durable coatings and uses thereof
CN106675549B (zh) * 2016-12-05 2021-11-09 北京奇想达新材料有限公司 油气井压裂用水中可悬浮支撑剂及其制备方法
US20180179119A1 (en) * 2016-12-23 2018-06-28 Superior Energy Services, Llc High Temperature Energetic Formulations
CN106833599A (zh) * 2016-12-28 2017-06-13 北京晨础石油科技有限公司 免配液支撑剂及其制备方法
US10131832B2 (en) 2017-02-13 2018-11-20 Aramco Services Company Self-suspending proppants for use in carbon dioxide-based fracturing fluids and methods of making and use thereof
US10066155B1 (en) 2017-02-13 2018-09-04 Saudi Arabian Oil Company Viscosifying proppants for use in carbon dioxide-based fracturing fluids and methods of making and use thereof
CN106893575A (zh) * 2017-02-16 2017-06-27 青岛科凯达橡塑有限公司 一种天然气开采用气溶覆膜支撑剂及其制备方法和应用
US11365626B2 (en) 2017-03-01 2022-06-21 Proptester, Inc. Fluid flow testing apparatus and methods
US10612356B2 (en) 2017-03-01 2020-04-07 Proptester, Inc. Fracture fluid and proppant transport testing systems and methods of using same
CN110520501B (zh) * 2017-03-20 2022-10-25 费尔蒙特山拓有限公司 抗回流支撑剂
US10563069B2 (en) 2017-03-30 2020-02-18 International Business Machines Corporation Prevention of biofilm formation
US10507267B2 (en) 2017-04-25 2019-12-17 International Business Machines Corporation Highly hydrophobic antifouling coatings for implantable medical devices
US20190002756A1 (en) * 2017-06-29 2019-01-03 Self-Suspending Proppant Llc Self-suspending proppants made from powdered hydrogel-forming polymers
CN107323602B (zh) * 2017-07-19 2019-02-12 吉林大学 一种三明治结构的智能水凝胶材料减阻表面
US10696849B2 (en) 2017-08-08 2020-06-30 International Business Machines Corporation Tailorable surface topology for antifouling coatings
US10745586B2 (en) 2017-08-08 2020-08-18 International Business Machines Corporation Fluorinated networks for anti-fouling surfaces
US10385261B2 (en) 2017-08-22 2019-08-20 Covestro Llc Coated particles, methods for their manufacture and for their use as proppants
WO2019135937A1 (en) 2018-01-02 2019-07-11 Saudi Arabian Oil Company Composition of encapsulated chemical additives and methods for preparation of the same
WO2019135939A1 (en) 2018-01-02 2019-07-11 Saudi Arabian Oil Company Material design for the encapsulation of additives and release
CA3087384A1 (en) 2018-01-02 2019-07-11 Saudi Arabian Oil Company Capsule design for the capture of reagents
WO2019152042A1 (en) 2018-02-01 2019-08-08 Halliburton Energy Services, Inc. Proppant treatments for mitigating erosion of equipment in subterranean fracturing operations
US20190316032A1 (en) * 2018-02-20 2019-10-17 Frac Force Technologies Llc Dual-use, dual-function polyacrylamide proppant suspending agent for fluid transport of high concentrations of proppants
US11713415B2 (en) 2018-11-21 2023-08-01 Covia Solutions Inc. Salt-tolerant self-suspending proppants made without extrusion
CN109575909A (zh) * 2019-01-14 2019-04-05 重庆长江造型材料(集团)股份有限公司 一种压裂用覆膜支撑剂
CN109749731B (zh) * 2019-01-14 2021-09-07 重庆长江造型材料(集团)股份有限公司 一种压裂用覆膜支撑剂的制备方法
US11180691B2 (en) * 2019-01-22 2021-11-23 Baker Hughes Holdings Llc Use of composites having coating of reaction product of silicates and polyacrylic acid
CN110257023A (zh) * 2019-05-20 2019-09-20 西南石油大学 一种钻井液用多功能加重剂及其制备方法以及水基钻井液和其应用
WO2021030455A1 (en) * 2019-08-13 2021-02-18 Xpand Oil & Gas Solutions, Llc Gas generating compositions and uses
US11384283B2 (en) 2019-08-28 2022-07-12 Saudi Arabian Oil Company Surface polymerized proppants
US20210108131A1 (en) * 2019-10-11 2021-04-15 Feipeng Liu Multifunctional Coatings and Chemical Additives
US11981865B2 (en) * 2019-10-18 2024-05-14 Schlumberger Technology Corporation In-situ composite polymeric structures for far-field diversion during hydraulic fracturing
US20210324713A1 (en) * 2020-04-15 2021-10-21 Baker Hughes Oilfield Operations Llc Swellable devices based on renewable raw materials and methods of using in wellbores
US11459503B2 (en) 2020-06-18 2022-10-04 Saudi Arabian Oil Company Methods for making proppant coatings
US11851614B2 (en) 2020-06-18 2023-12-26 Saudi Arabian Oil Company Proppant coatings and methods of making
WO2022011263A1 (en) 2020-07-10 2022-01-13 Aramco Services Company High viscosity friction reducer for fracturing fluid
US20220064520A1 (en) * 2020-08-27 2022-03-03 Hexion Inc. Proppant materials
WO2022132133A1 (en) * 2020-12-15 2022-06-23 Halliburton Energy Services, Inc. Methods of manufacturing lost circulation material at a well site
US11370962B1 (en) 2021-02-08 2022-06-28 Saudi Arabian Oil Company Methods for designing coated proppant in low viscosity carrier fluid
US11499092B2 (en) 2021-02-18 2022-11-15 Saudi Arabian Oil Company Coated nanosand as relative permeability modifier
US11802232B2 (en) 2021-03-10 2023-10-31 Saudi Arabian Oil Company Polymer-nanofiller hydrogels
CN113150755B (zh) * 2021-04-29 2022-04-08 西南石油大学 一种降滤失剂制备方法、钻井液、钻井液制备方法
US11702587B2 (en) 2021-08-06 2023-07-18 Saudi Arabian Oil Company Coated proppants and methods of making and use thereof
US11932812B2 (en) * 2021-08-27 2024-03-19 Alchemy Sciences, Inc. Particles for carriers and tracers
US11708521B2 (en) 2021-12-14 2023-07-25 Saudi Arabian Oil Company Rigless method for selective zonal isolation in subterranean formations using polymer gels
US11572761B1 (en) 2021-12-14 2023-02-07 Saudi Arabian Oil Company Rigless method for selective zonal isolation in subterranean formations using colloidal silica
CN114250067B (zh) * 2021-12-22 2023-03-17 中国石油天然气集团有限公司 一种天然气水合物钻井液用暂堵剂及其制备方法
CN115873589B (zh) * 2023-02-28 2023-05-09 成都理工大学 一种智能油相释放自悬浮示踪型支撑剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030818A1 (en) * 1994-05-04 1995-11-16 Baker Hughes Incorporated Spotting fluid and lubricant
WO2008056302A1 (en) * 2006-11-08 2008-05-15 Schlumberger Canada Limited Delayed water-swelling materials and methods of use

Family Cites Families (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA276357A (en) 1927-12-20 Alcunovitch Capeliuschnicoff Matvey Bore-hole apparatus
US2703316A (en) 1951-06-05 1955-03-01 Du Pont Polymers of high melting lactide
US3127849A (en) 1957-09-09 1964-04-07 Mechanical Handling Sys Inc Sub-flooring conveyor control system
US3596141A (en) 1969-10-28 1971-07-27 Richard Sterling Jones Electrical meter box
US3912692A (en) 1973-05-03 1975-10-14 American Cyanamid Co Process for polymerizing a substantially pure glycolide composition
US3956141A (en) 1973-09-14 1976-05-11 Texaco Inc. Additive for reducing fluid loss or filtration rate for aqueous drilling fluid containing both high salinity and high soluble calcium
US4022736A (en) 1975-10-22 1977-05-10 American Cyanamid Company Freeze-thaw stable, self-inverting, water-in-oil emulsion
ES479185A1 (es) 1978-04-04 1980-08-16 Grain Processing Corp Un procedimiento para preparar pastas de almidon cationico.
US4532052A (en) 1978-09-28 1985-07-30 Halliburton Company Polymeric well treating method
US4417989A (en) 1980-04-21 1983-11-29 Texaco Development Corp. Propping agent for fracturing fluids
US4387769A (en) 1981-08-10 1983-06-14 Exxon Production Research Co. Method for reducing the permeability of subterranean formations
AU547407B2 (en) 1982-07-23 1985-10-17 Norton Co. Low density proppant for oil and gas wells
US4888240A (en) 1984-07-02 1989-12-19 Graham John W High strength particulates
US5216050A (en) 1988-08-08 1993-06-01 Biopak Technology, Ltd. Blends of polyactic acid
US6323307B1 (en) 1988-08-08 2001-11-27 Cargill Dow Polymers, Llc Degradation control of environmentally degradable disposable materials
US5124376A (en) * 1991-04-22 1992-06-23 Phillips Petroleum Company Use of phenol as rapid inverse latex inversion promoter and solution viscosity enhancer
US5161615A (en) 1991-06-27 1992-11-10 Union Oil Company Of California Method for reducing water production from wells
GB9220964D0 (en) 1991-11-15 1992-11-18 Ici Plc Anionic compounds
JP3499881B2 (ja) 1992-02-28 2004-02-23 戸田工業株式会社 無機物粒子含有樹脂複合球状物粉体
WO1995005604A2 (en) 1993-08-13 1995-02-23 Molecular Geriatrics Corporation Methods for the diagnosis of alzheimer's disease
US5925714A (en) 1994-03-04 1999-07-20 Snf S.A. Surfactant for self-inverting polyacrylmides
US5837656A (en) 1994-07-21 1998-11-17 Santrol, Inc. Well treatment fluid compatible self-consolidating particles
EP0851908B1 (en) 1995-06-07 2003-05-02 Lee County Mosquito Control District Lubricant compositions and methods
US5718600A (en) 1996-01-17 1998-02-17 Raychem Corporation Electrical plug
US5728742A (en) 1996-04-04 1998-03-17 The Dow Chemical Company Absorbent polymers having a reduced caking tendency
JP3832777B2 (ja) 1996-08-12 2006-10-11 宇部日東化成株式会社 エポキシ樹脂被覆熱接着性粒子の製造方法
US6364018B1 (en) 1996-11-27 2002-04-02 Bj Services Company Lightweight methods and compositions for well treating
US6169058B1 (en) * 1997-06-05 2001-01-02 Bj Services Company Compositions and methods for hydraulic fracturing
US5924488A (en) 1997-06-11 1999-07-20 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US6109350A (en) 1998-01-30 2000-08-29 Halliburton Energy Services, Inc. Method of reducing water produced with hydrocarbons from wells
JP2000014604A (ja) 1998-07-06 2000-01-18 Matsushita Electric Ind Co Ltd 電気掃除機
JP2001058126A (ja) 1999-08-23 2001-03-06 Mitsubishi Paper Mills Ltd 多核マイクロカプセル粉体及びその製造方法
US6294622B1 (en) 1999-09-27 2001-09-25 Ecole Polytechnique Federale De Lausanne (Epfl) Polymer flocculants with improved dewatering characteristics
US6279656B1 (en) 1999-11-03 2001-08-28 Santrol, Inc. Downhole chemical delivery system for oil and gas wells
JP4628519B2 (ja) 2000-05-30 2011-02-09 株式会社日本触媒 複合粒子およびその製造方法
US6605674B1 (en) 2000-06-29 2003-08-12 Ondeo Nalco Company Structurally-modified polymer flocculants
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
GB0108086D0 (en) 2001-03-30 2001-05-23 Norske Stats Oljeselskap Method
US6723683B2 (en) 2001-08-07 2004-04-20 National Starch And Chemical Investment Holding Corporation Compositions for controlled release
US7040418B2 (en) 2001-11-02 2006-05-09 M-I L.L.C. Proppant recovery system
US6668926B2 (en) 2002-01-08 2003-12-30 Halliburton Energy Services, Inc. Methods of consolidating proppant in subterranean fractures
US7216711B2 (en) 2002-01-08 2007-05-15 Halliburton Eenrgy Services, Inc. Methods of coating resin and blending resin-coated proppant
US6742590B1 (en) 2002-09-05 2004-06-01 Halliburton Energy Services, Inc. Methods of treating subterranean formations using solid particles and other larger solid materials
US6817414B2 (en) 2002-09-20 2004-11-16 M-I Llc Acid coated sand for gravel pack and filter cake clean-up
US7972997B2 (en) 2002-09-20 2011-07-05 M-I L.L.C. Process for coating gravel pack sand with polymeric breaker
JP4559227B2 (ja) 2002-10-09 2010-10-06 ノボザイムス アクティーゼルスカブ 粒子組成物を改良する方法
US6854874B2 (en) 2002-10-29 2005-02-15 Halliburton Energy Services, Inc. Gel hydration system
US7482309B2 (en) 2003-11-24 2009-01-27 Halliburton Energy Services, Inc. Methods of drilling wellbores using variable density fluids comprising coated elastic particles
US6892813B2 (en) 2003-01-30 2005-05-17 Halliburton Energy Services, Inc. Methods for preventing fracture proppant flowback
US6866099B2 (en) 2003-02-12 2005-03-15 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated subterranean zones
WO2004092254A2 (en) 2003-04-15 2004-10-28 Borden Chemical, Inc. Particulate material containing thermoplastic elastomer and methods for making and using same
US20040244978A1 (en) * 2003-06-04 2004-12-09 Sun Drilling Products Corporation Lost circulation material blend offering high fluid loss with minimum solids
US7772163B1 (en) 2003-06-20 2010-08-10 Bj Services Company Llc Well treating composite containing organic lightweight material and weight modifying agent
US7044220B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7228904B2 (en) 2003-06-27 2007-06-12 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7178596B2 (en) 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7135231B1 (en) 2003-07-01 2006-11-14 Fairmont Minerals, Ltd. Process for incremental coating of proppants for hydraulic fracturing and proppants produced therefrom
US7021379B2 (en) 2003-07-07 2006-04-04 Halliburton Energy Services, Inc. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US7066258B2 (en) 2003-07-08 2006-06-27 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US7090015B2 (en) 2003-07-10 2006-08-15 Halliburton Energy Services, Inc. Methods of treating subterranean zones and viscous aqueous fluids containing xanthan and a combination cross-linker—breaker
US7131491B2 (en) 2004-06-09 2006-11-07 Halliburton Energy Services, Inc. Aqueous-based tackifier fluids and methods of use
US7032667B2 (en) 2003-09-10 2006-04-25 Halliburtonn Energy Services, Inc. Methods for enhancing the consolidation strength of resin coated particulates
US20050123590A1 (en) 2003-12-05 2005-06-09 3M Innovative Properties Company Wound dressings and methods
CN1894284B (zh) 2003-12-15 2011-01-05 赫尔克里士公司 反相乳液聚合物的转化的改进
US7156174B2 (en) 2004-01-30 2007-01-02 Halliburton Energy Services, Inc. Contained micro-particles for use in well bore operations
US7204312B2 (en) 2004-01-30 2007-04-17 Halliburton Energy Services, Inc. Compositions and methods for the delivery of chemical components in subterranean well bores
US7244492B2 (en) * 2004-03-04 2007-07-17 Fairmount Minerals, Ltd. Soluble fibers for use in resin coated proppant
US7063151B2 (en) 2004-03-05 2006-06-20 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
US20050244641A1 (en) 2004-04-12 2005-11-03 Carbo Ceramics Inc. Coating and/or treating hydraulic fracturing proppants to improve wettability, proppant lubrication, and/or to reduce damage by fracturing fluids and reservoir fluids
US7073581B2 (en) 2004-06-15 2006-07-11 Halliburton Energy Services, Inc. Electroconductive proppant compositions and related methods
WO2006023172A2 (en) 2004-08-16 2006-03-02 Fairmount Minerals, Ltd. Control of particulate flowback in subterranean formations using elastomeric resin coated proppants
US7299869B2 (en) 2004-09-03 2007-11-27 Halliburton Energy Services, Inc. Carbon foam particulates and methods of using carbon foam particulates in subterranean applications
US7281580B2 (en) 2004-09-09 2007-10-16 Halliburton Energy Services, Inc. High porosity fractures and methods of creating high porosity fractures
US8227026B2 (en) 2004-09-20 2012-07-24 Momentive Specialty Chemicals Inc. Particles for use as proppants or in gravel packs, methods for making and using the same
US7255789B2 (en) 2004-12-13 2007-08-14 Fite Jr Robert D Method and apparatus for liquid purification
US7322411B2 (en) 2005-01-12 2008-01-29 Bj Services Company Method of stimulating oil and gas wells using deformable proppants
US20060175059A1 (en) 2005-01-21 2006-08-10 Sinclair A R Soluble deverting agents
US8012533B2 (en) 2005-02-04 2011-09-06 Oxane Materials, Inc. Composition and method for making a proppant
US7216705B2 (en) 2005-02-22 2007-05-15 Halliburton Energy Services, Inc. Methods of placing treatment chemicals
GEP20115214B (en) 2005-02-25 2011-05-25 Superior Graphite Co Graphite coating of particulate materials
AU2006220649A1 (en) 2005-03-07 2006-09-14 Baker Hughes Incorporated Use of coated proppant to minimize abrasive erosion in high rate fracturing operations
US7308939B2 (en) 2005-03-09 2007-12-18 Halliburton Energy Services, Inc. Methods of using polymer-coated particulates
US7645724B2 (en) 2005-03-16 2010-01-12 Baker Hughes Incorporated Compositions and use of mono- and polyenoic acids for breaking VES-gelled fluids
US7442741B2 (en) 2005-04-11 2008-10-28 Georgia-Pacific Chemicals Llc Stable aqueous dispersions of hydrophilic phenolic resins having low xylenol and bisphenol-A content
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US20070023187A1 (en) 2005-07-29 2007-02-01 Carbo Ceramics Inc. Sintered spherical pellets useful for gas and oil well proppants
US7461697B2 (en) 2005-11-21 2008-12-09 Halliburton Energy Services, Inc. Methods of modifying particulate surfaces to affect acidic sites thereon
US7392847B2 (en) 2005-12-09 2008-07-01 Clearwater International, Llc Aggregating reagents, modified particulate metal-oxides, and methods for making and using same
RU2441052C2 (ru) 2005-12-23 2012-01-27 Шлюмбергер Текнолоджи Б.В. Расклинивающий наполнитель (варианты)
US8333241B2 (en) 2006-02-10 2012-12-18 Halliburton Energy Services, Inc. Methods and compositions for packing void spaces and stabilizing formations surrounding a wellbore
CA2536957C (en) 2006-02-17 2008-01-22 Jade Oilfield Service Ltd. Method of treating a formation using deformable proppants
US7931087B2 (en) 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates
US20070246214A1 (en) 2006-03-20 2007-10-25 Fish Robert B Jr Proppants made from filled polymers for use during oil and gas production and associated processes
GB2436576B (en) 2006-03-28 2008-06-18 Schlumberger Holdings Method of facturing a coalbed gas reservoir
EP2230264B1 (en) 2006-06-29 2019-10-09 Life Technologies AS Particles containing multi-block polymers
US8003214B2 (en) 2006-07-12 2011-08-23 Georgia-Pacific Chemicals Llc Well treating materials comprising coated proppants, and methods
US9027647B2 (en) 2006-08-04 2015-05-12 Halliburton Energy Services, Inc. Treatment fluids containing a biodegradable chelating agent and methods for use thereof
US8063000B2 (en) 2006-08-30 2011-11-22 Carbo Ceramics Inc. Low bulk density proppant and methods for producing the same
CA2662795A1 (en) 2006-09-05 2008-03-13 Columbus Nanoworks, Inc. Magnetic particles and methods of making and using the same
JP5970151B2 (ja) 2006-09-11 2016-08-17 ダウ グローバル テクノロジーズ エルエルシー 多層レジンコーテッドサンド
US7779915B2 (en) * 2006-09-18 2010-08-24 Schlumberger Technology Corporation Methods of limiting leak off and damage in hydraulic fractures
US7490667B2 (en) 2006-10-02 2009-02-17 Fairmount Minerals, Inc. Proppants with soluble composite coatings
US7968501B2 (en) * 2006-10-31 2011-06-28 Schlumberger Technology Corporation Crosslinker suspension compositions and uses thereof
US7581590B2 (en) 2006-12-08 2009-09-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
WO2008088449A2 (en) 2006-12-19 2008-07-24 Dow Global Technologies Inc. A new coating composition for proppant and the method of making the same
RU2373253C2 (ru) 2007-03-26 2009-11-20 Шлюмбергер Текнолоджи Б.В. Гранулы материала, применяемые для уменьшения выноса проппанта из трещины гидроразрыва
CA2585065A1 (en) 2007-04-13 2008-10-13 Trican Well Service Ltd. Aqueous particulate slurry compositions and methods of making same
EP1985682A1 (en) * 2007-04-17 2008-10-29 Services Pétroliers Schlumberger Method and composition for treatment of a well
RU2346910C1 (ru) 2007-04-20 2009-02-20 Шлюмбергер Текнолоджи Б.В. Керамический проппант с низкой плотностью и способ его приготовления
CA2848264C (en) 2007-04-26 2015-11-10 Trican Well Service Ltd. Control of particulate entrainment by fluids
US8058213B2 (en) 2007-05-11 2011-11-15 Georgia-Pacific Chemicals Llc Increasing buoyancy of well treating materials
US7754659B2 (en) 2007-05-15 2010-07-13 Georgia-Pacific Chemicals Llc Reducing flow-back in well treating materials
EA201000114A1 (ru) 2007-07-06 2010-06-30 Карбо Керамикс Инк. Проппант и способ гидравлического разрыва пласта (варианты)
WO2009012455A1 (en) 2007-07-18 2009-01-22 Oxane Materials, Inc. Proppants with carbide and/or nitride phases
AU2008278232A1 (en) 2007-07-18 2009-01-22 Trican Well Service Ltd. Resin coated proppant slurry compositions and methods of making and using same
US20090038799A1 (en) 2007-07-27 2009-02-12 Garcia-Lopez De Victoria Marieliz System, Method, and Apparatus for Combined Fracturing Treatment and Scale Inhibition
US7737091B2 (en) * 2007-08-28 2010-06-15 Imerys Proppants and anti-flowback additives made from sillimanite minerals, methods of manufacture, and methods of use
CA2602746A1 (en) * 2007-09-14 2009-03-14 Kenneth Dwayne Hodge Composition and method for cleaning formation faces
US8496057B2 (en) 2007-09-18 2013-07-30 Schlumberger Technology Corporation Proppant, a method for production thereof and formation hydraulic fracturing method using the produced proppant
BRPI0817867A2 (pt) 2007-10-11 2015-03-31 Prad Res & Dev Ltd Método para reduzir a perda de fluido nas operações de fundo de poço, e composição para reduzir a perda de fluido nas operações de interior de poço
US9057014B2 (en) 2007-12-11 2015-06-16 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US8341881B2 (en) 2007-12-11 2013-01-01 Aquasmart Enterprises, Llc Hydration maintenance apparatus and method
US8661729B2 (en) 2007-12-11 2014-03-04 Calder Hendrickson Hydraulic fracture composition and method
US7726070B2 (en) 2007-12-11 2010-06-01 Thrash Tommy K Hydration maintenance apparatus and method
CA2708403C (en) 2007-12-14 2016-04-12 Schlumberger Canada Limited Proppants and uses thereof
WO2009078745A1 (en) 2007-12-14 2009-06-25 Schlumberger Canada Limited Proppant flowback control using encapsulated adhesive materials
WO2009088315A1 (en) 2007-12-29 2009-07-16 Schlumberger Canada Limited Coated proppant and method of proppant flowback control
US7950455B2 (en) 2008-01-14 2011-05-31 Baker Hughes Incorporated Non-spherical well treating particulates and methods of using the same
US7902128B2 (en) 2008-04-29 2011-03-08 Halliburton Energy Services Inc. Water-in-oil emulsions with hydrogel droplets background
US9303502B2 (en) * 2009-10-27 2016-04-05 Baker Hughes Incorporated Method of controlling water production through treating particles with RPMS
US8205675B2 (en) 2008-10-09 2012-06-26 Baker Hughes Incorporated Method of enhancing fracture conductivity
US7931084B2 (en) 2008-10-14 2011-04-26 Halliburton Energy Services, Inc. Methods for treating a subterranean formation by introducing a treatment fluid containing a proppant and a swellable particulate and subsequently degrading the swellable particulate
US8096360B2 (en) * 2008-11-21 2012-01-17 Baker Hughes Incorporated Alkaline β-mannanase containing compositions useful for the hydrolysis of guar in high pH environments and methods related thereto
US8360149B2 (en) * 2008-12-16 2013-01-29 Schlumberger Technology Corporation Surface modification for cross-linking or breaking interactions with injected fluid
US20100167965A1 (en) 2008-12-26 2010-07-01 Bp Corporation North America Inc. Amphiphobic Proppant
US7971644B2 (en) 2009-01-20 2011-07-05 Schlumberger Technology Corporation Fluid loss additive and breaking agent
RU2392295C1 (ru) 2009-01-27 2010-06-20 Открытое акционерное общество "Боровичский комбинат огнеупоров" Проппант и способ его получения
US7934554B2 (en) 2009-02-03 2011-05-03 Halliburton Energy Services, Inc. Methods and compositions comprising a dual oil/water-swellable particle
US20100249273A1 (en) * 2009-03-31 2010-09-30 Scales Charles W Polymeric articles comprising oxygen permeability enhancing particles
US9328285B2 (en) 2009-04-02 2016-05-03 Weatherford Technology Holdings, Llc Methods using low concentrations of gas bubbles to hinder proppant settling
WO2010126925A2 (en) 2009-04-29 2010-11-04 M-I L.L.C. Wellbore fluids employing sacrificial viscosifiers
US8240383B2 (en) 2009-05-08 2012-08-14 Momentive Specialty Chemicals Inc. Methods for making and using UV/EB cured precured particles for use as proppants
KR101669966B1 (ko) 2009-05-11 2016-10-27 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치
US20120058355A1 (en) 2009-06-02 2012-03-08 Hyomin Lee Coatings
US8579028B2 (en) 2009-06-09 2013-11-12 Halliburton Energy Services, Inc. Tackifying agent pre-coated particulates
US20120267112A1 (en) 2009-09-03 2012-10-25 Trican Well Service Ltd. Well service compositions and methods
US9845427B2 (en) 2009-10-20 2017-12-19 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
MX336826B (es) 2009-10-26 2016-02-03 Hexion Specialty Chemicals Inc Particulas recubiertas a baja temperatura para el uso como materiales de sosten o en rellenos de grava, metodos para la elaboracion y uso de los mismos.
US8796188B2 (en) 2009-11-17 2014-08-05 Baker Hughes Incorporated Light-weight proppant from heat-treated pumice
WO2011081549A1 (en) 2009-12-31 2011-07-07 Schlumberger Holdings Limited Proppant placement
MX2012012330A (es) 2010-04-27 2013-01-29 Schlumberger Technology Bv Colocación de apuntalantes heterogéneos.
CN103003386B (zh) 2010-07-21 2015-08-19 巴斯夫欧洲公司 支撑剂
RU2445339C1 (ru) 2010-08-10 2012-03-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления кремнеземистого проппанта и проппант
US8276663B2 (en) 2010-09-28 2012-10-02 Halliburton Energy Services Inc. Methods for reducing biological load in subterranean formations
RU2446200C1 (ru) 2010-10-05 2012-03-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнеземистого проппанта и проппант
US20130319656A1 (en) 2010-10-06 2013-12-05 Trican Well Service Ltd. Enzyme breakers and methods for fluid systems
US8470746B2 (en) 2010-11-30 2013-06-25 Halliburton Energy Services, Inc. Methods relating to the stabilization of hydrophobically modified hydrophilic polymer treatment fluids under alkaline conditions
CN102127415A (zh) * 2011-01-18 2011-07-20 大庆油田有限责任公司 低伤害超级胍胶压裂液
WO2012103319A1 (en) * 2011-01-26 2012-08-02 Soane Energy, Llc Permeability blocking with stimuli-responsive microcomposites
RU2459852C1 (ru) 2011-04-19 2012-08-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления керамического проппанта и проппант
BR112013028425A2 (pt) 2011-05-05 2017-03-01 Basf Se material de suporte para fraturar hidraulicamente uma formação subterrânea, método para formar um material de suporte para fraturar hidraulicamente uma formação subterrânea, e, método para fraturar hidraulicamente uma formação subterrânea
US20140000891A1 (en) 2012-06-21 2014-01-02 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US20140014348A1 (en) 2011-08-31 2014-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
RU2602250C2 (ru) 2011-08-31 2016-11-10 Селф-Саспендинг Проппант Ллс Самосуспендирующиеся проппанты для гидравлического разрыва пласта
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
US9562187B2 (en) 2012-01-23 2017-02-07 Preferred Technology, Llc Manufacture of polymer coated proppants
US20130196884A1 (en) 2012-02-01 2013-08-01 Trican Well Service, Ltd. Downhole Chemical Delivery For Oil And Gas Wells
RU2621239C2 (ru) 2012-04-19 2017-06-01 Селф-Саспендинг Проппант Ллс Самосуспендирующиеся проппанты для гидравлического разрыва
WO2013188413A1 (en) 2012-06-12 2013-12-19 Soane Energy, Llc Crosslinked synthetic polymer gel systems for hydraulic fracturing
US20140076558A1 (en) 2012-09-18 2014-03-20 Halliburton Energy Services, Inc. Methods and Compositions for Treating Proppant to Prevent Flow-Back
US20140087974A1 (en) 2012-09-27 2014-03-27 Halliburton Energy Services, Inc. Particulate Weighting Agents Comprising Removable Coatings and Methods of Using the Same
US9359543B2 (en) 2012-10-25 2016-06-07 Halliburton Energy Services, Inc. Wellbore servicing methods and compositions comprising degradable polymers
US20160215208A1 (en) 2013-10-31 2016-07-28 Preferred Technology, Llc Proppant Solids with Water Absorbent Materials and Methods of Making the Same
US20150252252A1 (en) 2014-03-05 2015-09-10 Self-Suspending Proppant Llc Humidity-resistant self-suspending proppants
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
US20160298926A1 (en) 2014-09-29 2016-10-13 Yi Huei Jen Slot cover for modular firearm hand guard
WO2016070044A1 (en) 2014-10-30 2016-05-06 Preferred Technology, Llc Proppants and methods of use thereof
US10000691B2 (en) 2015-06-08 2018-06-19 Halliburton Energy Services, Inc. Variably tacky proppants
WO2017048222A1 (en) 2015-09-14 2017-03-23 Halliburton Energy Services, Inc. Proppant comprising swellable coating thereon for treatment of subterranean formations
WO2017091463A1 (en) 2015-11-23 2017-06-01 Tethis, Inc. Coated particles and methods of making and using the same
US20170335178A1 (en) 2016-05-17 2017-11-23 Self-Suspending LLC Salt-tolerant self-suspending proppants
WO2018071636A1 (en) 2016-10-13 2018-04-19 Soane, David, S. Self-suspending proppants
US20190002756A1 (en) 2017-06-29 2019-01-03 Self-Suspending Proppant Llc Self-suspending proppants made from powdered hydrogel-forming polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030818A1 (en) * 1994-05-04 1995-11-16 Baker Hughes Incorporated Spotting fluid and lubricant
WO2008056302A1 (en) * 2006-11-08 2008-05-15 Schlumberger Canada Limited Delayed water-swelling materials and methods of use

Also Published As

Publication number Publication date
EP2751387B1 (en) 2019-06-19
CA2845840A1 (en) 2013-03-07
US20180134950A1 (en) 2018-05-17
AU2012301900A1 (en) 2014-03-06
AU2012301900B2 (en) 2016-10-13
MX2014002423A (es) 2014-10-14
DK2751387T3 (da) 2019-08-19
MX365956B (es) 2019-06-18
EP2751387A1 (en) 2014-07-09
US20160200967A1 (en) 2016-07-14
BR112014004314A2 (pt) 2017-09-12
EP2751387A4 (en) 2015-09-16
US20190284468A1 (en) 2019-09-19
RU2014107250A (ru) 2015-10-10
US20170058191A1 (en) 2017-03-02
US20130233545A1 (en) 2013-09-12
CA2845840C (en) 2020-02-25
US9796916B2 (en) 2017-10-24
CN103764948A (zh) 2014-04-30
US10316244B2 (en) 2019-06-11
RU2602250C2 (ru) 2016-11-10
US9315721B2 (en) 2016-04-19
US9845429B2 (en) 2017-12-19
WO2013033391A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
CN103764948B (zh) 用于水力破碎的自-悬浮支撑剂
US10472943B2 (en) Self-suspending proppants for hydraulic fracturing
US9644139B2 (en) Self-suspending proppants for hydraulic fracturing
RU2621239C2 (ru) Самосуспендирующиеся проппанты для гидравлического разрыва
US9868896B2 (en) Self-suspending proppants for hydraulic fracturing
US20140014348A1 (en) Self-suspending proppants for hydraulic fracturing
WO2013192634A2 (en) Self-suspending proppants for hydraulic fracturing
US20150060072A1 (en) Methods of treatment of a subterranean formation with composite polymeric structures formed in situ
TW201442990A (zh) 用於液裂之自懸浮支撐劑

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1194450

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1194450

Country of ref document: HK