RU2446200C1 - Способ изготовления легковесного кремнеземистого проппанта и проппант - Google Patents

Способ изготовления легковесного кремнеземистого проппанта и проппант Download PDF

Info

Publication number
RU2446200C1
RU2446200C1 RU2010140482/03A RU2010140482A RU2446200C1 RU 2446200 C1 RU2446200 C1 RU 2446200C1 RU 2010140482/03 A RU2010140482/03 A RU 2010140482/03A RU 2010140482 A RU2010140482 A RU 2010140482A RU 2446200 C1 RU2446200 C1 RU 2446200C1
Authority
RU
Russia
Prior art keywords
proppant
less
quartz
siliceous
granules
Prior art date
Application number
RU2010140482/03A
Other languages
English (en)
Inventor
Виктор Георгиевич Пейчев (RU)
Виктор Георгиевич Пейчев
Василий Александрович Плотников (RU)
Василий Александрович Плотников
Original Assignee
Общество С Ограниченной Ответственностью "Форэс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Форэс" filed Critical Общество С Ограниченной Ответственностью "Форэс"
Priority to RU2010140482/03A priority Critical patent/RU2446200C1/ru
Application granted granted Critical
Publication of RU2446200C1 publication Critical patent/RU2446200C1/ru

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Изобретение относится к технологии изготовления проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. В способе изготовления легковесного кремнеземистого проппанта, включающем сушку и помол компонентов исходной шихты, ее грануляцию, обжиг полученных гранул и рассев, в кремнеземистую шихту, содержащую материал - источник диоксида кремния в виде кварцполевошпатного песка и/или кварцита, дополнительно вводят материал - источник оксида магния с размером частиц 5 мкм и менее при следующем соотношении компонентов (в пересчете на прокаленное вещество), мас.%: SiO2 88-94; MgO - 0,3-9, природные примеси - остальное. Описан также проппант, характеризующийся тем, что он получен указанным выше способом. Изобретение развито в зависимых пунктах формулы. Технический результат - снижение абсолютной плотности проппанта при сохранении прочности проппанта и приемлемых значений разрушаемости проппантной пачки. 2 н. и 3 з.п. ф-лы, 1 пр., 1 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.
Проппанты - прочные сферические гранулы, удерживающие трещины ГРП от смыкания под большим давлением и обеспечивающие необходимую производительность нефтяных и/или газовых скважин путем обеспечения в пласте проводящего канала. Среди керамических расклинивателей наиболее применяемыми являются алюмосиликатные и магнийсиликатные проппанты, обладающие высокими значениями прочности, сферичности, округлости. Однако оба типа вышеупомянутых проппантов имеют высокий насыпной вес, в то время как снижение плотности проппанта позволяет использовать низковязкую жидкость ГРП, применяемую для заполнения трещин проппантом, что сокращает стоимость самой жидкости, а также снижает вероятность того, что жидкость ГРП, остающаяся в пласте, блокирует поток нефти и газа, мешая им подойти к скважине. Уменьшение плотности проппанта облегчает и удешевляет процесс закачки проппанта в скважину, а сам проппант может глубже проникать в трещину, тем самым увеличивая производительность нефтяной или газовой скважины. Известны способы снижения плотности проппанта путем изготовления гранул с пористой структурой. Однако пониженные прочностные характеристики указанного материала предполагают нанесение на его поверхность дорогостоящего упрочняющего полимерного покрытия.
Еще одним существенным недостатком известных керамических проппантов является значительная потеря прочности при их эксплуатации в гидротермальных условиях под воздействием высоких давлений, что снижает проницаемость проппантной пачки.
В связи с этим предприятия-производители проппанта прилагают значительные усилия, направленные на поиск альтернативных видов сырья для изготовления расклинивателей. Особое внимание привлекают кремнеземистые материалы с содержанием SiO2 более 45 мас.%.
Известен патент США RE 34.371, в котором представлен легкий проппант для нефтяных и газовых скважин и методы его получения и использования. Известный проппант получают одновременным смешиванием и уплотнением смеси каолиновой глины, обожженной при температуре менее 900°С, и кремнезема, от аморфного до микрокристаллического, причем оба материала измельчают до общего среднего размера зерен 7 мкм или менее. Проппант низкой плотности, включающий приблизительно 35-60 мас.% муллита и приблизительно 35-60 мас.% кристобалита, имеет удельный вес менее 2.7 г/см3 (2.52-2.59 г/см3).
Недостатком данного проппанта является повышенная плотность, объясняемая значительным содержанием муллита в обожженных гранулах. Кроме того, необходимость предварительного обжига каолиновой глины усложняет и удорожает процесс производства материала. Снижение плотности гранул проппанта достигается за счет высокотемпературного обжига при температуре 1300-1500°С, при котором происходит превращение кварца в кристобаллит с соответствующими объемными изменениями, вызывающими разуплотнение структуры керамики. Однако в данном случае проппант имеет пониженные значения прочности, которые будут иметь тенденцию к еще большему уменьшению в гидротермальных условиях под воздействием внешних нагрузок.
Наиболее близкими по технической сущности к заявляемому решению являются способ изготовления кремнеземистого проппанта и проппант, полученный этим способом, в котором шихту, содержащую, мас.%: тальк - 1-10, волластонит - 1-10, боксит - 5-33, кварц - 10-65, и сланец - 10-65, содержащий оксид калия - 5-10 и кремнезем - 75-90, при общем содержании кремнезема в смеси 45-70, а Al2О3 - 15-25 последовательно измельчают до фракции менее 15 мкм, гранулируют и обжигают при температуре 1100-1200°С. Известный состав легковесного проппанта включает в себя равные по весу количества необожженного боксита, необожженного сланца и кварца, удерживаемые вместе связующим веществом, образованным волластонитом и тальком, в количествах менее 10% от веса названного состава. При этом основными кристаллическими фазами, входящими в состав обожженного проппанта, являются кварц, гематит, α - Аl2О3 и анортит (WO 03/042427, опубл. 22.05.2003).
Недостатком известного материала является повышенная плотность проппанта, составляющая 2.623-2.632 г/см3. Это объясняется тем, что для снижения температуры спекания с целью предотвращения фазового превращения кварца в тридимит и кристобалит и связанного с этим разупрочнения керамики в смесь вводится значительное количество плавней, образующих плотную стеклофазу. Кроме того, для придания проппанту достаточной прочности в материал вводится глинозем. К существенным недостаткам материала можно отнести и многокомпонентный состав шихты.
Технической задачей, на решение которой направлено заявляемое изобретение, является снижение абсолютной плотности проппанта до величины 2.45 г/см3 и менее при сохранении приемлемых значений разрушаемости проппантной пачки и сохранении прочности гранул в гидротермальных условиях под воздействием внешнего давления.
Поставленная задача решается тем, что в способе изготовления легковесного кремнеземистого проппанта, включающем сушку и помол компонентов исходной шихты, ее грануляцию, обжиг полученных гранул и рассев, в кремнеземистую шихту, содержащую материал - источник диоксида кремния в виде кварцполевошпатного песка и/или кварцита, дополнительно вводят материал - источник оксида магния с размером частиц 5 мкм и менее при следующем соотношении компонентов (в пересчете на прокаленное вещество), мас.%:
SiO2 88-94
MgO 0.3-9
природные примеси остальное.
В качестве сырья - источника оксида магния используют серпентинит, тальк, брусит, каустический магнезит или их смеси, а материал - источник диоксида кремния имеет размер 10 мкм и менее. Температура обжига гранул проппанта не превышает 1200°С.
Таким образом, легковесный кремнеземистый проппант характеризуется тем, что он получен указанным выше способом.
Использование кремнезема в качестве основного компонента шихты позволяет получать легковесные, низкопористые гранулы проппанта, сохраняющие приемлемые прочностные характеристики в жестких эксплуатационных условиях. Увеличение доли SiO2 выше 94 мас.% ведет к сужению температурного интервала спекающего обжига и уменьшению прочности проппанта. Снижение содержания SiO2 менее 88 мас.% увеличивает плотность материала.
Введение в состав материала для изготовления кремнеземистого проппанта природных магнийсиликатов в количестве 0.3-9 мас.% (предпочтительно 0.5-7%) в пересчете на MgO приводит к образованию в керамике при обжиге наноразмерных частиц метасиликата магния, упрочняющих структуру гранул. При содержании MgO в количестве менее 0.3 мас.% действие добавки мало заметно, увеличение содержания оксида магния более 9 мас.% вызывает возрастание плотности проппанта. Также необходимо отметить, что использование высушенных природных силикатов магния, обладающих выраженными вяжущими свойствами, позволяет увеличить прочность гранул проппанта-сырца и уменьшить пылеобразование в процессе производства.
Для оценки поведения проппанта в гидротермальных условиях гранулы расклинивателя подвергали автоклавной обработке в 2%-ном водном растворе KСl течение 48 часов при температуре примерно 121°С и давлении приблизительно 2 атм. При проведении исследований установлено, что проппант, полученный по заявляемому способу, после автоклавной обработки лишь в отдельных экспериментах показывает незначительное уменьшение прочности, а в большинстве случаев прочность сохраняется. Неожиданным оказался факт упрочнения проппанта после обработки в автоклаве при температуре приблизительно 121°С.
Авторы полагают, что эффект сохранения прочности и гидротермальное упрочнение проппанта, полученного заявляемым способом, объясняются образованием на поверхности керамических гранул вязких пластинчатых или трубчатых гидросиликатов магния (см. Гидротермальный синтез нанотрубок переменного состава (Mg,Fe)Si2O5(OH)4) со структурой хризотила, Корыткова Э.Н., Пивоварова Л.Н., Гусаров В.В., Институт химии силикатов РАН, Санкт-Петербург), заполняющих дефекты на поверхности гранул и увеличивающих сопротивляемость материала возникновению и развитию трещин, что в совокупности с низкопористой структурой керамики приводит к снижению разрушаемости проппантной пачки. Другим фактором, обеспечивающим получение высокой прочности керамики, является размер зерен сырьевых материалов менее 10 мкм. Спекание тонкодисперсного порошка позволяет при температурах 1200°С и менее получать плотную керамику с минимальным перерождением кварца в кристобалит. Проведенными опытами установлено, что образование кристобалита хотя и снижает плотность керамики, однако приводит к катастрофическому падению прочности. Тонкодисперсное (5 мкм и менее) состояние материала - источника оксида магния обеспечивает образование во время обжига при температуре 1200°С и ниже низкотемпературных форм метасиликата магния, не претерпевающих полиморфных превращений при охлаждении гранул проппанта.
Пример осуществления изобретения
Высококремнеземистый кварцполевошпатный песок и серпентинит высушивали при температуре 150°С в течение 1 часа и подвергали раздельному помолу: песок - до фракции менее 10 мкм, а серпентинит - до фракции менее 5 мкм (предпочтителен совместный помол до фракции 5 мкм и менее). Контроль фракционного состава проводился на фотоседиментографе Horiba LA - 300. Затем материалы смешивали в лабораторной вибромельнице в течение 15 мин в соотношении, обеспечивающем содержание SiO2 - 92 мас.%, MgO - 3.5 мас.%, природных примесей - 4.5 мас.%. Полученный материал гранулировали и обжигали при температуре, достаточной для максимального уплотнения керамики. Пробу обожженных проппантов фракции 30/50 меш делили на две части. У одной части пробы определяли абсолютную плотность (прибор Accupyc 1340) и разрушаемость при 7500 psi по общепринятой методике ISO 13503 - 2: 2006(Е). Другую часть пробы помещали в автоклав, где выдерживали в 2%-ном водном растворе KСl в течение 48 часов при температуре примерно 121°С и давлении приблизительно 2 атм. Затем гранулы проппанта, подвергнутого автоклавной обработке, высушивали в течение 2 часов при температуре 105°С и определяли их плотность и разрушаемость при 7500 psi по методике ISO 13503 - 2: 2006(Е). Аналогичным образом готовили пробы проппанта с различным содержанием SiO2 и MgO при использовании в качестве источников диоксида кремния и оксида магния материалов, представленных в заявляемом техническом решении. Результаты измерений представлены в таблице.
Свойства гранул легковесного кремнеземистого проппанта
№ п/п Состав шихты, мас.% Фракционный состав компонентов шихты, мкм Абсолютная плотность гранул проп-панта, г/см3 Разрушаемость проппанта, % при 7500 psi до автоклавной обработки Разрушаемость проппанта, % при 7500 psi после автоклавной обработки
1 Проппант по аналогу (WO 03/042427) Менее 15 2.623-2.632 Нет данных Нет данных
2 Серпентинитовый щебень + кварцполевошпатный песок (MgO ≈10, SiO2 ≈87, примеси - 3.0) Серпентинитовый щебень - более 5 кварцполевошпатный песок - более 10 2.48 1.7 2.5
3 Серпентинитовый щебень + кварцполевошпатный песок (MgO ≈0.2, SiO2 ≈95, примеси - 4.8) Серпентинитовый щебень - менее 5 кварцполевошпатный песок - более 10 1.99 8.2 10.9
4 Серпентинитовый щебень + кварцполевошпатный песок + кварцит (MgO ≈0.3, SiO2 ≈94,примеси - 5.7) Серпентинитовый щебень - менее 5 кварцполевошпатный песок - менее 10 2.0 6.5 6.7
5 Серпентинитовый щебень + кварцполевошпатный песок (MgO ≈9.0, SiO2 ≈88, примеси - 3.0) Серпентинитовый щебень - менее 5 кварцполевошпатный песок - менее 10 2.44 1.7 1.5
6 Серпентинитовый щебень + кварцполевошпатный песок + кварцит (MgO ≈7.0, SiO2 ≈90, примеси - 3.0) Серпентинитовый щебень - менее 5 кварцполевошпатный песок - менее 10 2.41 2.0 1.7
7 Серпентинитовый щебень + кварцполевошпатный песок (MgO ≈3.0, SiO2 ≈94, примеси - 3.0) Серпентинитовый щебень - менее 5 кварцполевошпатный песок - менее 10 2.1 1.8 1.7
8 Серпентинитовый щебень + кварцполевошпатный песок (MgO ≈5.0, SiO2 ≈92, примеси - 7.0) Серпентинитовый щебень - менее 5 кварцполевошпатный песок - менее 10 2.25 1.6 1.2
9 Каустический магнезит + кварцполевошпатный песок (MgO ≈0.5, SiO2 ≈94, примеси - 5.5) Каустический магнезит - менее 5 кварцполевошпатный песок - менее 10 2.05 2.6 2.4
10 Каустический магнезит + тальк + кварцполевошпатный песок (MgO ≈6.0, SiO2 ≈90, примеси - 4.0) Каустический магнезит + тальк - менее 5, кварцполевошпатный песок - менее 5 2.3 1.5 1.6
11 Каустический магнезит + тальк + кварцполевошпатный песок (MgO ≈6.0, SiO2 ≈90, примеси - 4.0) Каустический магнезит + тальк - более 5, кварцполевошпатный песок - менее 10 2.3 1.9 2.9
Анализ данных таблицы показывает, что заявляемые способ изготовления легковесного кремнеземистого проппанта и проппант позволяют получать продукт (примеры 4-10), обладающий пониженной плотностью и достаточной прочностью по сравнению с известными аналогами, а также обеспечивает сохранение прочности в гидротермальных условиях.

Claims (5)

1. Способ изготовления легковесного кремнеземистого проппанта, включающий сушку и помол компонентов исходной шихты, ее грануляцию, обжиг полученных гранул и их рассев, отличающийся тем, что в кремнеземистую шихту, содержащую материал-источник диоксида кремния в виде кварцполевошпатного песка и/или кварцита, дополнительно вводят материал-источник оксида магния с размером частиц 5 мкм и менее при следующем соотношении компонентов (в пересчете на прокаленное вещество), мас.%:
SiO2 88-94 MgO 0,3-9 природные примеси остальное
2. Способ по п.1, отличающийся тем, что в качестве материала-источника оксида магния используют серпентинит, тальк, брусит, каустический магнезит или их смеси.
3. Способ по п.1, отличающийся тем, что материал-источник диоксида кремния имеет размер частиц 10 мкм и менее.
4. Способ по п.1, отличающийся тем, что температура обжига гранул проппанта не превышает 1200°С.
5. Проппант, характеризующийся тем, что он получен по способу п.1.
RU2010140482/03A 2010-10-05 2010-10-05 Способ изготовления легковесного кремнеземистого проппанта и проппант RU2446200C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010140482/03A RU2446200C1 (ru) 2010-10-05 2010-10-05 Способ изготовления легковесного кремнеземистого проппанта и проппант

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010140482/03A RU2446200C1 (ru) 2010-10-05 2010-10-05 Способ изготовления легковесного кремнеземистого проппанта и проппант

Publications (1)

Publication Number Publication Date
RU2446200C1 true RU2446200C1 (ru) 2012-03-27

Family

ID=46030873

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010140482/03A RU2446200C1 (ru) 2010-10-05 2010-10-05 Способ изготовления легковесного кремнеземистого проппанта и проппант

Country Status (1)

Country Link
RU (1) RU2446200C1 (ru)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2513792C1 (ru) * 2012-11-29 2014-04-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов
RU2535540C1 (ru) * 2013-08-15 2014-12-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта
RU2547033C1 (ru) * 2014-02-27 2015-04-10 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнеземистого магнийсодержащего проппанта
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
US9315721B2 (en) 2011-08-31 2016-04-19 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
EA024901B1 (ru) * 2014-08-04 2016-10-31 Общество С Ограниченной Ответственностью "Ника-Петротэк" Состав и способ получения керамического расклинивающего агента
US9644139B2 (en) 2011-08-31 2017-05-09 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
RU2623751C1 (ru) * 2016-05-31 2017-06-29 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнезёмистого проппанта и проппант
RU2636089C1 (ru) * 2016-07-11 2017-11-20 Общество С Ограниченной Ответственностью "Ника-Петротэк" Легкий керамический расклинивающий агент и способ его изготовления
US9845428B2 (en) 2009-10-20 2017-12-19 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
RU2646910C1 (ru) * 2017-02-16 2018-03-12 Сергей Фёдорович Шмотьев Сырьевая шихта для изготовления магнизиально-кварцевого проппанта
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
RU2650149C1 (ru) * 2017-02-28 2018-04-09 Общество С Ограниченной Ответственностью "Форэс" Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
RU2653200C1 (ru) * 2016-12-07 2018-05-07 Общество С Ограниченной Ответственностью "Форэс" Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
RU2655335C2 (ru) * 2016-05-06 2018-05-25 Общество С Ограниченной Ответственностью "Форэс" Керамический проппант
US11713415B2 (en) 2018-11-21 2023-08-01 Covia Solutions Inc. Salt-tolerant self-suspending proppants made without extrusion
CN117142872A (zh) * 2023-08-31 2023-12-01 郑州市润宝耐火材料有限公司 一种利用高硅质原料制备的陶粒支撑剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2098618C1 (ru) * 1995-12-27 1997-12-10 Татьяна Николаевна Жаркова Способ получения расклинивающего агента
RU2133716C1 (ru) * 1997-11-10 1999-07-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ производства высокопрочных сферических керамических гранул
RU2235702C2 (ru) * 2002-10-10 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
US7648934B2 (en) * 2006-08-04 2010-01-19 Ilem Research And Development Establishment Precursor compositions for ceramic products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2098618C1 (ru) * 1995-12-27 1997-12-10 Татьяна Николаевна Жаркова Способ получения расклинивающего агента
RU2133716C1 (ru) * 1997-11-10 1999-07-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ производства высокопрочных сферических керамических гранул
RU2235702C2 (ru) * 2002-10-10 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
US7648934B2 (en) * 2006-08-04 2010-01-19 Ilem Research And Development Establishment Precursor compositions for ceramic products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US RE 34.371 E, 07.09.1993. *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845428B2 (en) 2009-10-20 2017-12-19 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
US9845427B2 (en) 2009-10-20 2017-12-19 Self-Suspending Proppant Llc Proppants for hydraulic fracturing technologies
US9845429B2 (en) 2011-08-31 2017-12-19 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9644139B2 (en) 2011-08-31 2017-05-09 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9868896B2 (en) 2011-08-31 2018-01-16 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9796916B2 (en) 2011-08-31 2017-10-24 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US10472943B2 (en) 2011-08-31 2019-11-12 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US10316244B2 (en) 2011-08-31 2019-06-11 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9315721B2 (en) 2011-08-31 2016-04-19 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing
US9297244B2 (en) 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
RU2513792C1 (ru) * 2012-11-29 2014-04-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов
RU2535540C1 (ru) * 2013-08-15 2014-12-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта
RU2547033C1 (ru) * 2014-02-27 2015-04-10 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнеземистого магнийсодержащего проппанта
US9932521B2 (en) 2014-03-05 2018-04-03 Self-Suspending Proppant, Llc Calcium ion tolerant self-suspending proppants
EA024901B1 (ru) * 2014-08-04 2016-10-31 Общество С Ограниченной Ответственностью "Ника-Петротэк" Состав и способ получения керамического расклинивающего агента
RU2655335C2 (ru) * 2016-05-06 2018-05-25 Общество С Ограниченной Ответственностью "Форэс" Керамический проппант
RU2655335C9 (ru) * 2016-05-06 2019-02-13 Общество С Ограниченной Ответственностью "Форэс" Керамический проппант
RU2623751C1 (ru) * 2016-05-31 2017-06-29 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнезёмистого проппанта и проппант
RU2636089C9 (ru) * 2016-07-11 2019-01-24 Общество С Ограниченной Ответственностью "Ника-Петротэк" Легкий керамический расклинивающий агент и способ его изготовления
RU2636089C1 (ru) * 2016-07-11 2017-11-20 Общество С Ограниченной Ответственностью "Ника-Петротэк" Легкий керамический расклинивающий агент и способ его изготовления
RU2653200C1 (ru) * 2016-12-07 2018-05-07 Общество С Ограниченной Ответственностью "Форэс" Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
RU2646910C1 (ru) * 2017-02-16 2018-03-12 Сергей Фёдорович Шмотьев Сырьевая шихта для изготовления магнизиально-кварцевого проппанта
RU2650149C1 (ru) * 2017-02-28 2018-04-09 Общество С Ограниченной Ответственностью "Форэс" Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
US11713415B2 (en) 2018-11-21 2023-08-01 Covia Solutions Inc. Salt-tolerant self-suspending proppants made without extrusion
CN117142872A (zh) * 2023-08-31 2023-12-01 郑州市润宝耐火材料有限公司 一种利用高硅质原料制备的陶粒支撑剂及其制备方法

Similar Documents

Publication Publication Date Title
RU2446200C1 (ru) Способ изготовления легковесного кремнеземистого проппанта и проппант
US7521389B2 (en) Ceramic proppant with low specific weight
US7648934B2 (en) Precursor compositions for ceramic products
RU2437913C1 (ru) Способ изготовления легковесного магнийсиликатного проппанта и проппант
RU2445339C1 (ru) Способ изготовления кремнеземистого проппанта и проппант
US4668645A (en) Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
CN102753648B (zh) 含有无机纤维的水力压裂支撑剂
RU2540695C2 (ru) Композиция и способ приготовления сверхлегкого керамического расклинивающего наполнителя
RU2459852C1 (ru) Способ изготовления керамического проппанта и проппант
RU2615563C9 (ru) Керамический расклинивающий агент и его способ получения
RU2463329C1 (ru) Способ изготовления магнийсиликатного проппанта и проппант
RU2235703C1 (ru) Способ изготовления керамических расклинивателей нефтяных скважин
RU2513792C1 (ru) Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов
US20170275209A1 (en) Addition of mineral-containing slurry for proppant formation
RU2394063C1 (ru) Способ изготовления проппанта из глиноземсодержащего сырья
RU2619603C1 (ru) Проппант и способ получения проппанта
RU2211198C2 (ru) Шихта для изготовления огнеупорных высокопрочных сферических гранул и способ их производства
RU2739180C1 (ru) Способ получения магнийсиликатного проппанта и проппант
RU2728300C1 (ru) Способ получения проппанта - сырца из природного магнийсиликатного сырья
RU2623751C1 (ru) Способ изготовления легковесного кремнезёмистого проппанта и проппант
RU2653200C1 (ru) Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
RU2650149C1 (ru) Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
US20180258343A1 (en) Proppants having fine, narrow particle size distribution and related methods
RU2646910C1 (ru) Сырьевая шихта для изготовления магнизиально-кварцевого проппанта
RU2781688C1 (ru) Шихта для изготовления керамического проппанта и проппант

Legal Events

Date Code Title Description
HE4A Change of address of a patent owner

Effective date: 20210722