RU2535540C1 - Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта - Google Patents

Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта Download PDF

Info

Publication number
RU2535540C1
RU2535540C1 RU2013138144/03A RU2013138144A RU2535540C1 RU 2535540 C1 RU2535540 C1 RU 2535540C1 RU 2013138144/03 A RU2013138144/03 A RU 2013138144/03A RU 2013138144 A RU2013138144 A RU 2013138144A RU 2535540 C1 RU2535540 C1 RU 2535540C1
Authority
RU
Russia
Prior art keywords
proppant
fraction
less
granules
microns
Prior art date
Application number
RU2013138144/03A
Other languages
English (en)
Inventor
Виктор Георгиевич Пейчев
Василий Александрович Плотников
Сергей Фёдорович Шмотьев
Сергей Юрьевич Плинер
Евгений Васильевич Рожков
Вячеслав Михайлович Сычев
Original Assignee
Общество С Ограниченной Ответственностью "Форэс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Форэс" filed Critical Общество С Ограниченной Ответственностью "Форэс"
Priority to RU2013138144/03A priority Critical patent/RU2535540C1/ru
Application granted granted Critical
Publication of RU2535540C1 publication Critical patent/RU2535540C1/ru

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. Способ изготовления ультралегковесного кремнеземистого магнийсодержащего проппанта, включающий помол исходной шихты, состоящей из кварц-полевошпатного песка и серпентинита, формирование гранул, их обжиг при температуре, не превышающей 1200°С, и рассев, где в исходную шихту, измельченную до фракции 20 мкм и менее с содержанием фракции менее 5 мкм - 20-30 масс.%, фракции 5-20 мкм - 70-80 масс.%, вводят каолиновую вату с длиной волокон до 15 мкм при следующем соотношении компонентов, масс.%: серпентинит 1-5, каолиновая вата 0,05-2, кварц-полевошпатный песок остальное. Изобретение развито в зависимом пункте формулы. Технический результат - повышение устойчивости к динамическим нагрузкам при насыпной плотности проппанта менее 1,3 г/см3. 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.
Гидравлический разрыв пласта является процессом нагнетания жидкостей в нефтеносный или газоносный подземный пласт при высоких скоростях и давлениях, в результате чего в пласте образуются трещины. Для их удерживания в открытом состоянии после снятия давления разрыва применяется расклинивающий агент (проппант), который смешивается с нагнетаемой жидкостью. Применение ГРП усиливает приток углеводородов из природного нефтяного или газового резервуара в скважину за счет увеличения общей площади контакта между резервуаром и скважиной, а также за счет того, что проницаемость слоя проппанта в трещине выше проницаемости пласта.
Среди современных материалов, используемых в качестве расклинивающих агентов при ГРП, широкое применение нашли кварцевые пески и синтетические проппанты, обладающие оптимальными физическим характеристиками, обеспечивающими проводимость проппантной пачки, к числу которых относятся прочность, гранулометрический состав, растворимость в кислотах, форма гранул (сферичность /округлость) и плотность материала.
Пески с плотностью 2,60-2,65 г/см3 являются первым и наиболее часто используемым материалом для закрепления трещин при гидроразрыве пластов, в которых напряжение сжатия не превышает 40 МПа. При больших смыкающих усилиях применяется песок, зерна которого имеют на поверхности специальное полимерное покрытие, повышающее прочность и препятствующее выносу частиц проппанта из трещины.
В конце 70-х годов с созданием упрочненных синтетических проппантов начался подъем в области применения ГРП на газовых и нефтяных месторождениях, приуроченных к плотным песчаникам и известнякам, расположенным на больших глубинах.
Среди синтетических проппантов, масштабно применяемых в операциях ГРП, на протяжении десятилетий лидировали керамические расклиниватели, изготовленные из природного алюмосиликатного сырья и обладающие необходимыми техническими характеристиками. Крупнейшим мировым производителем алюмосиликатных проппантов является компания CARBO Ceramics (США). В этой связи общепринятой среди потребителей считается предлагаемая компанией классификация проппантов по плотности и прочности. Продуктовая линейка фирмы представлена высокопрочными и высокоплотными проппантами (плотность - 3,56 г/см3, насыпной вес - 2,0 г/см3), среднепрочными и среднеплотными проппантами (плотность - 2,7-3,27 г/см3, насыпной вес - 1,56-1,88 г/см3) и облегченными проппантами (плотность - 2,55 г/см3, насыпной вес - 1,4 г/см3), не обладающими выдающимися прочностными характеристиками, однако имеющими низкую плотность.
Вместе с тем, все большее доверие потребителей завоевывают магнийсодержащие расклинивающие агенты, производимые из природного сырья на основе серпентинита, оливинита, дунита как самостоятельно, так и в виде смеси с природным кварц-полевошпатным песком. Указанные проппанты на рынке представлены в основном среднеплотными и среднепрочными гранулами ForeProp и ForesMgLight (плотность - 2,7 г/см3, насыпной вес - 1,54 г/см3). В последние годы в связи с ростом цен на энергоносители быстрыми темпами развиваются технологии извлечения углеводородов из труднодоступных и нетрадиционных источников. Например, освоение и совершенствование горизонтального бурения в сочетании с множественным гидроразрывом сделало рентабельной добычу сланцевых углеводородов. В этой связи в ближайшее время прогнозируется увеличение спроса на проппант с минимальной плотностью, поскольку именно плотность проппанта определяет перенос и расположение расклинивающего агента вдоль трещины. Легковесный проппант дольше поддерживается во взвешенном состоянии в транспортирующей его жидкости, поэтому может быть доставлен на более далекое расстояние вдоль крыльев трещины. Кроме того, использование низкоплотного проппанта уменьшает общую массу расклинивателя, подаваемого в скважину, а также позволяет применять более легкие жидкости и пониженные скорости закачки. В связи с этим предприятиями-производителями проводятся масштабные исследования, направленные на получение ультралегковесных (ULW) керамических проппантов с насыпной плотностью менее 1,3 г/см3. Однако следует подчеркнуть, что такой проппант должен обладать необходимой прочностью, особенно в условиях динамических сжимающих нагрузок, воздействующих на расклинивающий агент в реальных условиях.
Известен способ изготовления легковесного магнийсиликатного проппанта и проппант (патент РФ №2437913), включающий термообработку магнийсодержащего компонента - источника оксида магния, его совместный помол с кремнеземсодержащим компонентом, грануляцию полученной шихты, обжиг полученных гранул и их рассев. Шихта содержит (в пересчете на прокаленное вещество), масс.%: SiO2 - 64-72, MgO - 11-18, природные примеси - остальное, а термообработку осуществляют при температуре не более 1080°С. Легковесный магнийсиликатный проппант, характеризуется тем, что он получен указанным выше способом. Недостатком известного решения является повышенная насыпная плотность продукта - 1,42 г/см3.
Известен также способ изготовления кремнеземистого проппанта и проппант (патент РФ №2445339), включающий помол шихты, грануляцию и обжиг гранул, в котором в качестве шихты используют природный высококремнеземистый песок или его смесь с кварцитом в количестве 1-25% от массы смеси при содержании SiO2 в шихте не менее 87 масс.%. Помол шихты осуществляют до размера частиц не более 10 мкм при содержании фракции не более 5 мкм, составляющем не менее 50 масс.%, а обжиг ведут при 1120-1300°С со скоростью нагрева 1000-2500°С/ч и скоростью охлаждения 1000-2000°С/ч. Кремнеземистый проппант характеризуется тем, что он получен вышеуказанным способом, причем содержание кристобалита в обожженных гранулах не превышает 10 объемных %.
Недостатком известного решения является то, что проппант, полученный из природных высококремнеземистых материалов без использования модифицирующих добавок, не обладает высокими прочностными характеристиками, особенно в условиях динамического сжимающего воздействия.
Наиболее близким по технической сущности к заявляемому решению является способ изготовления легковесного кремнеземистого проппанта (патент РФ №2446200), включающий сушку и помол компонентов исходной шихты, ее грануляцию, обжиг полученных гранул и их рассев, в котором в кремнеземистую шихту, содержащую материал - источник диоксида кремния в виде кварц-полевошпатного песка и/или кварцита, дополнительно вводят материал - источник оксида магния с размером частиц 5 мкм и менее при следующем соотношении компонентов (в пересчете на прокаленное вещество), масс.%: SiO2 - 88-94; MgO - 0,3-9, природные примеси - остальное. Температура обжига проппанта не превышает 1200°С. Проппант, полученный указанным способом, имеет насыпную плотность менее 1,3 г/см3 и относится к категории ультралегковесных проппантов.
Недостатком известного решения является пониженная устойчивость гранул к динамическим сжимающим нагрузкам, обусловленная тонким (10 мкм и менее) помолом исходной шихты, приводящим к образованию в материале после спекающего обжига повышенного количества хрупкой стеклофазы, способствующей увеличению разрушаемости гранул под воздействием циклических нагрузок.
Технической задачей, на решение которой направлено заявляемое изобретение, является получение проппанта, обладающего повышенной устойчивостью к динамическим сжимающим нагрузкам и имеющего насыпную плотность менее 1,3 г/см3.
Указанный результат достигается тем, что в способе изготовления ультралегковесного кремнеземистого магнийсодержащего проппанта, включающем помол исходной шихты, состоящей из кварц-полевошпатного песка и серпентинита, формирование гранул, их обжиг при температуре, не превышающей 1200°С, и рассев, в исходную шихту, измельченную до фракции 20 мкм и менее с содержанием фракции менее 5 мкм - 20-30 масс.%, фракции 5-20 мкм - 70-80 масс.%, вводят каолиновую вату с длиной волокон до 15 мкм при следующем соотношении компонентов, масс.%:
серпентинит 1-5,
каолиновая вата 0,05-2.
кварц-полевошпатный песок остальное.
Кроме того, на поверхность обожженного проппанта может наноситься полимерное покрытие. В качестве материала покрытия могут быть использованы фенолформальдегидные смолы, силиконовые герметики и другие полимерные материалы, традиционно применяемые для создания покрытий на гранулах проппанта.
Выбор природного кварц-полевошпатного песка в качестве основного компонента шихты, используемой в заявляемом техническом решении, обусловлен тем, что кремнеземистые керамические материалы изначально обладают более низким насыпным весом по сравнению с известными алюмосиликатными и магнийсиликатными. Более грубый помол исходной шихты обеспечивает сохранение низкой насыпной плотности как у проппанта-сырца, так и у обожженного проппанта. В свою очередь, введение в состав материала микроволокон асбеста, входящего в состав серпентинита, и каолиновой ваты также в некоторой степени увеличивает пористость сырцовых гранул за счет их меньшего уплотнения при грануляции и способствует сохранению микропористой структуры в обожженном продукте. Добавка серпентинита в качестве магнийсодержащего компонента способствует улучшению спекаемости материала и увеличивает устойчивость готового проппанта к действию статических сжимающих нагрузок. Увеличение устойчивости проппанта к действию динамических нагрузок достигается совокупным действием двух факторов: формированием в гранулах проппанта микропористой структуры, способствующей релаксации внешних сжимающих нагрузок, а также наличием внутри гранул мелкодисперсных каолиновых волокон, препятствующих зарождению и распространению трещин. Необходимо отметить, что ультракороткие каолиновые волокна в совокупности с ультракороткими волокнами асбеста, взаимодействуя с полевошпатной составляющей песка, дополнительно упрочняют межпоровое пространство керамики и снижают тем самым разрушаемость гранул расклинивателя. Увеличение содержания в шихте фракции менее 5 мкм свыше 30 масс.% и снижение доли фракции 5-20 мкм ниже 70 масс.% ведет к увеличению насыпной плотности проппанта. Снижение содержания в шихте фракции менее 5 мкм ниже 20 масс.% и увеличение доли фракции 5-20 мкм свыше 80 масс.% приводит к уменьшению статической и динамической прочности проппанта из-за формирования в гранулах крупнопористой структуры. Также к снижению прочности материала ведет помол шихты до фракции крупнее 20 мкм. Введение каолиновой ваты с длиной волокон 15 мкм и более ухудшает показатели сферичности/округлости гранул проппанта и снижает его прочностные характеристики. Заявляемое соотношение серпентинита, каолиновой ваты и кварц-полевошпатного песка в исходной шихте, обеспечивающее решение поставленной технической задачи, установлено экспериментально. Содержание в шихте серпентинита менее 1 масс.% и каолиновой ваты менее 0,05 масс.% не оказывает заметного влияния на механические характеристики проппанта, а увеличение содержания указанных компонентов соответственно выше 5 и 2 масс.% приводит к заметному уплотнению продукта. Обжиг проппанта-сырца предпочтительно осуществляется при температуре, не превышающей 1200°С. Конкретная температура спекания определяется главным образом химическим составом кварц-полевошпатного песка и требуемой насыпной плотностью обожженного проппанта. Ограничение температуры спекающего обжига величиной 1200°С обусловлено тем, что выше этой температуры в структуре материала выделяется разупрочняющая ее фаза кристобалита. Кроме того, ускоряется процесс девитрификации (расстекловывания) муллитокремнеземистых волокон, приводящий к их разрушению и, как следствие, вызывающий снижение сопротивляемости проппанта к действию динамических сжимающих нагрузок. Строго говоря, процесс девитрификации муллитокремнеземистых волокон начинается уже при температуре около 980°С, однако до температуры 1200°С он протекает достаточно медленно. Поскольку обжиг проппанта производится в течение короткого промежутка времени (пребывание материала при температуре 980-1200°С составляет 20-25 минут), частичная раскристаллизация в указанном температурном интервале не оказывает существенного влияния на свойства продукта. Для увеличения сопротивляемости материала действию статических и динамических нагрузок на поверхность гранул может быть нанесено упрочняющее полимерное покрытие, что является особенно актуальным для проппанта с насыпной плотностью менее 1,15 г/см3. Составы полимерных покрытий и способы их нанесения известны специалистам, работающим в области изготовления и применения проппантов.
Примеры осуществления изобретения.
Шихту, содержащую 3720 г (93 масс.%) высококремнеземистого кварц-полевошпатного песка и 200 г (5 масс.%) серпентинита подвергали помолу с измельчением до фракции 20 мкм и менее, при содержании фракции менее 5 мкм - 25 масс.%, фракции 5-20 мкм - 75 масс.% помещали в перемешивающее устройство, туда же добавляли 80 г (2 масс.%) каолиновой ваты с размером волокон до 15 мкм. Материал перемешивали в течение 5 минут. Полученную смесь гранулировали в лабораторном тарельчатом грануляторе, а полученный гранулят обжигали при температуре 1190°С. Обожженные проппанты фракции 30/50 меш направляли на определение насыпной плотности и разрушаемости по общепринятой методике ISO 13503 - 2:2006, а также к устойчивости к динамической сжимающей нагрузке. Устойчивость материала к динамической сжимающей нагрузке оценивали по количеству разрушенных гранул после циклического (троекратного) нагружения стандартной пробы проппанта давлением 7500 psi (выдержка при 7500 psi - 2 мин) c последующим снижением нагрузки до 5000 psi. Подобным образом были получены пробы проппантов из шихты с различной степенью измельчения и различным содержанием серпентинита и каолиновой ваты (примеры 5-10 таблицы). Кроме того, была изготовлена проба проппанта, на поверхность гранул которого наносили упрочняющее покрытие на основе новолачной фенолформальдегидной смолы (пример 11* таблицы).
Анализ данных таблицы показывает, что гранулы, полученные заявляемым способом (примеры 2-4, 11*), по сопротивляемости воздействию динамической сжимающей нагрузки превосходят известные аналоги, имея при этом насыпную плотность менее 1,3 г/см3. Следовательно, указанный продукт может быть использован в качестве ультралегковесного кремнеземистого магнийсодержащего проппанта с высокой устойчивостью к циклическим нагрузкам. Использование указанного проппанта позволит упростить и удешевить проведение операции ГРП за счет применения менее плотного геля, облегчения закачки, транспортировки и размещения расклинивателя в скважинах, особенно в скважинах со сложной геометрией.
Таблица - свойства ультралегковесного проппанта
Figure 00000001

Claims (2)

1. Способ изготовления ультралегковесного кремнеземистого магнийсодержащего проппанта, включающий помол исходной шихты, состоящей из кварц-полевошпатного песка и серпентинита, формирование гранул, их обжиг при температуре, не превышающей 1200°С, и рассев, отличающийся тем, что в исходную шихту, измельченную до фракции 20 мкм и менее с содержанием фракции менее 5 мкм - 20-30 масс.%, фракции 5-20 мкм - 70-80 масс.%, вводят каолиновую вату с длиной волокон до 15 мкм при следующем соотношении компонентов, масс.%:
серпентинит 1-5
каолиновая вата 0,05-2
кварц-полевошпатный песок остальное.
2. Способ по п.1, отличающийся тем, что на поверхность обожженного проппанта наносят полимерное покрытие.
RU2013138144/03A 2013-08-15 2013-08-15 Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта RU2535540C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013138144/03A RU2535540C1 (ru) 2013-08-15 2013-08-15 Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013138144/03A RU2535540C1 (ru) 2013-08-15 2013-08-15 Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта

Publications (1)

Publication Number Publication Date
RU2535540C1 true RU2535540C1 (ru) 2014-12-20

Family

ID=53286014

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013138144/03A RU2535540C1 (ru) 2013-08-15 2013-08-15 Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта

Country Status (1)

Country Link
RU (1) RU2535540C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615197C1 (ru) * 2016-02-09 2017-04-04 Общество с ограниченной ответственностью ФОРЭС Магнийсиликатный проппант
RU2623751C1 (ru) * 2016-05-31 2017-06-29 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнезёмистого проппанта и проппант
RU2644359C1 (ru) * 2016-11-03 2018-02-09 Общество С Ограниченной Ответственностью "Форэс" Керамический проппант
RU2650149C1 (ru) * 2017-02-28 2018-04-09 Общество С Ограниченной Ответственностью "Форэс" Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
RU2783399C1 (ru) * 2021-12-13 2022-11-14 Леонид Евгеньевич Агапеев Способ получения проппанта

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2098618C1 (ru) * 1995-12-27 1997-12-10 Татьяна Николаевна Жаркова Способ получения расклинивающего агента
RU2133716C1 (ru) * 1997-11-10 1999-07-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ производства высокопрочных сферических керамических гранул
RU2235702C2 (ru) * 2002-10-10 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
RU2235703C1 (ru) * 2003-05-12 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
US7648934B2 (en) * 2006-08-04 2010-01-19 Ilem Research And Development Establishment Precursor compositions for ceramic products
RU2437913C1 (ru) * 2010-06-03 2011-12-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного магнийсиликатного проппанта и проппант
RU2445339C1 (ru) * 2010-08-10 2012-03-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления кремнеземистого проппанта и проппант
RU2446200C1 (ru) * 2010-10-05 2012-03-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнеземистого проппанта и проппант

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2098618C1 (ru) * 1995-12-27 1997-12-10 Татьяна Николаевна Жаркова Способ получения расклинивающего агента
RU2133716C1 (ru) * 1997-11-10 1999-07-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ производства высокопрочных сферических керамических гранул
RU2235702C2 (ru) * 2002-10-10 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
RU2235703C1 (ru) * 2003-05-12 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
US7648934B2 (en) * 2006-08-04 2010-01-19 Ilem Research And Development Establishment Precursor compositions for ceramic products
RU2437913C1 (ru) * 2010-06-03 2011-12-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного магнийсиликатного проппанта и проппант
RU2445339C1 (ru) * 2010-08-10 2012-03-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления кремнеземистого проппанта и проппант
RU2446200C1 (ru) * 2010-10-05 2012-03-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнеземистого проппанта и проппант

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615197C1 (ru) * 2016-02-09 2017-04-04 Общество с ограниченной ответственностью ФОРЭС Магнийсиликатный проппант
RU2623751C1 (ru) * 2016-05-31 2017-06-29 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного кремнезёмистого проппанта и проппант
RU2644359C1 (ru) * 2016-11-03 2018-02-09 Общество С Ограниченной Ответственностью "Форэс" Керамический проппант
RU2650149C1 (ru) * 2017-02-28 2018-04-09 Общество С Ограниченной Ответственностью "Форэс" Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
RU2783399C1 (ru) * 2021-12-13 2022-11-14 Леонид Евгеньевич Агапеев Способ получения проппанта

Similar Documents

Publication Publication Date Title
CN102753648B (zh) 含有无机纤维的水力压裂支撑剂
RU2605977C2 (ru) Синтетические расклинивающие наполнители и монодисперсные расклинивающие наполнители и способы их изготовления
US10000690B2 (en) Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
US8420578B2 (en) Low-density ceramic proppant and its production method
US20070023187A1 (en) Sintered spherical pellets useful for gas and oil well proppants
US20170022411A1 (en) Hydraulic fracturing system
RU2535540C1 (ru) Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта
US20140110110A1 (en) Porous Proppants
MX2014004760A (es) Apuntalantes porosos.
RU2473513C1 (ru) Высокопрочные расклинивающие наполнители
US9234127B2 (en) Angular abrasive proppant, process for the preparation thereof and process for hydraulic fracturing of oil and gas wells
RU2613676C1 (ru) Способ изготовления магнийсиликатного проппанта и проппант
US20190031568A1 (en) Ceramic proppant and method for producing same
US10093849B2 (en) Proppants and anti-flowback additives comprising flash calcined clay, methods of manufacture, and methods of use
US20170275209A1 (en) Addition of mineral-containing slurry for proppant formation
RU2521989C1 (ru) Способ изготовления высокопрочного магнийсиликатного проппанта
RU2472837C2 (ru) Легкий проппант
RU2563853C1 (ru) Шихта для изготовления магнийсиликатного проппанта и проппант
RU2650149C1 (ru) Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
RU2646910C1 (ru) Сырьевая шихта для изготовления магнизиально-кварцевого проппанта
RU2623751C1 (ru) Способ изготовления легковесного кремнезёмистого проппанта и проппант
RU2589785C1 (ru) Армирующий материал для полимерного покрытия, наносимого на поверхность проппанта
RU2501831C1 (ru) Способ изготовления магнийсиликатного проппанта
RU2636089C1 (ru) Легкий керамический расклинивающий агент и способ его изготовления
KR20200129391A (ko) 이중-코팅된 프로판트

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200816