RU2615197C1 - Магнийсиликатный проппант - Google Patents

Магнийсиликатный проппант Download PDF

Info

Publication number
RU2615197C1
RU2615197C1 RU2016104086A RU2016104086A RU2615197C1 RU 2615197 C1 RU2615197 C1 RU 2615197C1 RU 2016104086 A RU2016104086 A RU 2016104086A RU 2016104086 A RU2016104086 A RU 2016104086A RU 2615197 C1 RU2615197 C1 RU 2615197C1
Authority
RU
Russia
Prior art keywords
proppant
magnesium
cooling
metasilicate
protoenstatite
Prior art date
Application number
RU2016104086A
Other languages
English (en)
Inventor
Сергей Фёдорович Шмотьев
Сергей Юрьевич Плинер
Евгений Васильевич Рожков
Вячеслав Михайлович Сычёв
Original Assignee
Общество с ограниченной ответственностью ФОРЭС
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью ФОРЭС filed Critical Общество с ограниченной ответственностью ФОРЭС
Priority to RU2016104086A priority Critical patent/RU2615197C1/ru
Application granted granted Critical
Publication of RU2615197C1 publication Critical patent/RU2615197C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • Y10S507/924Fracture fluid with specified propping feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/935Enhanced oil recovery

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления среднеплотных и легковесных керамических проппантов с насыпной плотностью 1,4 – 1,55 г/см3 из шихты на основе смеси термообработанного природного магнийсиликатного сырья и кварцполевошпатного песка. Магнийсиликатный проппант представляет собой керамические гранулы на основе метасиликата магния, изготовленные путем предварительной термообработки и помола исходных компонентов шихты, формования гранул, их обжига, охлаждения и рассева, где охлаждение осуществляют со скоростью 250°С/ч и более, а указанный метасиликат представлен протоэнстатитом и клиноэнстатитом при следующем их соотношении, об.%: протоэнстатит 55-95, клиноэнстатит 5-45. Технический результат – повышение устойчивости к циклическим сжимающим нагрузкам при сохранении требуемых прочностных характеристик. 2 пр., 2 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления среднеплотных и легковесных керамических проппантов с насыпной плотностью 1,4 – 1,55 г/см3 из шихты на основе смеси термообработанного природного магнийсиликатного сырья и кварцполевошпатного песка.
Керамические проппанты – расклинивающие агенты, это прочные сферические гранулы, удерживающие трещины ГРП от смыкания под большим давлением и обеспечивающие необходимую производительность нефтяных скважин путем создания в пласте проводящего канала. Широко представленные рынке проппанты производятся из алюмосиликатного или магнийсиликатного сырья, причем использование природного магнийсиликатного сырья, являющегося доступным и не требующим значительных затрат на переработку, позволяет получать конкурентный в ценовом отношении продукт. Кроме того, использование в качестве исходного сырья физической смеси термообработанного магнийсиликатного сырья (серпентинита, дунита, талька и прочее) и кварцполевошпатного песка в различных соотношениях дает возможность изменять физико–механические характеристики проппанта в широких пределах. К числу основных технических требований, предъявляемых к проппантам, относятся: сферичность/округлость, плотность разрушаемость, а также проводимость проппантной пачки. При этом снижение плотности материала влечет за собой увеличение разрушаемости расклинивателя и снижение проводимости материала. Вместе с тем, в последние годы наблюдается увеличение спроса со стороны сервисных компаний на среднеплотные и легковесные проппанты, демонстрирующие повышенную степень переноса и улучшенное размещение расклинвающего агента в трещине. В этой связи предприятиями–производителями проппанта проводятся исследования, направленные на сохранение прочностных характеристик магнийсиликатного проппанта при снижении его плотности.
Известны способы изготовления среднеплотных и легковесных магнийсиликатных проппантов на основе смеси термообработанного серпентинита и кварцполевошпатного песка (см. патенты РФ № 2521989, № 2463329), в которых сохранения прочностных характеристик добиваются уплотнением и упрочнением проппанта–сырца.
Известен также способ изготовления магнийсиликатного проппанта и проппант (патент РФ №2463329), в котором снижения падения проводимости проппантной пачки при высоких (более 6000 psi) давлениях в условиях гидротермального воздействия добиваются посредством введения в шихту комплексной спекающей добавки. Многолетними исследованиями, проводимыми авторами в области совершенствования технологии изготовления проппантов установлено, что еще одной из важнейших характеристик расклинивателя, обеспечивающих проводимость проппантной пачки является устойчивость материала к воздействию циклических нагрузок, поскольку в реальных условиях проппант испытывает не разовые, а многократные нагрузки, в результате чего возрастает доля разрушенных гранул. Задача повышения устойчивости расклинивателя к воздействию динамических нагрузок решена для ультралегковесного кремнеземистого проппанта, путем введения в состав шихты пластинчатого и волокнистого материалов – серпентинита и каолиновой ваты (см. патент РФ № 2535540).
Наиболее близким по технической сущности к заявляемому решению является магнийсиликатный  проппант, представляющий собой керамические гранулы на основе метасиликата магния, полученные путем  термообработки и помола исходных компонентов шихты, их гранулирования до насыпного веса сырых гранул не менее 1,2 г/см3, обжига при температуре 1215-1290°С с последующим охлаждением и рассевом (см. патент РФ № 2235702). Метасиликат магния (MgSiO3) в проппанте, полученном заявляемым способом, представлен преимущественно клиноэнстатитом.
Недостатком указанного проппанта является пониженная устойчивость к воздействию циклических сжимающих нагрузок.
Технической задачей, на решение которой направлено заявляемое изобретение является увеличение устойчивости магнийсиликатного проппанта к воздействию циклических сжимающих нагрузок при сохранении требуемых исходных прочностных характеристик продукта.
Указанная задача решается тем, что магнийсиликатный проппант, представляющий собой керамические гранулы на основе метасиликата магния, изготовленные путем предварительной термообработки и помола исходных компонентов шихты, формования гранул, их обжига, охлаждения и рассева, получен при охлаждении, которое производят со скоростью 250°С/ч и более, причем указанный метасиликат представлен протоэнстатитом и клиноэнстатитом при следующем их соотношении, об.%:
Протоэнстатит 55–95
Клиноэнстатит 5–45
Наиболее применяемым природным магнийсиликатным сырьем для производства проппанта является серпентинит, который предварительно обжигают при температуре 1000 – 1200°С. После обжига получают материал, содержащий более 60% форстерита. Шихту для производства проппанта готовят путем совместного тонкого (до 10 мкм по среднемедианному размеру частиц) помола обожженного серпентинита с кварцполевошпатным песком, смешанных в необходимом соотношении. Соотношение компонентов шихты определяется требуемой плотностью проппанта. Измельченный материал гранулируют, обжигают, охлаждают и рассевают. Обжиг магнийсиликатных проппантов производится в широком интервале температур, зависящих от химического и минералогического состава используемого природного сырья, состава и количества примесей, соотношения компонентов шихты и определяется для каждого материала отдельно. Критерием оптимальной температуры спекающего обжига является максимальная прочность (минимальная разрушаемость) проппанта. В процессе обжига керамических гранул содержащийся в материале форстерит преобразуется в метасиликат магния, представленный двумя фазами – клиноэнстатитом и протоэнстатитом с преобладанием последнего. Во время охлаждения протоэнстатит частично переходит в клиноэнстатит, при этом доля протоэнстатита в значительной степени зависит от скорости охлаждения обожженного проппанта. Сохранению фазы протоэнстатита при комнатной температуре также способствует тонкое измельчение шихты и наличие в ней естественных легкоплавких примесей, способствующих образованию по границам зерен стеклофазы. Находящиеся в керамике клиноэнстатит и протоэнстатит обеспечивают необходимую исходную прочность материала, при этом протоэнстатит придает изделиям трещиностойкость. Это объясняется полиморфизмом MgSiO3. Специалистам, работающим в области производства магнийсиликатной керамики, известно, что находящийся в метастабильном состоянии при комнатной температуре протоэнстатит, при приложении внешней нагрузки может переходить в клиноэнстатит с увеличением объема до 6%. Применительно к магнийсиликатному проппанту это означает, что при воздействии сжимающей нагрузки на проппантную пачку в местах контакта гранул происходит фазовый переход протоэнстатиа в клиноэнстатит с образованием сети локальных микротрещин. После снижения нагрузки и повторном нагружении энергия распространяющейся трещины рассеивается в образовавшейся ранее сети микротрещин. Следовательно, наличие в проппанте определенного количества протоэнстатита увеличивает сопротивляемость материала воздействию циклических сжимающих нагрузок.
Экспериментальным путем установлено, что сопутствующие кристаллические фазы, образующиеся в керамике после обжига и охлаждения, не оказывают заметного влияния на решение поставленной технической задачи. В качестве сопутствующих кристаллических фаз в обожженном проппанте могут присутствовать кварц, маггемит, кристобалит, форстерит и пр. Их количество и соотношение зависят от химического состава и температуры предварительной термообработки исходных компонентов шихты, соотношения исходных компонентов шихты и степени их измельчения. Также экспериментальным путем установлено, что заявляемое соотношение фаз обеспечивает необходимую исходную прочность проппанта и способствует ее сохранению при циклических нагрузках. При содержании в метасиликате магния протоэнстатита в количестве менее 55 об.% и клиноэнстатита в количестве более 45 об.% уменьшается устойчивость проппанта к действию циклических сжимающих нагрузок. Содержание протоэнстатита 95 об.% (соответственно клиноэнстатита – 5 об.%) является максимальным, которого удалось достичь при использовании природного сырья, содержащего естественные примеси, оказывающие влияние на фазовый состав керамики. Охлаждение обожженного проппанта со скоростью менее 250°С/ч приводит к значительному снижению содержания протоэнстатита в керамике за счет его перерождения в клиноэнстатит, что, в свою очередь, снижает как прочность, так и трещиностойкость материала, увеличивая тем самым долю разрушенных гранул под действием циклических сжимающих нагрузок.
Авторы подтверждают, что использование альтернативного магний-силикатного сырья при соблюдении заявляемого соотношения фаз в метасиликате магния, являющимся основным компонентом обожженного проппанта и реализации заявляемой скорости охлаждения обожженного расклинивателя, позволяет получать продукт, обладающий устойчивостью к циклическим сжимающим нагрузкам.
Примеры осуществления изобретения
Пример 1.
6 кг обожженного серпентинита (Асбестовского месторождения, РФ Свердловская обл.) и 4 кг кварцполевошпатного песка (Малышевского месторождения, РФ, Свердловская обл.) измельчали в лабораторной мельнице до среднемедианного размера частиц менее 10 мкм, материал гранулировали и обжигали при температуре 1280°С (оптимальной для данной шихты), обожженный гранулят охлаждали со скоростью 2500°С/ч (пример 3 таблицы 1). У охлажденного проппанта определяли фазовый состав и разрушаемость. Проппант фракции 16/20 меш, с насыпной плотностью 1,55 г/см3 и долей разрушенных при 10000 psi гранул равной 14,2 масс.% подвергали нагрузке в 10000 psi, затем давление снижали до 7500 psi и вновь поднимали до 10000 psi. После 5 циклов нагрузки вновь определяли долю разрушенных гранул. Подобным образом проводили исследования свойств полученного проппанта, охлажденного с другими скоростями. Также был изготовлен проппант на основе клиноэнстатита по способу, предложенному в патенте РФ № 2235702. Проппант–сырец обжигали при температуре 1215°С и охлаждали вместе с обжиговой печью со скоростью 250°С/ч для получения проппанта с максимальным содержанием клиноэнстатита. Результаты испытаний приведены в таблице 1. Результаты фазового анализа образцов округлены до целых значений.
Таблица 1.
Figure 00000001
1* - проппант на основе клиноэнстатита по патенту РФ № 2235702.
Пример 2.
5 кг обожженного серпентинитового щебня (Асбестовского месторождения, РФ, Свердловская обл.) и 5 кг кварцполевошпатного песка (Малышевского месторождения, РФ, Свердловская обл.) измельчали в лабораторной мельнице до среднемедианного размера частиц менее 10 мкм, материал гранулировали и обжигали при температуре 1260°С (оптимальной для данной шихты), обожженный гранулят охлаждали со скоростью 2500°С/ч (пример 2 таблицы 2). У охлажденного проппанта определяли фазовый состав и разрушаемость. Проппант фракции 16/20 меш, с насыпной плотностью 1,4 г/см3 и долей разрушенных при 10000 psi гранул равной 16,3 масс.% подвергали нагрузке в 10000 psi, затем давление снижали до 7500 psi и вновь поднимали до 10000 psi. После 5 циклов нагрузки вновь определяли долю разрушенных гранул. Подобным образом проводили исследования свойств полученного проппанта, охлажденного с другими скоростями. Результаты фазового анализа образцов округлены до целых значений.
Результаты испытаний приведены в таблице 2.
Таблица 2.
Figure 00000002
Анализ данных таблиц показывает, что магнийсиликатный проппант, соответствующий заявляемому техническому решению (примеры 2–7 таблицы 1 и 1–6 таблицы 2), обеспечивает сохранение исходной прочности при воздействии циклических сжимающих нагрузок.

Claims (2)

  1. Магнийсиликатный проппант, представляющий собой керамические гранулы на основе метасиликата магния, полученные путем предварительной термообработки и помола исходных компонентов шихты, формования гранул, их обжига, охлаждения и рассева, отличающийся тем, что охлаждение производят со скоростью 250°С/ч и более, а указанный метасиликат представлен протоэнстатитом и клиноэнстатитом при следующем их соотношении, об.%:
  2. Протоэнстатит 55–95 Клиноэнстатит 5–45
RU2016104086A 2016-02-09 2016-02-09 Магнийсиликатный проппант RU2615197C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016104086A RU2615197C1 (ru) 2016-02-09 2016-02-09 Магнийсиликатный проппант

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016104086A RU2615197C1 (ru) 2016-02-09 2016-02-09 Магнийсиликатный проппант

Publications (1)

Publication Number Publication Date
RU2615197C1 true RU2615197C1 (ru) 2017-04-04

Family

ID=58505560

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016104086A RU2615197C1 (ru) 2016-02-09 2016-02-09 Магнийсиликатный проппант

Country Status (1)

Country Link
RU (1) RU2615197C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744130C2 (ru) * 2019-06-24 2021-03-02 Общество С Ограниченной Ответственностью "Форэс" Керамический расклинивающий агент
EA039135B1 (ru) * 2020-11-23 2021-12-09 Общество С Ограниченной Ответственностью "Форэс" Керамический расклинивающий агент

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725390A (en) * 1985-06-12 1988-02-16 Minnesota Mining And Manufacturing Company Process for making ceramic spheroids
RU2235702C2 (ru) * 2002-10-10 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
US7648934B2 (en) * 2006-08-04 2010-01-19 Ilem Research And Development Establishment Precursor compositions for ceramic products
RU2425084C1 (ru) * 2010-02-08 2011-07-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного проппанта и проппант
RU2437913C1 (ru) * 2010-06-03 2011-12-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного магнийсиликатного проппанта и проппант
RU2463329C1 (ru) * 2011-05-06 2012-10-10 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления магнийсиликатного проппанта и проппант
RU2513792C1 (ru) * 2012-11-29 2014-04-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов
RU2535540C1 (ru) * 2013-08-15 2014-12-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725390A (en) * 1985-06-12 1988-02-16 Minnesota Mining And Manufacturing Company Process for making ceramic spheroids
RU2235702C2 (ru) * 2002-10-10 2004-09-10 Шмотьев Сергей Федорович Способ изготовления керамических расклинивателей нефтяных скважин
US7648934B2 (en) * 2006-08-04 2010-01-19 Ilem Research And Development Establishment Precursor compositions for ceramic products
RU2425084C1 (ru) * 2010-02-08 2011-07-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного проппанта и проппант
RU2437913C1 (ru) * 2010-06-03 2011-12-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного магнийсиликатного проппанта и проппант
RU2463329C1 (ru) * 2011-05-06 2012-10-10 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления магнийсиликатного проппанта и проппант
RU2513792C1 (ru) * 2012-11-29 2014-04-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов
RU2535540C1 (ru) * 2013-08-15 2014-12-20 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744130C2 (ru) * 2019-06-24 2021-03-02 Общество С Ограниченной Ответственностью "Форэс" Керамический расклинивающий агент
EA039135B1 (ru) * 2020-11-23 2021-12-09 Общество С Ограниченной Ответственностью "Форэс" Керамический расклинивающий агент

Similar Documents

Publication Publication Date Title
RU2437913C1 (ru) Способ изготовления легковесного магнийсиликатного проппанта и проппант
RU2742891C2 (ru) Способ изготовления магнийсиликатного проппанта средней плотности и проппант
RU2463329C1 (ru) Способ изготовления магнийсиликатного проппанта и проппант
RU2615563C9 (ru) Керамический расклинивающий агент и его способ получения
US7648934B2 (en) Precursor compositions for ceramic products
RU2446200C1 (ru) Способ изготовления легковесного кремнеземистого проппанта и проппант
US9234127B2 (en) Angular abrasive proppant, process for the preparation thereof and process for hydraulic fracturing of oil and gas wells
RU2425084C1 (ru) Способ изготовления легковесного проппанта и проппант
RU2513792C1 (ru) Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов
RU2613676C1 (ru) Способ изготовления магнийсиликатного проппанта и проппант
RU2235702C2 (ru) Способ изготовления керамических расклинивателей нефтяных скважин
NO852711L (no) Proppemiddel for olje- og gassbroenner.
RU2588634C1 (ru) Способ получения керамического расклинивающего агента (варианты)
RU2615197C1 (ru) Магнийсиликатный проппант
WO2015084195A1 (en) A method of manufacturing of light ceramic proppants and light ceramic proppants
RU2389710C1 (ru) Способ получения алюмосиликатного пропанта и состав для его получения
RU2547033C1 (ru) Способ изготовления легковесного кремнеземистого магнийсодержащего проппанта
CN103468240B (zh) 以焦宝石尾矿为原料的超低密陶粒支撑剂及其制备方法
EA007864B1 (ru) Проппанты и способ их изготовления
EA008825B1 (ru) Проппанты и способ их изготовления
RU2739180C1 (ru) Способ получения магнийсиликатного проппанта и проппант
RU2617853C1 (ru) Способ изготовления магнезиально-кварцевой сырьевой шихты, используемой при производстве проппантов
RU2646910C1 (ru) Сырьевая шихта для изготовления магнизиально-кварцевого проппанта
RU2515280C2 (ru) Способ изготовления магнезиальнокварцевого проппанта
CN105400505B (zh) 低密度石油压裂支撑剂及其制备方法

Legal Events

Date Code Title Description
HE4A Change of address of a patent owner

Effective date: 20210722