RU2615197C1 - Магнийсиликатный проппант - Google Patents
Магнийсиликатный проппант Download PDFInfo
- Publication number
- RU2615197C1 RU2615197C1 RU2016104086A RU2016104086A RU2615197C1 RU 2615197 C1 RU2615197 C1 RU 2615197C1 RU 2016104086 A RU2016104086 A RU 2016104086A RU 2016104086 A RU2016104086 A RU 2016104086A RU 2615197 C1 RU2615197 C1 RU 2615197C1
- Authority
- RU
- Russia
- Prior art keywords
- proppant
- magnesium
- cooling
- metasilicate
- protoenstatite
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/80—Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/922—Fracture fluid
- Y10S507/924—Fracture fluid with specified propping feature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/935—Enhanced oil recovery
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления среднеплотных и легковесных керамических проппантов с насыпной плотностью 1,4 – 1,55 г/см3 из шихты на основе смеси термообработанного природного магнийсиликатного сырья и кварцполевошпатного песка. Магнийсиликатный проппант представляет собой керамические гранулы на основе метасиликата магния, изготовленные путем предварительной термообработки и помола исходных компонентов шихты, формования гранул, их обжига, охлаждения и рассева, где охлаждение осуществляют со скоростью 250°С/ч и более, а указанный метасиликат представлен протоэнстатитом и клиноэнстатитом при следующем их соотношении, об.%: протоэнстатит 55-95, клиноэнстатит 5-45. Технический результат – повышение устойчивости к циклическим сжимающим нагрузкам при сохранении требуемых прочностных характеристик. 2 пр., 2 табл.
Description
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления среднеплотных и легковесных керамических проппантов с насыпной плотностью 1,4 – 1,55 г/см3 из шихты на основе смеси термообработанного природного магнийсиликатного сырья и кварцполевошпатного песка.
Керамические проппанты – расклинивающие агенты, это прочные сферические гранулы, удерживающие трещины ГРП от смыкания под большим давлением и обеспечивающие необходимую производительность нефтяных скважин путем создания в пласте проводящего канала. Широко представленные рынке проппанты производятся из алюмосиликатного или магнийсиликатного сырья, причем использование природного магнийсиликатного сырья, являющегося доступным и не требующим значительных затрат на переработку, позволяет получать конкурентный в ценовом отношении продукт. Кроме того, использование в качестве исходного сырья физической смеси термообработанного магнийсиликатного сырья (серпентинита, дунита, талька и прочее) и кварцполевошпатного песка в различных соотношениях дает возможность изменять физико–механические характеристики проппанта в широких пределах. К числу основных технических требований, предъявляемых к проппантам, относятся: сферичность/округлость, плотность разрушаемость, а также проводимость проппантной пачки. При этом снижение плотности материала влечет за собой увеличение разрушаемости расклинивателя и снижение проводимости материала. Вместе с тем, в последние годы наблюдается увеличение спроса со стороны сервисных компаний на среднеплотные и легковесные проппанты, демонстрирующие повышенную степень переноса и улучшенное размещение расклинвающего агента в трещине. В этой связи предприятиями–производителями проппанта проводятся исследования, направленные на сохранение прочностных характеристик магнийсиликатного проппанта при снижении его плотности.
Известны способы изготовления среднеплотных и легковесных магнийсиликатных проппантов на основе смеси термообработанного серпентинита и кварцполевошпатного песка (см. патенты РФ № 2521989, № 2463329), в которых сохранения прочностных характеристик добиваются уплотнением и упрочнением проппанта–сырца.
Известен также способ изготовления магнийсиликатного проппанта и проппант (патент РФ №2463329), в котором снижения падения проводимости проппантной пачки при высоких (более 6000 psi) давлениях в условиях гидротермального воздействия добиваются посредством введения в шихту комплексной спекающей добавки. Многолетними исследованиями, проводимыми авторами в области совершенствования технологии изготовления проппантов установлено, что еще одной из важнейших характеристик расклинивателя, обеспечивающих проводимость проппантной пачки является устойчивость материала к воздействию циклических нагрузок, поскольку в реальных условиях проппант испытывает не разовые, а многократные нагрузки, в результате чего возрастает доля разрушенных гранул. Задача повышения устойчивости расклинивателя к воздействию динамических нагрузок решена для ультралегковесного кремнеземистого проппанта, путем введения в состав шихты пластинчатого и волокнистого материалов – серпентинита и каолиновой ваты (см. патент РФ № 2535540).
Наиболее близким по технической сущности к заявляемому решению является магнийсиликатный проппант, представляющий собой керамические гранулы на основе метасиликата магния, полученные путем термообработки и помола исходных компонентов шихты, их гранулирования до насыпного веса сырых гранул не менее 1,2 г/см3, обжига при температуре 1215-1290°С с последующим охлаждением и рассевом (см. патент РФ № 2235702). Метасиликат магния (MgSiO3) в проппанте, полученном заявляемым способом, представлен преимущественно клиноэнстатитом.
Недостатком указанного проппанта является пониженная устойчивость к воздействию циклических сжимающих нагрузок.
Технической задачей, на решение которой направлено заявляемое изобретение является увеличение устойчивости магнийсиликатного проппанта к воздействию циклических сжимающих нагрузок при сохранении требуемых исходных прочностных характеристик продукта.
Указанная задача решается тем, что магнийсиликатный проппант, представляющий собой керамические гранулы на основе метасиликата магния, изготовленные путем предварительной термообработки и помола исходных компонентов шихты, формования гранул, их обжига, охлаждения и рассева, получен при охлаждении, которое производят со скоростью 250°С/ч и более, причем указанный метасиликат представлен протоэнстатитом и клиноэнстатитом при следующем их соотношении, об.%:
Протоэнстатит | 55–95 |
Клиноэнстатит | 5–45 |
Наиболее применяемым природным магнийсиликатным сырьем для производства проппанта является серпентинит, который предварительно обжигают при температуре 1000 – 1200°С. После обжига получают материал, содержащий более 60% форстерита. Шихту для производства проппанта готовят путем совместного тонкого (до 10 мкм по среднемедианному размеру частиц) помола обожженного серпентинита с кварцполевошпатным песком, смешанных в необходимом соотношении. Соотношение компонентов шихты определяется требуемой плотностью проппанта. Измельченный материал гранулируют, обжигают, охлаждают и рассевают. Обжиг магнийсиликатных проппантов производится в широком интервале температур, зависящих от химического и минералогического состава используемого природного сырья, состава и количества примесей, соотношения компонентов шихты и определяется для каждого материала отдельно. Критерием оптимальной температуры спекающего обжига является максимальная прочность (минимальная разрушаемость) проппанта. В процессе обжига керамических гранул содержащийся в материале форстерит преобразуется в метасиликат магния, представленный двумя фазами – клиноэнстатитом и протоэнстатитом с преобладанием последнего. Во время охлаждения протоэнстатит частично переходит в клиноэнстатит, при этом доля протоэнстатита в значительной степени зависит от скорости охлаждения обожженного проппанта. Сохранению фазы протоэнстатита при комнатной температуре также способствует тонкое измельчение шихты и наличие в ней естественных легкоплавких примесей, способствующих образованию по границам зерен стеклофазы. Находящиеся в керамике клиноэнстатит и протоэнстатит обеспечивают необходимую исходную прочность материала, при этом протоэнстатит придает изделиям трещиностойкость. Это объясняется полиморфизмом MgSiO3. Специалистам, работающим в области производства магнийсиликатной керамики, известно, что находящийся в метастабильном состоянии при комнатной температуре протоэнстатит, при приложении внешней нагрузки может переходить в клиноэнстатит с увеличением объема до 6%. Применительно к магнийсиликатному проппанту это означает, что при воздействии сжимающей нагрузки на проппантную пачку в местах контакта гранул происходит фазовый переход протоэнстатиа в клиноэнстатит с образованием сети локальных микротрещин. После снижения нагрузки и повторном нагружении энергия распространяющейся трещины рассеивается в образовавшейся ранее сети микротрещин. Следовательно, наличие в проппанте определенного количества протоэнстатита увеличивает сопротивляемость материала воздействию циклических сжимающих нагрузок.
Экспериментальным путем установлено, что сопутствующие кристаллические фазы, образующиеся в керамике после обжига и охлаждения, не оказывают заметного влияния на решение поставленной технической задачи. В качестве сопутствующих кристаллических фаз в обожженном проппанте могут присутствовать кварц, маггемит, кристобалит, форстерит и пр. Их количество и соотношение зависят от химического состава и температуры предварительной термообработки исходных компонентов шихты, соотношения исходных компонентов шихты и степени их измельчения. Также экспериментальным путем установлено, что заявляемое соотношение фаз обеспечивает необходимую исходную прочность проппанта и способствует ее сохранению при циклических нагрузках. При содержании в метасиликате магния протоэнстатита в количестве менее 55 об.% и клиноэнстатита в количестве более 45 об.% уменьшается устойчивость проппанта к действию циклических сжимающих нагрузок. Содержание протоэнстатита 95 об.% (соответственно клиноэнстатита – 5 об.%) является максимальным, которого удалось достичь при использовании природного сырья, содержащего естественные примеси, оказывающие влияние на фазовый состав керамики. Охлаждение обожженного проппанта со скоростью менее 250°С/ч приводит к значительному снижению содержания протоэнстатита в керамике за счет его перерождения в клиноэнстатит, что, в свою очередь, снижает как прочность, так и трещиностойкость материала, увеличивая тем самым долю разрушенных гранул под действием циклических сжимающих нагрузок.
Авторы подтверждают, что использование альтернативного магний-силикатного сырья при соблюдении заявляемого соотношения фаз в метасиликате магния, являющимся основным компонентом обожженного проппанта и реализации заявляемой скорости охлаждения обожженного расклинивателя, позволяет получать продукт, обладающий устойчивостью к циклическим сжимающим нагрузкам.
Примеры осуществления изобретения
Пример 1.
6 кг обожженного серпентинита (Асбестовского месторождения, РФ Свердловская обл.) и 4 кг кварцполевошпатного песка (Малышевского месторождения, РФ, Свердловская обл.) измельчали в лабораторной мельнице до среднемедианного размера частиц менее 10 мкм, материал гранулировали и обжигали при температуре 1280°С (оптимальной для данной шихты), обожженный гранулят охлаждали со скоростью 2500°С/ч (пример 3 таблицы 1). У охлажденного проппанта определяли фазовый состав и разрушаемость. Проппант фракции 16/20 меш, с насыпной плотностью 1,55 г/см3 и долей разрушенных при 10000 psi гранул равной 14,2 масс.% подвергали нагрузке в 10000 psi, затем давление снижали до 7500 psi и вновь поднимали до 10000 psi. После 5 циклов нагрузки вновь определяли долю разрушенных гранул. Подобным образом проводили исследования свойств полученного проппанта, охлажденного с другими скоростями. Также был изготовлен проппант на основе клиноэнстатита по способу, предложенному в патенте РФ № 2235702. Проппант–сырец обжигали при температуре 1215°С и охлаждали вместе с обжиговой печью со скоростью 250°С/ч для получения проппанта с максимальным содержанием клиноэнстатита. Результаты испытаний приведены в таблице 1. Результаты фазового анализа образцов округлены до целых значений.
Таблица 1.
1* - проппант на основе клиноэнстатита по патенту РФ № 2235702.
Пример 2.
5 кг обожженного серпентинитового щебня (Асбестовского месторождения, РФ, Свердловская обл.) и 5 кг кварцполевошпатного песка (Малышевского месторождения, РФ, Свердловская обл.) измельчали в лабораторной мельнице до среднемедианного размера частиц менее 10 мкм, материал гранулировали и обжигали при температуре 1260°С (оптимальной для данной шихты), обожженный гранулят охлаждали со скоростью 2500°С/ч (пример 2 таблицы 2). У охлажденного проппанта определяли фазовый состав и разрушаемость. Проппант фракции 16/20 меш, с насыпной плотностью 1,4 г/см3 и долей разрушенных при 10000 psi гранул равной 16,3 масс.% подвергали нагрузке в 10000 psi, затем давление снижали до 7500 psi и вновь поднимали до 10000 psi. После 5 циклов нагрузки вновь определяли долю разрушенных гранул. Подобным образом проводили исследования свойств полученного проппанта, охлажденного с другими скоростями. Результаты фазового анализа образцов округлены до целых значений.
Результаты испытаний приведены в таблице 2.
Анализ данных таблиц показывает, что магнийсиликатный проппант, соответствующий заявляемому техническому решению (примеры 2–7 таблицы 1 и 1–6 таблицы 2), обеспечивает сохранение исходной прочности при воздействии циклических сжимающих нагрузок.
Claims (2)
- Магнийсиликатный проппант, представляющий собой керамические гранулы на основе метасиликата магния, полученные путем предварительной термообработки и помола исходных компонентов шихты, формования гранул, их обжига, охлаждения и рассева, отличающийся тем, что охлаждение производят со скоростью 250°С/ч и более, а указанный метасиликат представлен протоэнстатитом и клиноэнстатитом при следующем их соотношении, об.%:
-
Протоэнстатит 55–95 Клиноэнстатит 5–45
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016104086A RU2615197C1 (ru) | 2016-02-09 | 2016-02-09 | Магнийсиликатный проппант |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016104086A RU2615197C1 (ru) | 2016-02-09 | 2016-02-09 | Магнийсиликатный проппант |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2615197C1 true RU2615197C1 (ru) | 2017-04-04 |
Family
ID=58505560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016104086A RU2615197C1 (ru) | 2016-02-09 | 2016-02-09 | Магнийсиликатный проппант |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2615197C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2744130C2 (ru) * | 2019-06-24 | 2021-03-02 | Общество С Ограниченной Ответственностью "Форэс" | Керамический расклинивающий агент |
EA039135B1 (ru) * | 2020-11-23 | 2021-12-09 | Общество С Ограниченной Ответственностью "Форэс" | Керамический расклинивающий агент |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725390A (en) * | 1985-06-12 | 1988-02-16 | Minnesota Mining And Manufacturing Company | Process for making ceramic spheroids |
RU2235702C2 (ru) * | 2002-10-10 | 2004-09-10 | Шмотьев Сергей Федорович | Способ изготовления керамических расклинивателей нефтяных скважин |
US7648934B2 (en) * | 2006-08-04 | 2010-01-19 | Ilem Research And Development Establishment | Precursor compositions for ceramic products |
RU2425084C1 (ru) * | 2010-02-08 | 2011-07-27 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления легковесного проппанта и проппант |
RU2437913C1 (ru) * | 2010-06-03 | 2011-12-27 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления легковесного магнийсиликатного проппанта и проппант |
RU2463329C1 (ru) * | 2011-05-06 | 2012-10-10 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления магнийсиликатного проппанта и проппант |
RU2513792C1 (ru) * | 2012-11-29 | 2014-04-20 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов |
RU2535540C1 (ru) * | 2013-08-15 | 2014-12-20 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта |
-
2016
- 2016-02-09 RU RU2016104086A patent/RU2615197C1/ru active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725390A (en) * | 1985-06-12 | 1988-02-16 | Minnesota Mining And Manufacturing Company | Process for making ceramic spheroids |
RU2235702C2 (ru) * | 2002-10-10 | 2004-09-10 | Шмотьев Сергей Федорович | Способ изготовления керамических расклинивателей нефтяных скважин |
US7648934B2 (en) * | 2006-08-04 | 2010-01-19 | Ilem Research And Development Establishment | Precursor compositions for ceramic products |
RU2425084C1 (ru) * | 2010-02-08 | 2011-07-27 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления легковесного проппанта и проппант |
RU2437913C1 (ru) * | 2010-06-03 | 2011-12-27 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления легковесного магнийсиликатного проппанта и проппант |
RU2463329C1 (ru) * | 2011-05-06 | 2012-10-10 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления магнийсиликатного проппанта и проппант |
RU2513792C1 (ru) * | 2012-11-29 | 2014-04-20 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов |
RU2535540C1 (ru) * | 2013-08-15 | 2014-12-20 | Общество С Ограниченной Ответственностью "Форэс" | Способ изготовления ультралегковесного кремнезёмистого магнийсодержащего проппанта |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2744130C2 (ru) * | 2019-06-24 | 2021-03-02 | Общество С Ограниченной Ответственностью "Форэс" | Керамический расклинивающий агент |
EA039135B1 (ru) * | 2020-11-23 | 2021-12-09 | Общество С Ограниченной Ответственностью "Форэс" | Керамический расклинивающий агент |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2437913C1 (ru) | Способ изготовления легковесного магнийсиликатного проппанта и проппант | |
RU2742891C2 (ru) | Способ изготовления магнийсиликатного проппанта средней плотности и проппант | |
RU2463329C1 (ru) | Способ изготовления магнийсиликатного проппанта и проппант | |
RU2615563C9 (ru) | Керамический расклинивающий агент и его способ получения | |
US7648934B2 (en) | Precursor compositions for ceramic products | |
RU2446200C1 (ru) | Способ изготовления легковесного кремнеземистого проппанта и проппант | |
US9234127B2 (en) | Angular abrasive proppant, process for the preparation thereof and process for hydraulic fracturing of oil and gas wells | |
RU2425084C1 (ru) | Способ изготовления легковесного проппанта и проппант | |
RU2513792C1 (ru) | Способ изготовления легковесного высококремнеземистого магнийсодержащего проппанта для добычи сланцевых углеводородов | |
RU2613676C1 (ru) | Способ изготовления магнийсиликатного проппанта и проппант | |
RU2235702C2 (ru) | Способ изготовления керамических расклинивателей нефтяных скважин | |
NO852711L (no) | Proppemiddel for olje- og gassbroenner. | |
RU2588634C1 (ru) | Способ получения керамического расклинивающего агента (варианты) | |
RU2615197C1 (ru) | Магнийсиликатный проппант | |
WO2015084195A1 (en) | A method of manufacturing of light ceramic proppants and light ceramic proppants | |
RU2389710C1 (ru) | Способ получения алюмосиликатного пропанта и состав для его получения | |
RU2547033C1 (ru) | Способ изготовления легковесного кремнеземистого магнийсодержащего проппанта | |
CN103468240B (zh) | 以焦宝石尾矿为原料的超低密陶粒支撑剂及其制备方法 | |
EA007864B1 (ru) | Проппанты и способ их изготовления | |
EA008825B1 (ru) | Проппанты и способ их изготовления | |
RU2739180C1 (ru) | Способ получения магнийсиликатного проппанта и проппант | |
RU2617853C1 (ru) | Способ изготовления магнезиально-кварцевой сырьевой шихты, используемой при производстве проппантов | |
RU2646910C1 (ru) | Сырьевая шихта для изготовления магнизиально-кварцевого проппанта | |
RU2515280C2 (ru) | Способ изготовления магнезиальнокварцевого проппанта | |
CN105400505B (zh) | 低密度石油压裂支撑剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE4A | Change of address of a patent owner |
Effective date: 20210722 |