CN103760130B - 近红外光谱测定复方麝香注射液中吐温-80含量的方法 - Google Patents

近红外光谱测定复方麝香注射液中吐温-80含量的方法 Download PDF

Info

Publication number
CN103760130B
CN103760130B CN201410004997.8A CN201410004997A CN103760130B CN 103760130 B CN103760130 B CN 103760130B CN 201410004997 A CN201410004997 A CN 201410004997A CN 103760130 B CN103760130 B CN 103760130B
Authority
CN
China
Prior art keywords
tween
near infrared
compound moschus
moschus injection
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410004997.8A
Other languages
English (en)
Other versions
CN103760130A (zh
Inventor
肖雪
张湘东
付婵
马晋芳
史庆龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Zhongda Nansha Technology Innovation Industrial Park Co Ltd
Original Assignee
Guangzhou Zhongda Nansha Technology Innovation Industrial Park Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Zhongda Nansha Technology Innovation Industrial Park Co Ltd filed Critical Guangzhou Zhongda Nansha Technology Innovation Industrial Park Co Ltd
Priority to CN201410004997.8A priority Critical patent/CN103760130B/zh
Publication of CN103760130A publication Critical patent/CN103760130A/zh
Application granted granted Critical
Publication of CN103760130B publication Critical patent/CN103760130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于中药液体制剂的质量检测技术领域,特别涉及近红外光谱测定复方麝香注射液中吐温-80含量的方法,包括以下步骤:(1)校正集的收集及其光谱的测定;(2)校正模型的建立与检验;(3)校正模型的预测;(4)测定未知复方麝香注射液样品;其中光谱数据的输入、计算、输出由计算机及其配套软件实现,整个过程时间短、速度快、准确,可用于实验室快检、生产在线测量等,提高生产效率,节省大量的人力物力,针对复方麝香注射液的质量标准提升及其快速检测是一大创新,经济和社会效益巨大。

Description

近红外光谱测定复方麝香注射液中吐温-80含量的方法
技术领域
本发明属于中药液体制剂的质量检测技术领域,特别涉及近红外光谱测定复方麝香注射液中吐温-80含量的方法。
背景技术
中药注射液按照《中国药典》(2010年版)的定义是“系指药材经提取、纯化后制成的供注入体内的溶液、乳状液及供临用前配制成溶液的粉末或浓溶液的无菌制剂。”复方麝香注射液主要是由人工麝香、郁金、广藿香、石菖蒲、冰片、薄荷脑等组方药材经现代生产工艺,并添加聚山梨酯-80(吐温-80)制备而成。复方麝香注射液通过血管给药方式大大提高了中药对人身的药物有效供给和生物利用率,并进而提高了功效。目前,复方麝香注射液在中风昏迷等方面有明显长处。但是复方麝香注射液的不良反应时有发生,严重危害着患者的身体健康,提示我们必须进一步提高复方麝香注射液的质量标准,作为质量标准研究中重要的一项内容-吐温-80,目前有报道其可能存在较多的不良反应,提醒我们需要多加研究。目前仍采用传统方法如气相色谱法测定吐温-80的含量,但是这种方法需要繁琐操作、耗时长等局限性,且该操作只能离线操作,需要对待分析样品进行相应的预处理,无法及时的反馈待测样品的质量问题,存在分析结果滞后,费力费时,操作繁琐等,这些不利于复方麝香注射液的在线快速质量分析,提高生产效率,不适合中药现代化生产发展的需要。因此,迫切需要研究一种快速、高效、准确的分析检测方法。
发明内容
本发明的目的在于克服现有技术的不足与缺点,提供一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,该方法可有效地解决复方麝香注射液中吐温-80的快速测定,提高生产效率的问题。
本发明的目的通过下属技术方案来实现:
一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,包含如下步骤:
(1)校正集的收集及其光谱的测定
称取吐温-80标准品,采用比重法配制不同浓度的吐温-80标准品溶液;组成校正集,利用近红外光谱仪采集校正集原始光谱数据;
(2)校正模型的建立与检验
将步骤(1)获得的校正集的原始光谱数据进行预处理和波长范围选择,得到吐温-80含量特征光谱信息;以最佳回归算法对得到的吐温-80含量特征光谱信息和吐温-80的含量值进行关联建立校正模型,并采用参数检验校正模型,获得最优校正模型;在化学计量学分析系统中导入最优校正模型;
(3)校正模型的预测
选取复方麝香注射液样品,组成校正模型的预测集,利用近红外光谱仪采集预测集原始光谱数据;所采集的预测集原始光谱数据输入到已导入校正模型的化学计量学分析系统中,经系统计算得到预测集的预测值;预测值与真实值对照,对校正模型进行预测;
(4)测定未知复方麝香注射液样品
利用近红外光谱仪采集未知复方麝香注射液样品的原始光谱数据;所采集未知复方麝香注射液样品的原始光谱数据输入到已导入校正模型的化学计量学分析系统中,经系统计算得到未知复方麝香注射液样本中吐温-80的含量;
步骤(1)所述的吐温-80标准品纯度应不小于98%,所述吐温-80标准品溶液的质量百分比浓度范围为0.1~5%(g/g);根据样品的生产厂家、批次、年份等因素合理挑选校正集,在挑选建立校正模型时应尽可能的增大这些因子的变异范围,以得到代表性尽可能好的校正集;
步骤(1)所述校正集的数量不少于15个,且其质量百分比浓度在0.1~5%(g/g)中均匀分布;
步骤(1)所述的采集校正集原始光谱数据是指在室温(15~30℃)下,校正集每个样品各取1mL溶液,利用近红外光谱仪采集各校正集的近红外光谱图;其中分辨率为8cm-1;扫描次数为32次,扫描光谱范围为780~2526nm或者12000~4000cm-1,光程为2mm;
在近红外光谱的采集过程中,不可避免的由于仪器状态、环境干扰以及测定条件的细微差异导致光谱的变化,通过对光谱信号进行预处理以消除此类影响,改善模型的性能;步骤(2)所述的预处理方法是指无预处理、卷积平滑、卷积求导、多元散色校正、标准正态变量变换和归一化中的一种或几种;
在近红外光谱区域,不同波长的光谱吸收信息对于最后建立的模型的贡献价值不同,在特定的波长范围处,针对特定组分的吸收强度可能小于杂质的吸收或者干扰因素影响,且难以抽取对特征信息进行有效提取;采用化学计量学方法可以对全谱数据信息进行处理,但是为了改善模型的性能,提高计算速度,应该在建模过程中对光谱的波长范围进行优选;步骤(2)所述的波长范围选择采用全波长、相关系数和迭代优化方法中的一种或者几种;波长范围为12000~4000cm-1
步骤(2)所述的最佳回归算法是指偏最小二乘法(PLS)、人工神经网络和支持向量机中的一种或几种;
步骤(2)所述的参数是指交叉检验的校正标准偏差(SECV)、校正标准偏差(SEC)和决定系数(R2)中的一种或几种;
步骤(2)所述的化学计量学分析系统是一种可进行数据运算处理的软件,其具有可以对步骤(1)所获得的光谱数据进行光谱预处理、回归校正、预测分析的功能,优选为OPUS7.0、Unscrambler9.7、Matlab7.0、TQ中的一种;
步骤(3)所述的采集预测集原始光谱数据是指在室温(15~30℃)下,预测集每个样品各取1mL原液,利用近红外光谱仪采集各预测集原液的近红外光谱图;其中分辨率为8cm-1;扫描次数为32次,扫描光谱范围为780~2526nm或者12000~4000cm-1,光程为2mm;
步骤(3)所述的真实值是指通过气相色谱法和紫外-可见分光光度法中的一种测定复方麝香注射液样品中的吐温-80所获得的吐温-80的含量值或复方麝香注射液中吐温-80的标示量;
步骤(4)所述的采集未知复方麝香注射液样品的原始光谱数据是指在室温(15~30℃)下,未知复方麝香注射液样品取1mL原液,利用近红外光谱仪采集未知复方麝香注射液样品的近红外光谱图;其中分辨率为8cm-1;扫描次数为32次,扫描光谱范围为780~2526nm或者12000~4000cm-1,光程为2mm。
校正模型要不断的更新修正及维护:当样品的测定条件(时间或者空间)发生改变时,必须采用新的样本加入校正集对模型进行校正,如果发现模型的预测能力降低,就需要在校正集中增加这一检验样品,并重新按照上述步骤修改校正集。一个预测效果良好且稳定的模型需要不断的进行完善,才能在实际应用中发挥最大作用。
本专利中用到的评价校正模型的参数,其具体意义是:
(1)决定系数:R2(Thecoefficientofdetermination)
R 2 = 1 - Σ i = 1 n ( y i , act - y i , pre ) 2 Σ i = 1 n ( y i , act - y ‾ i , act ) 2
yi,act为第i样品参考方法的测定值为校正集所有样品参考方法测定值的平均值,yi,pre为校正集预测过程中的第i样品的预测值,n为校正集样品数。
在固定的浓度范围内,其值越接近于1,表示校正模型的预测值与真实值越接近。
(2)交叉检验的校正标准偏差(standarderrorofcrossvalidation,SECV):
SECV = Σ i = 1 n ( y i , act - y i , pre ) 2 n - 1
yi,act为第i样品参考方法的测定值,yi,pre为校正集交互验证预测过程中的第i样品的预测值,n为校正集的样品数。
(3)校正标准偏差(standarderrorofcalibration,SEC):
SEC = Σ i = 1 n ( y i , act - y i , pre ) 2 n - 1
yi,act为第i样品参考方法的测定值,yi,pre为所建模型对校正集中的第i样品的预测值,n为校正集的样品数。
本发明与现有技术相比具有如下优点和效果:
本发明光谱数据的输入、计算、输出由计算机及其配套软件实现,方法先进、科学、测定速度快,检测费用低,经实际与现有方法相比,测定时间大为缩短,通常每个样品在1min之内完成,其检测精度也逼近于标准方法。作为一种应用前景极好的快速质量控制方法,本发明有望可以解决复方麝香注射液传统离线测定耗时长、效率低、检测滞后等问题,同时为复方麝香注射液等品种的质量提升提供有力的技术保障;作为一种快速测定方法,本发明亦可用于生产过程中复方麝香注射液关键生产工艺点的中间体的快速在线测定,为生产过程的质量控制提供一种实时在线快速的检测方法。
附图说明
图1是吐温-80标准溶液与复方麝香注射液的近红外光谱图。(A:原始光谱,B:无预处理,C:卷积平滑;D:一阶卷积求导;E:二阶卷积求导;F:标准正态变量变换;G:多元散色校正;H:归一化;I:一阶卷积求导+多元散色校正)
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)校正集的收集及其光谱的测定
选用南京威尔化工有限公司吐温-80标准品(批号为20101101、20101110、20110114、20120201)建立校正集;
称取吐温-80标准品,采用比重法配制浓度梯度从0.1~5%(g/g)(0.05%作为一个间隔浓度)均匀分布的吐温-80标准溶液共计130个样品,混合均匀,备用;
利用近红外光谱仪采集校正集原始光谱数据:在室温(15~30℃)下,校正集每个样品各取1mL溶液,利用布鲁克光谱仪Tensor37(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器)进行数据采集,得到吐温-80标准溶液的原始近红外光谱数据;其中,分辨率为8cm-1,扫描次数为32次,扫描光谱范围为12000~4000cm-1,光程为2mm;
(2)校正模型的建立与检验
将步骤(1)获得的校正集的原始数据经过光谱预处理和波长范围选择,得到吐温-80含量特征光谱信息;以最佳回归算法对得到的吐温-80含量特征光谱信息和吐温-80的含量值进行关联建立多个校正模型;并采用参数检验比较校正模型,筛选出最优校正模型;在MatlabV7.0中导入最优校正模型;
吐温-80标准溶液原始光谱经过预处理方法的筛选和波长范围的选择时,应注意以下问题:
(一)、不同的光谱预处理方法对校正模型的影响
在近红外光谱的采集过程中,不可避免的由于仪器状态、环境干扰以及测定条件的细微差异导致光谱的变化,通过对光谱信号进行预处理以消除此类影响,改善模型的性能。本发明主要采用了多种预处理方法如无预处理、卷积平滑、卷积求导、多元散色校正、标准正态变量变换和归一化中的一种或几种对光谱进行优化。原始光谱与部分优化后的光谱如图1所示。
(二)、不同波长范围对校正模型的影响
波长范围的选择:在近红外光谱区域,不同波长的光谱吸收信息对于最后建立的模型的贡献价值不同,在特定的波长范围处,针对特定组分的吸收强度可能小于杂质的吸收或者干扰因素影响,且难以抽取对特征信息进行有效提取。采用化学计量学方法尤其偏最小二乘法可以对全谱数据信息进行处理,但是为了改善模型的性能,提高计算速度,应该在建模过程中对光谱的波长范围进行优选。本发明中主要采用了不同波长选择方法如全波长、相关系数法、迭代优化等方法中的一种或者几种对光谱进行优化。本发明采用MatlabV7.0对不同规格的预处理方法和波长范围的选择进行矩阵式计算,筛选出在某一种波长选择方法下的最优光谱预处理方法,如表1所示。
表1不同波长选择方法的校正模型参数
(三)、PLS模型主因子数的选择
在校正集样品数量一定的情况下,近红外光谱图在特定的波长范围内,采用不同的主因子数,可以得到不同的SECV值,通过MatlabV7.0优化得到最优的SECV值,以避免“过拟合”和“欠拟合”现象的发生。对于(二)中的各种算法相结合的最后结果,其主因子数如表1中所示。
(四)、最优化模型的筛选
通过比较表1中各种算法下的SECV值和SEC值,综合主因子数等考虑,最终选择的最优模型的建立参数为:波长选择方法为迭代优化2(M=1),选择波长范围6403.4~5608.7cm-1,光谱预处理方法为卷积平滑,主因子数为5,采用PLS进行回归得到最后模型,其SECV为0.0561,SEC为0.0526,R2为0.9986。
(3)校正模型的预测
收集复方麝香注射液(神威药业有限公司)代表性样品共8批40份(批号为12021031、12021131、12021141、12022041、12022441、12021941、12022942、12022943),组成校正模型的预测集;
在室温(15~30℃)下,预测集每个样品各取1mL原液,利用TENSOR37型红外光谱仪(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器,分辨率:8cm-1,扫描次数:32次,扫描光谱范围:12000~4000cm-1,光程:2mm)采集原液的近红外光谱图,得到预测集的原始近红外光谱数据;所采集预测集原始光谱数据输入到已导入最优校正模型的MatlabV7.0中,经系统计算得到预测集的预测值;预测集的预测值与真实值对照,对校正模型进行预测;其中按照复方麝香注射液的标示量2%(g/g),记为其真实值。将预测值与实测值进行对比,预测值与真实值的绝对偏差均较小,其相对偏差亦均较小,如表2所示,说明建立的校正模型具有良好的预测能力。
表2校正模型对预测集预测结果(%(g/g))
(4)测定未知复方麝香注射液样品
在室温(15~30℃)下,取未知复方麝香注射液样品1mL原液,利用TENSOR37型红外光谱仪(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器,分辨率:8cm-1,扫描次数:32次,扫描光谱范围:12000~4000cm-1,光程:2mm)采集原液的近红外光谱图,得到未知复方麝香注射液样品的原始近红外光谱数据;所采集未知复方麝香注射液样品的原始光谱数据输入到已导入校正模型的MatlabV7.0中,经系统计算得到未知复方麝香注射液样本中吐温-80的含量。
实施例2
(1)校正集的收集及其光谱的测定
选用南京威尔化工有限公司吐温-80标准品(批号为20101101、20101110、20110114、20120201)建立校正集;
称取吐温-80标准品,采用比重法配制浓度梯度从0.1~5%(g/g)(0.05%作为一个间隔浓度)均匀分布的吐温-80标准溶液共计130个样品,混合均匀,备用;
利用近红外光谱仪采集校正集原始光谱数据:在室温(15~30℃)下,校正集每个样品各取1mL溶液,利用布鲁克光谱仪Tensor37(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器)进行数据采集,得到吐温-80标准溶液的原始近红外光谱数据;其中,分辨率为8cm-1,扫描次数为32次,扫描光谱范围为12000~4000cm-1,光程为2mm;
(2)校正模型的建立与检验
将步骤(1)获得的校正集的原始数据经过光谱预处理和波长范围选择,得到吐温-80含量特征光谱信息;以最佳回归算法对得到的吐温-80含量特征光谱信息和吐温-80的含量值进行关联建立多个校正模型;并采用参数检验比较校正模型,筛选出最优的校正模型;在MatlabV7.0中导入最优校正模型;
其中最优模型的建立参数为:波长选择方法为迭代优化2(M=1),选择波长范围6403.4-5608.7cm-1,光谱预处理方法为卷积平滑,主因子数为5,采用PLS进行回归得到最后模型,其SECV为0.0561,SEC为0.0526,R2为0.9986;
(3)校正模型的预测
收集复方麝香注射液(神威药业有限公司)代表性样品共8批40份(批号为12021031、12021131、12021141、12022041、12022441、12021941、12022942、12022943),组成校正模型的预测集;
在室温(15~30℃)下,预测集每个样品各取1mL原液,利用TENSOR37型红外光谱仪(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器,分辨率:8cm-1,扫描次数:32次,扫描光谱范围:12000~4000cm-1,光程:2mm)采集原液的近红外光谱图,得到预测集的原始近红外光谱数据;所采集预测集原始光谱数据输入到已导入最优校正模型的MatlabV7.0中,经系统计算得到预测集的预测值;预测集的预测值与真实值对照,对校正模型进行预测;其中复方麝香注射液采用气相色谱法进行测定得到实验测定值,记为其真实值。将预测值与实测值进行对比,如表3所示。预测值与真实值的绝对偏差均较小,其相对偏差亦均较小,如表4所示,说明建立的校正模型具有良好的预测能力。
表3校正模型对预测集预测结果(g/g)
表4校正模型对预测集预测结果分析
(4)测定未知复方麝香注射液样品
在室温(15~30℃)下,取未知复方麝香注射液样品1mL原液,利用TENSOR37型红外光谱仪(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器,分辨率:8cm-1,扫描次数:32次,扫描光谱范围:12000~4000cm-1,光程:2mm)采集原液的近红外光谱图,得到未知复方麝香注射液样品的原始近红外光谱数据;所采集未知复方麝香注射液样品的原始光谱数据输入到已导入校正模型的MatlabV7.0中,经系统计算得到未知复方麝香注射液样本中吐温-80的含量。
实施例3
(1)校正集的收集及其光谱的测定
选用南京威尔化工有限公司吐温-80标准品(批号为20101101、20101110、20110114、20120201)建立校正集;
称取吐温-80标准品,采用比重法配制浓度梯度从0.1~5%(g/g)(0.05%作为一个间隔浓度)均匀分布的吐温-80标准溶液共计130个样品,混合均匀,备用;
利用近红外光谱仪采集校正集原始光谱数据:在室温(15~30℃)下,校正集每个样品各取1mL溶液,利用布鲁克光谱仪Tensor37(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器)进行数据采集,得到吐温-80标准溶液的原始近红外光谱数据;其中,分辨率为8cm-1,扫描次数为32次,扫描光谱范围为12000~4000cm-1,光程为2mm;
(2)校正模型的建立与检验
将步骤(1)获得的校正集的原始数据经过光谱预处理和波长范围选择,得到吐温-80含量特征光谱信息;以最佳回归算法对得到的吐温-80含量特征光谱信息和吐温-80的含量值进行关联建立多个校正模型;并采用参数检验比较校正模型,筛选出最优的校正模型;在MatlabV7.0中导入最优校正模型;
其中最优模型的建立参数为:波长选择方法为迭代优化2(M=1),选择波长范围6403.4-5608.7cm-1,光谱预处理方法为卷积平滑,主因子数为5,采用PLS进行回归得到最后模型,其SECV为0.0561,SEC为0.0526,R2为0.9986;
(3)校正模型的预测
收集复方麝香注射液(神威药业有限公司)代表性样品共8批40份(批号为12021031、12021131、12021141、12022041、12022441、12021941、12022942、12022943),组成校正模型的预测集;
在室温(15~30℃)下,预测集每个样品各取1mL原液,利用TENSOR37型红外光谱仪(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器,分辨率:8cm-1,扫描次数:32次,扫描光谱范围:12000~4000cm-1,光程:2mm)采集原液的近红外光谱图,得到预测集的原始近红外光谱数据;所采集预测集原始光谱数据输入到已导入最优校正模型的MatlabV7.0中,经系统计算得到预测集的预测值;预测集的预测值与真实值对照,对校正模型进行预测;其中复方麝香注射液采用紫外-可见分光光度法进行测定得到实验测定值,记为其真实值。将预测值与实测值进行对比,如表5所示。预测值与真实值的绝对偏差均较小,其相对偏差亦均较小,如表6所示,说明建立的校正模型具有良好的预测能力。
表5校正模型对预测集预测结果(g/g)
表6校正模型对预测集预测结果分析
(4)测定未知复方麝香注射液样品
在室温(15~30℃)下,未知复方麝香注射液样品取1mL原液,利用TENSOR37型红外光谱仪(德国布鲁克光谱仪器公司,德国,光源:卤钨灯,检测器:InGaAs检测器,分辨率:8cm-1,扫描次数:32次,扫描光谱范围:12000~4000cm-1,光程:2mm)采集原液的近红外光谱图,得到未知复方麝香注射液样品的原始近红外光谱数据;所采集未知复方麝香注射液样品的原始光谱数据输入到已导入校正模型的MatlabV7.0中,经系统计算得到未知复方麝香注射液样本中吐温-80的含量。
本发明采用上述技术方案建立了复方麝香注射液中吐温-80的近红外快速检测方法,结果表明,所建立的近红外光谱快速分析方法适合于复方麝香注射液中吐温-80的快速测定:快速简单、准确可靠、重现性好。是复方麝香注射液辅料成分含量测定上的一大创新,具有巨大的经济和社会效益。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于包含如下步骤:
(1)校正集的收集及其光谱的测定
称取吐温-80标准品,采用比重法配制不同浓度的吐温-80标准品溶液;组成校正集,利用近红外光谱仪采集校正集原始光谱数据;
(2)校正模型的建立与检验
将步骤(1)获得的校正集的原始光谱数据进行预处理和波长范围选择,得到吐温-80含量特征光谱信息;以最佳回归算法对得到的吐温-80含量特征光谱信息和吐温-80的含量值进行关联建立校正模型,并采用参数检验校正模型,获得最优校正模型;在化学计量学分析系统中导入最优校正模型;
(3)校正模型的预测
选取复方麝香注射液样品,组成校正模型的预测集,利用近红外光谱仪采集预测集原始光谱数据;所采集的预测集原始光谱数据输入到已导入校正模型的化学计量学分析系统中,经系统计算得到预测集的预测值;预测值与真实值对照,对校正模型进行预测;
(4)测定未知复方麝香注射液样品
利用近红外光谱仪采集未知复方麝香注射液样品的原始光谱数据;所采集未知复方麝香注射液样品的原始光谱数据输入到已导入校正模型的化学计量学分析系统中,经系统计算得到未知复方麝香注射液样本中吐温-80的含量。
2.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:步骤(1)所述的吐温-80标准品纯度应不小于98%,所述吐温-80标准品溶液的质量百分比浓度范围为0.1~5%。
3.根据权利要求2所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:步骤(1)所述校正集的数量不少于15个,且其质量百分比浓度在0.1~5%中均匀分布。
4.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:步骤(2)所述的预处理方法是指无预处理、卷积平滑、卷积求导、多元散色校正、标准正态变量变换和归一化中的一种或几种。
5.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:步骤(2)所述的波长范围选择采用全波长、相关系数和迭代优化方法中的一种或者几种;波长范围为12000~4000cm-1
6.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:步骤(2)所述的最佳回归算法是指偏最小二乘法、人工神经网络和支持向量机中的一种或几种。
7.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:步骤(2)所述的参数是指交叉检验的校正标准偏差、校正标准偏差和决定系数中的一种或几种。
8.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:步骤(2)所述的化学计量学分析系统为OPUS7.0、Unscrambler9.7、Matlab7.0、TQ中的一种。
9.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:
步骤(1)所述的采集校正集原始光谱数据是指在室温下,校正集每个样品各取1mL溶液,利用近红外光谱仪采集各校正集的近红外光谱图;其中分辨率为8cm-1;扫描次数为32次,扫描光谱范围为780~2526nm或者12000~4000cm-1,光程为2mm;
步骤(3)所述的采集预测集原始光谱数据是指室温下,预测集每个样品各取1mL原液,利用近红外光谱仪采集各预测集原液的近红外光谱图;其中分辨率为8cm-1;扫描次数为32次,扫描光谱范围为780~2526nm或者12000~4000cm-1,光程为2mm;
步骤(4)所述的采集未知复方麝香注射液样品的原始光谱数据是指室温下,未知复方麝香注射液样品取1mL原液,利用近红外光谱仪采集未知复方麝香注射液样品的近红外光谱图;其中分辨率为8cm-1;扫描次数为32次,扫描光谱范围为780~2526nm或者12000~4000cm-1,光程为2mm。
10.根据权利要求1所述的一种近红外光谱测定复方麝香注射液中吐温-80含量的方法,其特征在于:
步骤(3)所述的真实值是指通过气相色谱法和紫外-可见分光光度法中的一种测定复方麝香注射液样品中的吐温-80所获得的吐温-80的含量值或复方麝香注射液中吐温-80的标示量。
CN201410004997.8A 2014-01-03 2014-01-03 近红外光谱测定复方麝香注射液中吐温-80含量的方法 Active CN103760130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410004997.8A CN103760130B (zh) 2014-01-03 2014-01-03 近红外光谱测定复方麝香注射液中吐温-80含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410004997.8A CN103760130B (zh) 2014-01-03 2014-01-03 近红外光谱测定复方麝香注射液中吐温-80含量的方法

Publications (2)

Publication Number Publication Date
CN103760130A CN103760130A (zh) 2014-04-30
CN103760130B true CN103760130B (zh) 2016-04-20

Family

ID=50527405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410004997.8A Active CN103760130B (zh) 2014-01-03 2014-01-03 近红外光谱测定复方麝香注射液中吐温-80含量的方法

Country Status (1)

Country Link
CN (1) CN103760130B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020127B (zh) * 2014-06-18 2016-08-17 山东烟草研究院有限公司 一种利用近红外光谱快速测量烟叶中无机元素的方法
CN104297375B (zh) * 2014-10-23 2016-03-30 天津红日药业股份有限公司 一种中药血必净注射液中聚山梨酯80的含量检测方法
CN111929155A (zh) * 2020-07-16 2020-11-13 西安航天化学动力有限公司 复合固体推进剂单向拉伸初始模量的近红外光谱分析方法
CN112179871B (zh) * 2020-10-22 2022-10-18 南京农业大学 一种酱类食品中己内酰胺含量无损检测的方法
CN116242803A (zh) * 2023-05-05 2023-06-09 四川威斯派克科技有限公司 一种袋装注射液成分的无损检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915744A (zh) * 2010-07-05 2010-12-15 北京航空航天大学 物质成分含量的近红外光谱无损检测方法及装置
CN102252992A (zh) * 2011-04-28 2011-11-23 天津红日药业股份有限公司 一种对中药提取过程进行近红外在线检测方法
CN102331407A (zh) * 2011-06-15 2012-01-25 天津膜天膜科技股份有限公司 检测水中残存微量吐温80的方法
CN103376242A (zh) * 2012-04-25 2013-10-30 天津天士力之骄药业有限公司 一种芍药苷的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593572B2 (en) * 2000-12-13 2003-07-15 Midwest Research Institute Method of predicting mechanical properties of decayed wood
WO2013077261A1 (ja) * 2011-11-22 2013-05-30 シャープ株式会社 濃度管理方法および濃度管理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915744A (zh) * 2010-07-05 2010-12-15 北京航空航天大学 物质成分含量的近红外光谱无损检测方法及装置
CN102252992A (zh) * 2011-04-28 2011-11-23 天津红日药业股份有限公司 一种对中药提取过程进行近红外在线检测方法
CN102331407A (zh) * 2011-06-15 2012-01-25 天津膜天膜科技股份有限公司 检测水中残存微量吐温80的方法
CN103376242A (zh) * 2012-04-25 2013-10-30 天津天士力之骄药业有限公司 一种芍药苷的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
42种中药注射剂中吐温80定性定量测定;闫位娟等;《第四军医大学学报》;20091231;第30卷(第21期);2366页摘要、引言 *

Also Published As

Publication number Publication date
CN103760130A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
CN103760130B (zh) 近红外光谱测定复方麝香注射液中吐温-80含量的方法
Huang et al. Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves
CN101275912B (zh) 一种液体食品褐变检测方法
CN101231274B (zh) 近红外光谱快速测定山药中尿囊素含量的方法
CN103969211B (zh) 一种采用近红外光谱检测复方丹参片水分含量的方法
CN101210875A (zh) 基于近红外光谱技术的无损测量土壤养分含量的方法
CN101413885A (zh) 一种快速定量蜂蜜品质的近红外光谱方法
CN109668859A (zh) 基于svm算法的花椒产地和品种的近红外光谱识别方法
CN102680426A (zh) 一种快速测定蒸汽压片玉米淀粉糊化度的方法
CN102636450A (zh) 基于近红外光谱技术无损检测枸杞中枸杞多糖含量的方法
CN102297846B (zh) 一种快速测定发酵液中透明质酸含量的方法
CN106198447A (zh) 基于近红外光谱技术的复混肥主要成分无损定量检测方法
CN103411895B (zh) 珍珠粉掺伪的近红外光谱鉴别方法
CN104596979A (zh) 近红外漫反射光谱技术测定造纸法再造烟叶纤维素的方法
CN104596975A (zh) 近红外漫反射光谱技术测定造纸法再造烟叶木质素的方法
CN104865322A (zh) 一种栀子萃取液浓缩过程快速检测方法
CN104596976A (zh) 近红外漫反射光谱技术测定造纸法再造烟叶蛋白质的方法
Huang et al. In‐line monitoring of component content of polypropylene/polystyrene blends during melt extrusion using Raman spectroscopy
CN103940773B (zh) 一种快速测定血必净注射液中吐温-80含量的方法
CN107356556A (zh) 一种近红外光谱定量分析的双集成建模方法
CN106872398A (zh) 一种hmx炸药水分含量快速测量方法
CN103822894A (zh) 一种基于近红外光谱法快速检测鱼粉中牛磺酸含量的方法
CN101650306A (zh) 快速检测分析绢云母质量的方法
CN104359854A (zh) 清开灵颗粒剂指标成分含量快速测定的方法
CN104596982A (zh) 近红外漫反射光谱技术测定造纸法再造烟叶果胶的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant