一种移动式X射线诊断装置
技术领域
本发明属于医疗技术领域,具体的涉及一种医疗器械,更具体地说涉及一种移动式X射线诊断装置。
背景技术
从本世纪初开始应用于临床以来,锥束CT发展迅速,越来越多的口腔临床专业开始接触这种技术。锥束CT与传统医学CT相比,有许多优势:扫描范围灵活,可以扫描特定的诊断区域,也可以扫描全部的颅面部;图像精度高:与被投照物之间的比例为1:1,可以进行实际测量;扫描时间短;辐射剂量小;图像伪影少;对头位的要求低。锥束CT的快速发展得益于廉价X射线管、面阵探测器和计算机技术的发展。廉价X射线管的出现,使得锥束CT不必要采用传统CT所使用的专用高压发生器和大热容量X球管,降低了成本。面阵探测器的出现,使得X射线的利用率大增,单次投影即可获得二维数据。GPU加速等计算机技术的发展,使锥束CT的实时三维重建成为可能。
目前的X射线诊断装置采用C型臂结合影像系统的方式,如图1所示,X线球管和平板探测器固定在C型臂的C口两端,由C型臂带动旋转,具体实现时是在完成C型臂和患者摆位后,将X射线机对准感兴趣部位进行锥束成像,如在对颅脑病变进行介入治疗时,通过股动脉穿刺插管,向颅内的供血动脉内注入造影剂,然后利用计算机将造影后的图像减去造影前的图像,就可以去除颅脑骨、脑脊液和其它软组织,突出颅脑血管部分。
但是,在颅内血管动脉瘤的介入治疗中,普通非动脉瘤血管的造影图像是影响医生判断动脉瘤的的很大障碍,例如骨骼、肌肉、血管及含气腔隙等等,彼此相互重叠影响,细微观察血管结构和特征几乎很难做到。尤其是颅内血管形态结构复杂,常规DSA诊断装置往往存在下述缺点而很难使数字减影血管造影技术充分发挥其作用:
1. 由于受C型臂成像设备照射方位的限制,C臂在进行旋转成像之前,必须进行试探性旋转,以确定其运动轨迹无障碍。C臂的成像范围一般控制在200度-240度之间,才足以确保三维重建软件能够进行完整的实体重建。而一般的DSA诊断装置在120度-180度时就已经开始抖动,并且速度会减慢。
2. 把三维空间结构重叠到二维的图像上,势必会出现许多不存在的结构,如交叉,环形等,也势必会丢失许多三维空间信息,如相互重叠。如果增加造影的角度和次数,不仅延长了时间,而且还增加了病人和医生的所受的X射线辐射剂量。
3. 由于成像模式包括无造影剂情况下的Mask成像模式和已经打入造影剂情况下的成像模式,因此C臂要至少进行两次旋转成像,由于在C型臂绕患者旋转时,同时要带动大量沉重的连接数据线、电缆线等,不仅容易产生线缠绕,而且还由于线的重量不均衡,一旦旋转速度过快就会产生图像的失真。
4. C型臂成像设备整体结构复杂,且其重量大不容易搬运,在某些需要移动使用的环境下,如乡镇医疗服务中心、山区服务站、边防卫生所或战地总后方等等,这种C型臂的X射线诊断装置由于其固有的移动不便利而不能够满足广大人民群众的需求。
发明内容
为克服现有技术中X射线诊断装置的局限性,本发明的目的在于提供一种移动式X射线诊断装置及与之相配合的工作台系统。不仅可以通过整周旋转成像扩充了三维数据场,而且还能通过前后的倾斜和摆动增加了局部视角,具有极高的分辨率,大大提高医生对病人病情的把握,特别是在颅脑血管动脉瘤的介入治疗过程中,局部视角的变换方便医生观察病变血管的三维立体形态,从而可以准确通过微导管进刀至肿瘤部位,降低误诊率;同时移动式X射线诊断装置减少造影剂的用量,明显比常规DSA检查提高了放射防护的安全性,因为三维重建是在一次曝光中完成的;此外,不仅能够克服线缠绕,而且整体结构简单,有效降低整体结构的重量,从根本上解决了由旋转变化而产生的图像偏移失真和移动不便性;通过智能化的工作平台配合,避免了传统X射线诊断过程中病人调整姿态的复杂性,通过遥控器控制即可完成多位置多角度的扫描,大大提高了诊断的便利性和对X射线操作的安全稳定性。
为了解决上述技术问题,实现上述目的,本发明通过如下技术方案实现:
移动式X射线诊断装置及其系统。移动式X射线诊断装置的整体呈圆环形,其特征在于包括:球管,所述球管用于对被检测对象发射X射线;高压发生器,所述高压发生器用于为所述球管提供高压电,以产生X射线;平板探测器,所述平板探测器位于球管的对立面,以接收由球管发射并经过被检测对象的X射线;数据采集系统,所述数据采集系统用于采集所述球管的曝光信号、所述高压发生器的发射信号以及所述平板探测器的图像采集信号。
进一步地,高压发生器可设置为一对,固定地对称装配在球管的两侧。
所述移动式X射线诊断装置还可以包括:基座,所述基座呈U形,所述基座U形凹口处固连有定子,所述定子为圆环形承载体,用于固连转子,所述转子与所述定子之间具有能使所述转子相对于所述定子可绕轴旋转的导向结构,所述球管、高压发生器以及平板探测器均装配在所述转子的圆环面的一侧,所述转子的圆环面的另一侧装配有滑环和电刷,所述滑环与所述电刷导联,所述电刷用于向所述滑环传输电力,以使得所述转子可绕轴进行整周旋转。
所述移动式X射线诊断装置还可以包括:倾斜驱动机构,所述倾斜驱动机构包括第一和第二传感器,所述第一和第二传感器安装在所述基座上用于检测所述定子的转速和/或倾斜角度;和控制器,所述控制器与所述第一和第二传感器及驱动电机相连用于根据所述第一和第二传感器的检测信号控制所述驱动电机,所述定子通过固定座固连在所述基座的U形凹口处,所述固定座具有与定子相匹配的圆弧形固定槽和与所述基座的U形凹口处相匹配的底座,所述固定座数量为两个且两者分别对称设置在所述基座的U形凹口处,所述定子嵌在圆弧形固定槽内并通过铆钉或螺钉固定,以使得所述驱动电机转动时倾斜驱动机构在扭矩的作用下产生扭转,从而带动与其相结合的固定座发生相应转动。
所述球管和所述平板探测器分别装配在所述转子的圆环面的直径方向上的两端,彼此相向,被检测对象位于转子中心处并且能够接收到所述球管发射的X射线,所述球管射线束发射口设置有准直器,所述平板探测器用于检测经过被检测对象的X射线,产生输出信号通过所述滑环发送到数据采集系统的电子控制单元。
所述基座U形凹口处具有贯穿基座的轴承孔,所述轴承孔数量为两个且两者分别对称开设于所述基座的U形凹口处,轴承孔内配合安装有轴承。
所述固定座具有与所述轴承相匹配的连接轴,所述连接轴与所述固定座为一体式结构,并从所述固定座的底座延伸,在与轴承配合下与所述基座的U形凹口处相固连。
所述倾斜驱动机构还可以包括传动齿轮和锁定结构,所述传动齿轮连接所述固定座的连接轴和所述驱动电机的驱动轴,以使得所述驱动轴转动时固定座在传动轴的带动下发生转动,从而使所述定子产生相对于垂直状态下的倾斜角;所述锁定结构与所述传动齿轮啮合,利用所述锁定结构锁紧传动齿轮,以保持定子的倾斜状态。
所述移动式X射线诊断装置还可以包括:配重,所述配重装配在所述转子的圆环面的一侧,并且固定地对称装配在平板探测器的两侧。
所述移动式X射线诊断装置还可以包括:滚轮,所述滚轮装配于所述基座的底部。
在此基础上,本发明设计的诊断系统还具有与所述移动式诊断装置相适应的工作台系统,包括平台底座、导轨部件、平台支架、平台面、工作台控制驱动系统,其特征在于,平台底座一侧安装一组导轨部件,导轨部件与平台支架底面的多个滚轮相配合,平台支架支撑于平台面下方,平台面包括头颈部平台面和躯干部平台面; X射线诊断装置放置在平台底座的一侧。
所述工作台系统,其特征在于,平台面可在工作台控制驱动系统的驱动下在平台底座上滑动,并使得头颈部平台面滑动到X射线诊断装置的平板探测器与球管的连线的待测位置上。
所述工作台系统,其特征在于,头颈部的平台面具有与探测器相配合的开口部;头颈部平台面的开口部安装有便于患者头部放置的头枕。
所述工作台系统,其特征在于,头枕采用轻质高强度的的容易透过X射线的材料组成。
所述工作台系统,其特征在于,平台底座底面安装有阻尼减震装置,以提高X射线诊断装置的工作稳定性。
所述工作台系统,其特征在于,平台支架中包括安装于平台支架的底面中心的一根中心平台支架,用户平台支架上设置有阻尼防震部件;工作台控制驱动系统中设置有平台支架上安装的第一驱动部件,驱动平台升降。
所述工作台系统,其特征在于,工作台控制驱动系统中设置有中心平台支架上安装的第二驱动部件,驱动平台面水平旋转,旋转角度为轴向对准位置水平±10度。
所述工作台系统,其特征在于,中心平台支架上安装有第三驱动部件驱动平台面上下旋转,通过控制系统控制第三驱动部件与第一驱动部件的升降操作配合,使得平台面沿着头颈部平台面的中心位置旋转,旋转角度为轴向对准位置上下±10度。
所述工作台系统,其特征在于,控制系统设置有信号发射模块,可通过遥控装置控制电源的开关;每个驱动部件均配有配有工作台控制驱动系统控制的锁止装置和限位装置;躯干部平台面的一侧具有扶手部,平台支架的四个角上具有牵引部。
所述工作台系统,其特征在于,平台面还包括脚支架平台,脚支架平台可伸缩地连接到躯干部平台。
附图说明
图1为现有技术中的C型臂成像设备的示意图。
图2为移动式X射线诊断装置的正视图。
图3为移动式X射线诊断装置的侧视图。
图4为移动式X射线诊断装置的后视图。
图5为具有一定倾斜角的移动式X射线诊断装置的示意图。
图6为一种X射线诊断装置的工作台系统方式侧视图。
附图标号说明:1、基座;2、定子;3、转子;4、球管;5、高压发生器;6、倾斜驱动机构;7、配重;8、平板探测器;9、滚轮;10、滑环;30、平台底座;301、阻尼减震装置;31、导轨部件;3111、牵引部;32、平台支架;33、平台面;331、头颈部平台面;332、躯干部平台面;333、脚支架平台;39、滚轮;3311、开口部;3312、头枕;3121、阻尼防震部件;3122、第一驱动部件;3123、第二驱动部件;3124、第三驱动部件;3321、扶手部。
具体实施方式
参见图3所示,一种移动式X射线诊断装置,整体呈圆环形,包括:球管(4),所述球管(4)用于对被检测对象发射X射线;高压发生器(5),所述高压发生器(5)用于为所述球管(4)提供高压电,以产生X射线;平板探测器(8),所述平板探测器(8)位于球管(4)的对立面,以接收由球管(4)发射并经过被检测对象的X射线;数据采集系统,所述数据采集系统用于采集所述球管(4)的曝光信号、所述高压发生器(5)的发射信号以及所述平板探测器(8)的图像采集信号。
进一步地,高压发生器(5)可设置为一对,固定地对称装配在球管(4)的两侧。
所述移动式X射线诊断装置还可以包括:基座(1),所述基座(1)呈U形,所述基座(1)U形凹口处固连有定子(2),所述定子(2)为圆环形承载体,用于固连转子(3),所述转子(3)与所述定子(2)之间具有能使所述转子(3)相对于所述定子(2)可绕轴旋转的导向结构,所述球管(4)、高压发生器(5)以及平板探测器(8)均装配在所述转子(3)的圆环面的一侧,所述转子(3)的圆环面的另一侧装配有滑环(10)和电刷,所述滑环(10)与所述电刷导联,所述电刷用于向所述滑环(10)传输电力,以使得所述转子(3)可绕轴进行整周旋转。
所述移动式X射线诊断装置还可以包括:倾斜驱动机构(6),所述倾斜驱动机构(6)包括第一和第二传感器,所述第一和第二传感器安装在所述基座(1)上用于检测所述定子(2)的转速和/或倾斜角度;和控制器,所述控制器与所述第一和第二传感器及驱动电机相连用于根据所述第一和第二传感器的检测信号控制所述驱动电机,所述定子(2)通过固定座固连在所述基座(1)的U形凹口处,所述固定座具有与定子(2)相匹配的圆弧形固定槽和与所述基座(1)的U形凹口处相匹配的底座,所述固定座数量为两个且两者分别对称设置在所述基座(1)的U形凹口处,所述定子(2)嵌在圆弧形固定槽内并通过铆钉或螺钉固定,以使得所述驱动电机转动时倾斜驱动机构(6)在扭矩的作用下产生扭转,从而带动与其相结合的固定座发生相应转动。
所述球管(4)和所述平板探测器(8)分别装配在所述转子(3)的圆环面的直径方向上的两端,彼此相向,被检测对象位于转子(3)中心处并且能够接收到所述球管(4)发射的X射线,所述球管(4)射线束发射口设置有准直器,所述平板探测器(8)用于检测经过被检测对象的X射线,产生输出信号通过所述滑环(10)发送到数据采集系统的电子控制单元。
所述基座(1)U形凹口处具有贯穿基座(1)的轴承孔,所述轴承孔数量为两个且两者分别对称开设于所述基座(1)的U形凹口处,轴承孔内配合安装有轴承。
所述固定座具有与所述轴承相匹配的连接轴,所述连接轴与所述固定座为一体式结构,并从所述固定座的底座延伸,在与轴承配合下与所述基座(1)的U形凹口处相固连。
所述倾斜驱动机构(6)还可以包括传动齿轮和锁定结构,所述传动齿轮连接所述固定座的连接轴和所述驱动电机的驱动轴,以使得所述驱动轴转动时固定座在传动轴的带动下发生转动,从而使所述定子(2)产生相对于垂直状态下的倾斜角;所述锁定结构与所述传动齿轮啮合,利用所述锁定结构锁紧传动齿轮,以保持定子(2)的倾斜状态。
所述移动式X射线诊断装置还可以包括:配重(7),所述配重(7)装配在所述转子(3)的圆环面的一侧,并且固定地对称装配在平板探测器(8)的两侧。
所述移动式X射线诊断装置还可以包括:滚轮(9),所述滚轮(9)装配于所述基座(1)的底部。
通过上述技术的运用,本发明的移动式X射线诊断装置结构旋转稳定,且可移动整个基座,在神经、脊柱等外科手术时,可避开手术区域上方空间,利于医生手术。这种结构的最大特点是可实现半周或整周扫描成像,极大地减小了射线照射剂量,最大程度保护病人和介入医生,达到低剂量X线成像的目的,而且由于使用高强度铝合金作为基座材料,采用可移动的高精度回转机架扫描结构,有效降低整体结构的重量,从根本上解决了由旋转变化而产生的图像偏移失真。
上述实例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所作出的等效的变化或修饰,都应涵盖在本发明的保护范围内。