CN103748118A - 淤浆相聚合法 - Google Patents

淤浆相聚合法 Download PDF

Info

Publication number
CN103748118A
CN103748118A CN201280041178.XA CN201280041178A CN103748118A CN 103748118 A CN103748118 A CN 103748118A CN 201280041178 A CN201280041178 A CN 201280041178A CN 103748118 A CN103748118 A CN 103748118A
Authority
CN
China
Prior art keywords
reactor
weight
reactors
residence time
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280041178.XA
Other languages
English (en)
Other versions
CN103748118B (zh
Inventor
D.马里萨尔
B.科赫
C.莫伊诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Europe AG
Original Assignee
Ineos Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ineos Europe AG filed Critical Ineos Europe AG
Publication of CN103748118A publication Critical patent/CN103748118A/zh
Application granted granted Critical
Publication of CN103748118B publication Critical patent/CN103748118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/10Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of alkaline earth metals, zinc, cadmium, mercury, copper or silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/16Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of silicon, germanium, tin, lead, titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/22Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of chromium, molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明公开了用于乙烯聚合的淤浆法,其在包含串联的一个或多个反应器的反应器系统中进行,其特征在于,在运行过程中在任何第一停留时间r1的平均聚合生产率[kgPE/kg催化剂]/单位乙烯/小时a1小于1.7(a2r2–a1r1)/(r2-r1),其中a2是在运行过程中在任何第二停留时间r2的平均聚合生产率[kgPE/kg催化剂]/单位乙烯/小时,其中r2>r1,a2和r2在单反应器聚合的情况下在相同反应器中测量,或在多于一个反应器中进行聚合的情况下在测量a1和r1的反应器后的反应器中测量,且其中反应器系统的单位产量大于0.3吨/立方米,单位产量是反应器系统中的最终反应器的生产速率(kg/h)除以反应器系统中的所有反应器的总体积(m3)再乘以在反应器系统中的所有反应器中的总停留时间(h)。该系统在上述条件下的运行实现改进的生产率/单位乙烯。

Description

淤浆相聚合法
本发明涉及在淤浆相反应器中,更特别在多反应器系统中的烯烃聚合。
烯烃的淤浆相聚合是公知的,其中烯烃单体和任选烯烃共聚单体在稀释剂中在催化剂存在下聚合,其中固体聚合物产物悬浮在所述稀释剂中并运输。
聚合通常在50-125°C的温度和1-100 bara的压力下进行。所用催化剂可以是常用于烯烃聚合的任何催化剂,如氧化铬、齐格勒纳塔或金属茂型催化剂。
通常,在例如聚乙烯的淤浆聚合法中,反应器中的淤浆包含微粒聚合物、烃稀释剂、(共聚)单体、催化剂、链终止剂,如氢,和其它反应器添加剂。该淤浆特别包含20-80重量%(基于淤浆总重量)的微粒聚合物和80-20重量%(基于淤浆总重量)的悬浮介质,其中该悬浮介质是反应器中的所有流体组分的总和并包含稀释剂、烯烃单体和任何添加剂;该稀释剂可以是惰性稀释剂或其可以是反应性稀释剂,特别是液体烯烃单体;当主要稀释剂是惰性稀释剂时,烯烃单体通常占该淤浆的2-20,优选4-10重量%。
淤浆聚合法通常在连续搅拌釜反应器(CSTR)或环管反应器中进行。环管反应器具有连续管状构造,其包含至少两个,例如四个垂直段和至少两个,例如四个水平段。通常采用与包围至少一部分管状环管反应器的夹套中的冷却介质,优选水,间接交换除去聚合热。多反应器系统的各环管反应器的体积可变,但通常为10-200立方米,更通常50-120立方米。本发明中所用的环管反应器为这种一般类型。围绕相对平滑路径的无端环管反应系统以足以使聚合物保持悬浮在淤浆中和保持可接受的横截面浓度和固体载量梯度的流体速度泵送该淤浆。从聚合反应器中取出含有聚合物以及试剂和惰性烃的淤浆,所有这些都主要包含惰性稀释剂和未反应的单体。可以间歇或连续排出包含聚合物和稀释剂,在大多数情况下包含催化剂、烯烃单体和共聚单体的产物淤浆,任选使用浓缩装置,如水力旋流器或沉降支管以使随聚合物取出的流体量最小化。
反应器中的固体浓度的控制是重要的,以避免反应器堵塞。我们拥有的WO 2006/056761公开了一种聚合法,其中使弗劳德数保持在20或低于20以在相对较高的固体浓度下运行而不使用高循环速度。反应器中的固体浓度通常为20-40重量%。
还已公开了固体浓度在串联使用两个反应器的方法中影响聚合物性质。WO 02/29822公开了使第一反应器的固体浓度在齐格勒纳塔催化剂的情况下保持在30至60重量%和在金属茂催化剂的情况下保持在35至60重量%的方法。这据称获得改进的产物性质以及提高的生产率。齐格勒纳塔催化剂(取决于活化剂)和金属茂催化剂都已知具有“失活状况”,这意味着聚合活性随时间降低。
我们已经发现,对具有某些活性分布的聚合而言,通过在每单位反应器体积较高的聚合物生产速率下运行反应器,可以提高以每千克催化剂制成的聚合物千克数计的生产率。
因此,第一方面,本发明提供在包含串联的一个或多个反应器的反应器系统中的用于乙烯聚合的淤浆法,其特征在于,在运行过程中在长度为r1的任何第一停留时间的平均聚合活性(= 生产率[kgPE/kgcata]/单位乙烯/小时)a1小于1.7 (a2r2 – a1r1)/(r2-r1),其中a2是在运行过程中在长度为r2的任何第二停留时间的平均聚合活性(= 生产率[kgPE/kgcata]/单位乙烯/小时),其中r2 > r1,a2和r2在单反应器聚合的情况下在相同反应器中测量,或在多于一个反应器中进行聚合的情况下在测量a1和r1的反应器后的反应器中测量,且其中反应器系统的单位产量大于0.3吨/立方米,单位产量是反应器系统中的最终反应器的生产速率(t/h)除以反应器系统中的所有反应器的总体积(m3)再乘以在反应器系统中的所有反应器中的总停留时间(h)。
停留时间是指反应器中的聚合物质量除以离开反应器的聚合物的生产速率(质量/时间),并且实际上是聚合物粒子在离开前在反应器中花费的平均时长,并在此期间可发生聚合。可以通过调节条件改变聚合法中的停留时间的长度。因此可以测定在具有不同停留时间的不同条件组合下的聚合生产率。
每单位乙烯的聚合生产率是指每质量的催化剂制成的聚合物质量数除以反应器中的乙烯浓度。生产率/单位乙烯/小时是催化剂的活性并且是在给定乙烯浓度下的聚合物生产速率的量度。比率(a2r2 – a1r1)/(r2-r1),其中“a”是活性且“r”是停留时间,实际上是在这两个停留时间的每单位乙烯的生产率[kgPE/kgcata]提高与这两个停留时间的长度差的比率,换言之,随停留时间增加的生产率提高的比率。本发明适用于下述系统,其活性分布使得初始活性(生产率/小时/单位乙烯)小于停留时间每提高1小时每单位乙烯的生产率提高量的1.7倍。
在单反应器中进行的反应的情况下,通过测量在两个不同停留时间的每单位乙烯的生产率和使用上述公式,测定该系统的活性分布。在两个反应器中进行的反应的情况下,第一停留时间是在第一反应器中,因此测量的每单位乙烯的第一生产率是在第一反应器中。在第二反应器中测量每单位乙烯的第二生产率a2r2并相当于这两个反应器中的反应的总生产率;类似地,相应的第二停留时间r2是在这两个反应器中的停留时间总和。因此,在这种双反应器情况中,公式(a2r2 – a1r1)/(r2-r1)代表第二反应器的每单位乙烯的生产率除以第二反应器中的停留时间。
如上所述,本发明适用于a1 < 1.7 (a2r2 – a1r1)/(r2-r1)的反应系统,其中a1、a2、r1和r2如上定义。其特别适用于被认为更有活性的系统,其中a1 < 1.3 (a2r2 – a1r1)/(r2-r1),甚至更适用于其中a1 < (a2r2 – a1r1)/(r2-r1)的系统。这种生产率比值基本取决于所用催化剂体系,该催化剂体系不仅包含催化剂本身,还包含可添加的任何改性剂。在不存在改性剂或其它外部因素的情况下,铬催化剂通常产生小于1的生产率比值。齐格勒纳塔催化剂通常产生1至2之间的生产率比值。金属茂催化剂的使用通常产生大于2的生产率比值。
如上所述,通过添加助催化剂、改性剂、共聚单体和氢——所有这些都可以提高或降低催化剂活性,可以改变比值a1/[1.7(a2r2 – a1r1)/(r2-r1)]。此类改性剂可以仅添加到一个反应器中,或在多反应器聚合中添加到一个或多个反应器中,每种情况中的效果不同。助催化剂倾向于提高活性,因此将助催化剂仅添加到多反应器聚合中的第一反应器中通常相对于第二反应器提高第一反应器的活性。另一方面,将助催化剂添加到这两个(或所有)反应器中可有助于平衡这两个反应器中的活性,由此降低该比值。因此可以根据所需结果将助催化剂仅添加到第一反应器中,或添加到所有反应器中,或添加到非第一反应器的反应器中。也可以通过调节助催化剂添加到反应器中的速率或反应器中的助催化剂浓度来控制反应器中的活性。在多反应器聚合中,可以调节反应器之间的助催化剂添加速率或助催化剂浓度的比率以控制相对活性和因此控制比值a1 / [1.7 (a2r2 – a1r1)/(r2-r1)]。
类似地,在多反应器聚合的情况下,共聚单体或氢或其它活性改性剂可以添加到一个反应器,如仅第一反应器或仅第二反应器中,或添加到两个反应器中,也可以控制它们的浓度和/或添加速率以及不同反应器之间的这些各种参数的比率。
单位产量——上文定义为反应器生产速率(t/h)除以反应器体积(m3)再乘以停留时间(h),是给定的总反应器体积可生产的聚合物量的量度。其优选为至少0.33吨/立方米,优选至少0.37吨/立方米,更优选至少0.4吨/立方米。高于0.5吨/立方米的值是可能的。通过提高反应器数量,可实现更高的单位产量。
为了实现高于0.3吨/立方米的值,可以以许多方式提高单位产量。
在本发明的一个实施方案中,可以通过在固体浓度为至少50重量%,优选至少52重量%,更优选至少54重量%,最优选至少55重量%的单反应器中进行本发明的方法来提高单位产量。可以使用密度为400千克/立方米或更低的稀释剂实现这样高的固体浓度。轻质稀释剂的使用能够实现相对较高的固体浓度。这种稀释剂的一个实例是丙烷。
在另一实施方案中,可以通过在串联的两个或更多个反应器中进行本发明的方法来提高单位产量,其中各反应器中的固体浓度为至少35重量%,且各反应器占总反应器体积的15-70%。优选仅串联两个反应器,各自占总反应器体积的30-70%,优选40-60%,且各自贡献总产量的30-70%,优选40-60%。在这一实施方案中,单位产量可以为至少0.37吨/立方米。或者,可以串联三个反应器,各自占总反应器体积的15-70%,优选20-60%,且各自贡献总产量的15-70%,优选20-60%。在这一实施方案中,单位产量可以为至少0.45吨/立方米。
在另一实施方案中,可以通过在第一反应器中以预聚开始该聚合过程、接着在至少一个主反应器中在至少44重量%的固体浓度下聚合来提高单位产量,其中预聚反应器的体积为主反应器的至少5%。
如果使用预聚反应器,预聚反应器中的催化剂生产率优选小于最终反应器中的催化剂生产率的20%,优选小于10%,更优选5至10%。
或者,可以在一个反应器中使用至少48重量%的固体浓度来提高单位产量。备选固体浓度为50重量%,优选至少52重量%,更优选至少54重量%,最优选至少55重量%。可以使用密度为400千克/立方米或更低的稀释剂实现这样高的固体浓度。轻质稀释剂的使用能够实现相对较高的固体浓度。这种稀释剂的一个实例是丙烷。
本发明的另一方面包括在包含串联的一个或多个反应器的反应器系统中用于乙烯聚合的淤浆法中使用丙烷作为稀释剂和至少48重量%的固体浓度,其在运行过程中在任何第一停留时间r1的平均聚合生产率[kgPE/kgcata]/单位乙烯/小时a1小于1.7 (a2r2 – a1r1)/(r2-r1),其中a2是在运行过程中在任何第二停留时间r2的平均聚合生产率[kgPE/kgcata]/单位乙烯/小时,其中r2 > r1,r2和值a2r2在单反应器聚合的情况下在相同反应器中测定,或在多于一个反应器中进行聚合的情况下在测量a1和r1的反应器后的反应器中测定,停留时间r2和值a2r2在这种后一情况下分别相当于这两个反应器的总停留时间和生产率,以获得大于0.3吨/立方米的反应器系统的单位产量,单位产量是反应器系统中的最终反应器的生产速率(t/h)除以反应器系统中的所有反应器的总体积(m3)再乘以在反应器系统中的所有反应器中的总停留时间(h)。
在本发明的上述另一方面中,固体浓度为至少50重量%,优选至少52重量%,更优选至少54重量%,最优选至少55重量%。
在本发明的所有方面中,可以在一个或多个反应器的出口使用浓缩器以将离开反应器的料流分离成富固体流和贫固体流,将贫固体流再循环至反应器。这也可通过将具有较短停留时间的较小粒子选择性再循环至反应器来提高单位产量。
在可用于所有上述情况的本发明的一个优选实施方案中,从反应器中或如果存在多于一个反应器,从最后一个反应器中取出含有聚合物的淤浆,并转移到在至少5巴的压力和使得该淤浆的至少75摩尔%的液体组分作为蒸气从闪蒸罐中取出的温度下运行的闪蒸罐中,随后在不压缩的情况下在15°C至50°C的温度下再冷凝。然后将冷凝的液体组分再循环回聚合反应。为了能在高于5巴的温度下气化,聚合中所用的稀释剂优选是异丁烷或丙烷。如果该稀释剂是丙烷,闪蒸罐可以在至少10巴的压力下运行,并仍允许该淤浆的至少75摩尔%的液体组分作为蒸气从闪蒸罐中取出。当稀释剂是异丁烷或丙烷时,进行气化时的相对较高的压力是有益的,因为其降低污染气体如氧气的导入风险,当压力降至较低值以实现气化时可能发生所述导入。这种污染会不利地影响催化剂生产率。
用于聚合的催化剂优选是齐格勒纳塔催化剂,或更优选是铬催化剂。
在本发明的一个实施方案中,该反应器系统包含串联的两个反应器,它们各自具有这两个反应器总体积的30%至70%的相对体积,且它们各自具有总生产率的30%至70%的生产率。在另一实施方案中,该反应器系统包含串联的两个反应器,第一个是具有这两个反应器总体积的5%至20%的相对体积的预聚反应器。在第三个实施方案中,该反应器系统包含串联的多于两个反应器,它们各自具有这两个反应器总体积的15%至70%的相对体积,且它们各自具有总生产率的15%至70%的生产率。
在本发明的两个方面中,“淤浆法”是反应物溶解或悬浮在稀释剂中的方法,其中聚合物在聚合温度下是不溶的。该稀释剂可以是此类聚合中常规使用的任何稀释剂。在本发明的多反应器实施方案中,所有反应器中的所用稀释剂相同。典型稀释剂包括每分子具有2至12,优选3至8个碳原子的烃,例如直链烷烃,如丙烷、正丁烷、正戊烷、正己烷和正庚烷,或支链烷烃,如异丁烷、异戊烷、异辛烷和2,2,-二甲基丙烷或环烷烃,如环戊烷和环己烷或它们的混合物。在乙烯聚合的情况下,稀释剂通常在使得至少50%(优选至少70%)的形成的聚合物不溶于其中的温度下对催化剂、助催化剂和制成的聚合物呈惰性(如液体脂族、脂环族和芳族烃)。异丁烷是优选稀释剂:具有低于400千克/立方米的密度的任何烃稀释剂,如丙烷也特别优选。
使用位于反应器的垂直支管中的密度计计算反应器固体浓度。对本发明而言,淤浆中的固含量重量%被定义为:
1/ρ淤浆 = (%重量固体/ ρPE) + (1 - %重量固体)/ ρ液相,其中ρ是密度。
Ρ淤浆由密度计直接测量,ρPE是固体聚乙烯的密度并通过分析法,如梯度柱测定,且ρ液相就本发明而言被定义为稀释剂本身在反应器中的运行温度和压力条件下的密度。
如果制造的聚合物是聚乙烯且稀释剂是链烷,例如异丁烷,各反应器中的固体浓度通常高于35重量%,更优选高于40重量%。在某些构造中,固体浓度可以为至少45重量%,优选至少48重量%,或甚至至少50重量%。如上所述,其可任选提高至高达55重量%以提高总单位产量。在多反应器系统中,各反应器中的固体浓度通常相同,但这不是基本的。
通常,在聚乙烯的淤浆聚合法中,各反应器中的淤浆包含微粒聚合物、烃稀释剂、(共聚)单体、催化剂、链终止剂如氢和其它反应器添加剂。该淤浆特别包含基于淤浆总重量的20-75,优选30-70重量%的微粒聚合物和基于淤浆总重量的80-25,优选70-30重量%的悬浮介质,其中悬浮介质是反应器中的所有流体组分的总和并包含稀释剂、烯烃单体和任何添加剂;稀释剂可以是惰性稀释剂或其可以是反应性稀释剂,特别是液体烯烃单体;如果主稀释剂是惰性稀释剂,该烯烃单体通常占该淤浆的2-20,优选4-10重量%。
特别适用于本发明的反应器是环管反应器:围绕相对平滑路径的无端环管反应器以足以使聚合物保持悬浮在淤浆中以及足以保持可接受的横截面浓度和固体浓度梯度的流体速度泵送该淤浆。环管中所用的压力优选足以使反应系统保持“全液体”,即基本没有气相。所用的典型压力为1-100 bara,优选30至50 bara。在乙烯聚合中,乙烯分压通常为0.1至5 MPa,优选0.2至2 MPa,更特别0.4至1.5 MPa。所选温度使得产生的基本所有聚合物基本(i) 为非粘性和非附聚的固体粒子形式和(ii) 不溶于稀释剂。聚合温度取决于所选烃稀释剂和生产的聚合物。在乙烯聚合中,该温度通常低于130°C,通常为50至125°C,优选75至115°C。例如,在异丁烷稀释剂中的乙烯聚合中,环管中所用的压力优选为30-50 bara,乙烯分压优选为0.2-2MPa,且聚合温度为75-115°C。当存在两个或更多个环管时,不同环管中的反应条件可以相同或不同。
在本发明的多反应器实施方案中,一个或多个反应器可以是环管反应器。多反应器系统的第二或任何后续反应器优选也是环管反应器,但也可以是适用于烯烃的淤浆聚合的任何其它反应器,如连续搅拌釜反应器。该多反应器系统可用于生产单峰或多峰聚合物。
本发明的一个优选实施方案包括生产多峰乙烯聚合物,特别是双峰乙烯聚合物,其中在一个反应器中生产低分子量(LMW)聚合物,并在另一反应器中生产高分子量(HMW)聚合物,这些聚合物以任一次序生产,并在第一聚合物存在下生产第二聚合物。在一个实施方案中,在第一反应器中生产占总聚合物的30-70重量%,更优选40-60重量%的低分子量(LMW)聚合物并在第二反应器中生产占总聚合物的70-30重量%,更优选60-40重量%的高分子量(HMW)聚合物。HMW和LMW聚合物的比率的最优选范围是45-55重量%比55-45重量%。该反应器系统任选可包含在第一反应器前的附加反应器,在其中生产预聚物。
在另一实施方案中,优选以如上所述的相同比率,在第一反应器中生产HMW聚合物并在第二反应器中生产LMW聚合物。还可使用用于生产占总聚合物的最多10重量%的预聚物的附加反应器。
本发明的方法适用于生产乙烯均聚物和共聚物。乙烯共聚物通常包含可达到12重量%,优选0.5至6重量%,例如大约1重量%的可变量的α-烯烃。
此类反应中常用的α单烯烃单体是一种或多种每分子具有最多8个碳原子并且没有比4-位置更靠近双键的分支的1-烯烃。典型实例包括乙烯、丙烯、丁烯-1,、戊烯-1、己烯-1和辛烯-1和混合物,例如乙烯和丁烯-1或乙烯和己烯-1。丁烯-1、戊烯-1和 己烯-1是用于乙烯共聚的特别优选的共聚单体。
运行条件也可以使得单体(例如乙烯、丙烯)如所谓的整体聚合法的情况中那样充当稀释剂。以体积百分比计的淤浆浓度限已被发现与稀释剂的分子量和稀释剂是惰性还是反应性的、液体还是超临界的无关。丙烯单体特别优选作为丙烯聚合用的稀释剂。
分子量调节方法是本领域中已知的。当使用齐格勒纳塔、金属茂和其它单点催化剂时,优选使用氢,较高氢压导致较低的平均分子量。当使用铬型催化剂时,优选使用聚合温度调节分子量。
粉末的平均粒度的主要决定因素是在反应器中的停留时间。粉末的粒度分布可受许多其它因素影响,包括送入反应器的催化剂的粒度分布、初始和平均催化剂活性、催化剂载体的稳固性和粉末在反应条件下的易碎性。可以在从反应器中取出的淤浆上使用固体分离装置(如水力旋流器)以帮助控制反应器中的粉末的平均粒度和粒度分布。平均粒度优选为100至1500微米,最优选250至1000微米。
本发明的方法可用于生产表现出890至930千克/立方米(低密度)、930至940千克/立方米(中密度)或940至970千克/立方米(高密度)的比重的树脂。
本发明的方法与所有烯烃聚合催化剂系统相关,特别是选自齐格勒型催化剂的那些,特别是衍生自钛、锆或钒的那些,和选自热活化的二氧化硅或无机负载的氧化铬催化剂,和选自金属茂型催化剂,金属茂是过渡金属,特别是钛或锆的环戊二烯基衍生物。
齐格勒型催化剂的非限制性实例是通过将镁化合物与过渡金属化合物和卤化化合物混合而得的包含选自周期表第IIIB、IVB、VB或VIB族的过渡金属、镁和卤素的化合物。卤素可任选形成该镁化合物或过渡金属化合物的组成部分。
金属茂型催化剂的非限制性实例可以是第IVB族金属的单或双(环戊二烯基)络合物,其实例可见于EP 129368A、EP 206794A、EP 416815A和 EP 420436A。
上述金属茂络合物用于在助催化剂或活化剂存在下的聚合。活化剂通常是铝氧烷,特别是甲基铝氧烷,或可以是基于硼化合物的化合物。
后者的实例是硼酸盐,如三烷基取代的四苯基-或四氟苯基-硼酸铵或三芳基硼烷,如三(五氟苯基)硼烷。在EP 561479A、EP 418044A和EP 551277A中描述了包含硼酸盐活化剂的催化剂体系。
齐格勒型催化剂的特定实例包括选自第IIIB、IVB、VB和VIB族的至少一种过渡金属、镁和至少一种卤素。用包含下列成分的那些获得良好结果:
10至30重量%过渡金属,优选15至20重量%,
20至60重量%卤素,优选30至50重量%
0.5至20重量%镁,通常1至10重量%,
0.1至10重量%铝,通常0.5至5重量%,
余量通常由来自用于制造它们的产品的元素,如碳、氢和氧构成。过渡金属和卤素优选是钛和氯。
聚合,特别是齐格勒催化的聚合通常在助催化剂存在下进行。可以使用本领域中已知的任何助催化剂,尤其是包含至少一个铝-碳化学键的化合物,如可包含氧或周期表第I族元素的任选卤化的有机铝化合物,和铝氧烷。特定实例是有机铝化合物,三烷基铝如三乙基铝,三链烯基铝如三异丙烯基铝,单-和二醇铝,如二乙基乙醇铝,单-和二卤化烷基铝,如二乙基氯化铝,烷基单-和二氢化铝,如二丁基氢化铝,和包含锂的有机铝化合物,如LiAl(C2H5)4。有机铝化合物,尤其是未卤化的那些非常合适。三乙基铝和三异丁基铝尤其有利。
铬基催化剂优选包含具有含二氧化钛的载体,例如复合二氧化硅/二氧化钛载体的负载型氧化铬催化剂。特别优选的铬基催化剂可包含基于含铬催化剂重量的0.5至5重量%铬,优选大约1重量%铬,如0.9重量%铬。该载体包含基于含铬催化剂重量的至少2重量%钛,优选大约2至3重量%钛,更优选大约2.3重量%钛。该铬基催化剂可具有200至700平方米/克,优选400至550平方米/克的比表面积和大于2 cc/g,优选2至3 cc/g的体积孔隙率。
二氧化硅负载的铬催化剂通常在空气中在升高的活化温度下经受初始活化步骤。活化温度优选为500至850°C,更通常600至750°C。
在串联反应器的情况下,向该串联的第一反应器供应催化剂和助催化剂以及稀释剂和单体,并向各后续反应器供应至少单体,特别是乙烯,并供应来自该串联的前一反应器的淤浆,这种混合物包含催化剂、助催化剂和在该串联的前一反应器中制成的聚合物混合物。任选可以向第二反应器和/或如果适当,至少一个后续反应器供应新鲜催化剂和/或助催化剂。
实施例
从淤浆中的乙烯聚合反应收集的生产数据用于建立改变某些参数,如固体浓度、稀释剂或反应器数对单位产量和总生产率/单位乙烯的影响的模型。各种工艺特征显示在下表1中。
用于表1中的实施例的计算所基于的聚合反应使用含有在二氧化硅载体上的1重量%铬的铬催化剂。活性分布(随时间经过的聚乙烯千克数/催化剂千克数)的一个实例显示在图1中。用于表2的计算的反应使用含有负载在氯化镁载体上的氯化钛的齐格勒纳塔催化剂,其活性分布的一个实例也显示在图2中。用于表3的计算的反应使用单环戊二烯基金属茂催化剂,其活性分布的一个实例显示在图3中。图1-3中所示的活性分布用作下表中的计算的基础。
在表1中,实施例A1可以被视为使用单200立方米反应器在40吨/小时生产速率和45重量%固体浓度下的参比例。实施例A2和A3具有200立方米的相同总反应器体积以及45重量%的相同固体浓度:但它们分别使用2个和3个反应器。在实施例A4中,在单个主反应器之前使用小的预聚反应器。实施例A5和A6都在更高固体浓度(55重量%)下使用丙烷稀释剂,但具有不同生产速率。
表1 – 铬催化剂 
Figure 201280041178X100002DEST_PATH_IMAGE002
Cr* - 假设是仅添加到第一反应器R1中的0.5-10ppmwt的三乙基硼(TEB)助催化剂
Cr** - 假设是添加到两个反应器中的总共0.5-10ppmwt的三乙基硼(TEB)助催化剂,以20:80 – 80:20的比率分配在反应器之间。
在上表中,通过与实施例A1比较,计算实施例A2、A3和A4的比值a1 / [(a2r2 – a1r1)/(r2-r1)]。实施例A6与A5比较,A8与A7比较。就单反应器实施例A5和A6而言,A5可以被视为在第一停留时间r1下的实施例,A6是在第二较长停留时间r2下的实施例。对所有多反应器实施例而言,r2等于总停留时间。对实施例A5而言,平均聚合活性(= 生产率 [kgPE/kgcata]/单位乙烯/小时)的值a1是生产率/单位乙烯除以停留时间,即567/1.73 = 327.7。r2-r1是实施例A5和A6之间的停留时间差,即2.31-1.73 = 0.58。a1r1是327.7 x 1.73,即567,生产率/单位乙烯,类似地a2r2是833。因此比值a1 / [(a2r2 – a1r1)/(r2-r1)]是327.7 / [(833-567)/0.58] = 0.7。
对于双反应器实施例而言,如上文解释,计算更简单,公式(a2r2 – a1r1)/(r2-r1)代表第二反应器的每单位乙烯的生产率除以在第二反应器中的停留时间。因此就例如实施例A2而言,a1是实施例A2的第一反应器的生产率/单位乙烯除以停留时间,即475/1.35。(a2r2 – a1r1)是实施例A2的第二反应器的生产率/单位乙烯,即475,且r2-r1是在实施例A2的第二反应器中的停留时间,即0.68。因此比值a1 / [(a2r2 – a1r1)/(r2-r1)]是[475/1.35] / [475/0.68] = 0.5。
结果显示用本发明的参数运行的益处。例如,实施例A1-A4都使用总反应器体积为200立方米的反应器系统,使用异丁烷稀释剂和相同的铬催化剂并在40吨/小时的相同聚合物生产速率下运行。“对照”流程,实施例A1,具有0.27的单位产量(在本发明外)和3200 g/g/的总生产率。双反应器对等物,实施例A2,具有0.41的单位产量和5700 g/g的总生产率/单位乙烯,而三反应器对等物,实施例A3,具有0.50的单位产量和17000 g/g的总生产率/单位乙烯。因此可以看出,通过提高单位产量,在这种情况中通过使用附加反应器,可以显著提高生产率。实施例A4采用仅占总反应器体积的2.5%的预聚反应器,以及主反应器。这具有0.33的单位产量,也导致提高的生产率/单位乙烯4750 g/g。
实施例A5和A6显示在单反应器中在极高固含量下使用丙烷稀释剂(其是比异丁烷轻质的稀释剂)的运行。如上解释,使用不同停留时间的实施例A5和A6的比较能够测定比值a1 / [(a2r2 – a1r1)/(r2-r1)]。与实施例A1相比较高的固含量能够获得高于0.3的单位产量,因此与实施例A1相比获得更高生产率。
实施例A7和A8显示添加三乙基硼助催化剂的效果。已知将TEB添加到铬催化的乙烯聚合中提高生产率。但是,如果将TEB仅添加到第一反应器中,反应器1与反应器2之间的每单位乙烯的生产率差异极高,总活性分布高度失活并在本发明的范围外。但是,如果将相同量的TEB等量分配在两个反应器中,这两个反应器中的每单位乙烯的生产率非常相似,以产生失活低得多的分布。显著提高总生产率。
在下表2中,重复实施例A1至A4,但基于使用齐格勒纳塔催化剂获得的数据。
表2 – 齐格勒纳塔 
Figure 201280041178X100002DEST_PATH_IMAGE004
Figure 201280041178X100002DEST_PATH_IMAGE006
ZN*假设是仅添加到第一反应器R1中的5-50ppmwt的三乙基铝(TEA)助催化剂
ZN**假设是添加到两个反应器中的总共5-50ppmwt的三乙基铝(TEA)助催化剂,以20:80 – 80:20的比率分配在反应器之间。
上述实施例使用具有中等失活的活性分布(比值a1 / [(a2r2 – a1r1)/(r2-r1)]明显比表1中高),但仍在本发明涵盖的范围内的反应器系统。在这种情况下,实施例B2-B4与实施例B1相比的总生产率提高仍明显,但小于实施例A2-A4。
实施例B5和B6显示添加三乙基铝(TEA)助催化剂的效果。已知将TEA添加到齐格勒纳塔催化的乙烯聚合中提高生产率。如铬催化剂和三乙基硼助催化剂的情况中那样,如果将TEA仅添加到第一反应器中,反应器1与反应器2之间的每单位乙烯的生产率差异极高,总活性分布高度失活并在本发明的范围外。但是,如果将相同量的TEA等量分配在两个反应器中,这两个反应器的每单位乙烯的生产率非常相似,以产生失活低得多的分布。也提高总生产率。
在下表3中,重复实施例A1至A4,但基于使用金属茂催化剂获得的数据。
表3 – 金属茂催化剂(对比)
Figure 201280041178X100002DEST_PATH_IMAGE008
上述实施例都具有如高于1.7的比值a1 / [(a2r2 – a1r1)/(r2-r1)]所示的落在权利要求外的活性分布。实施例C2、C3和C4可以直接与表1和2中的相应实施例比较,因为以相同方式调节条件。可以看出,在这种情况下,通过总生产率的提高测得的益处少得多。这是因为该催化剂体系不够活跃到能够获益于本发明。

Claims (15)

1.在包含串联的一个或多个反应器的反应器系统中的用于乙烯聚合的淤浆法,其在运行过程中在任何第一停留时间r1的平均聚合生产率[kgPE/kg催化剂]/单位乙烯/小时a1小于1.7 (a2r2 – a1r1)/(r2-r1),其中a2是在运行过程中在任何第二停留时间r2的平均聚合生产率[kgPE/kg催化剂]/单位乙烯/小时,其中r2 > r1,r2和值a2r2在单反应器聚合的情况下在相同反应器中测定,或在多于一个反应器中进行聚合的情况下在测量a1和r1的反应器后的反应器中测定,停留时间r2和值a2r2在这种后一情况下分别相当于这两种反应器的总停留时间和生产率;且
其中所述反应器系统的单位产量大于0.3吨/立方米,单位产量是反应器系统中的最终反应器的生产速率(t/h)除以反应器系统中的所有反应器的总体积(m3)再乘以在反应器系统中的所有反应器中的总停留时间(h)。
2.根据权利要求1的方法,其中a1 < 1.3[(a2r2 – a1r1)/(r2-r1)]。
3.根据权利要求1或2的方法,其中聚合反应中所用的催化剂是铬催化剂。
4.根据权利要求3的方法,其中a1 < [(a2r2 – a1r1)/(r2-r1)]。
5.根据权利要求1或2的方法,其中聚合反应中所用的催化剂是齐格勒纳塔催化剂。
6.根据权利要求5的方法,其中a1 < 1.3[(a2r2 – a1r1)/(r2-r1)]。
7.根据前述权利要求任一项的方法,其中所述反应器系统的单位产量大于0.33吨/立方米,优选大于0.37吨/立方米。
8.根据前述权利要求任一项的方法,其在单反应器中进行,其中固体浓度为至少50重量%,优选至少52重量%,更优选至少54重量%,且最优选至少55重量%。
9.根据权利要求1至8任一项的方法,其在串联的两个或更多个反应器中进行,其中各反应器中的固体浓度为至少35重量%,且各反应器占总反应器体积的15-70%。
10.根据权利要求9的方法,其在串联的两个反应器中进行,它们各自占总反应器体积的40-60%且各自贡献总产量的40-60%,或在串联的三个反应器中进行,它们各自占总反应器体积的20-60%且各自贡献总产量的20-60%。
11.根据权利要求1至10任一项的方法,其中在第一反应器中进行预聚反应,接着在至少一个主反应器中在至少44重量%的固体浓度下聚合,其中预聚反应器的体积为主反应器的至少5%。
12.根据前述权利要求任一项的方法,其中至少一个反应器中的固体浓度为至少48重量%,优选至少50重量%,更优选至少52重量%,甚至更优选至少54重量%,且最优选至少55重量%。
13.根据权利要求12的方法,其中所述稀释剂具有400千克/立方米或更低的密度并优选是丙烷。
14.根据权利要求9或10的方法,其中在一个反应器中生产低分子量(LMW)聚合物,并在另一反应器中生产高分子量(HMW)聚合物,这些聚合物以任一次序生产,并在第一聚合物存在下生产第二聚合物。
15.在包含串联的一个或多个反应器的反应器系统中用于乙烯聚合的淤浆法中使用丙烷作为稀释剂和至少48重量%的固体浓度,其在运行过程中在任何第一停留时间r1的平均聚合生产率[kgPE/kg催化剂]/单位乙烯/小时a1小于1.7 (a2r2 – a1r1)/(r2-r1),其中a2是在运行过程中在任何第二停留时间r2的平均聚合生产率[kgPE/kg催化剂]/单位乙烯/小时,其中r2 > r1,r2和值a2r2在单反应器聚合的情况下在相同反应器中测定,或在多于一个反应器中进行聚合的情况下在测量a1和r1的反应器后的反应器中测定,停留时间r2和值a2r2在这种后一情况中分别相当于这两个反应器的总停留时间和生产率,
以获得大于0.3吨/立方米的反应器系统的单位产量,单位产量是反应器系统中的最终反应器的生产速率(t/h)除以反应器系统中的所有反应器的总体积(m3)再乘以在反应器系统中的所有反应器中的总停留时间(h)。
CN201280041178.XA 2011-06-24 2012-06-21 淤浆相聚合法 Active CN103748118B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11171288.1 2011-06-24
EP11171288 2011-06-24
PCT/EP2012/062011 WO2012175632A1 (en) 2011-06-24 2012-06-21 Slurry phase polymerisation process

Publications (2)

Publication Number Publication Date
CN103748118A true CN103748118A (zh) 2014-04-23
CN103748118B CN103748118B (zh) 2016-07-06

Family

ID=44504386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280041178.XA Active CN103748118B (zh) 2011-06-24 2012-06-21 淤浆相聚合法

Country Status (6)

Country Link
US (1) US9279023B2 (zh)
EP (1) EP2723783A1 (zh)
CN (1) CN103748118B (zh)
BR (1) BR112013033155B1 (zh)
RU (1) RU2607086C2 (zh)
WO (1) WO2012175632A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424236A (zh) * 2018-06-14 2021-02-26 维尔萨利斯股份公司 用来产生聚合物的反应设置和程序
CN114634587A (zh) * 2021-02-01 2022-06-17 中国石油化工股份有限公司 淤浆聚合连续生产超高分子量聚乙烯的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005861B2 (en) 2016-06-09 2018-06-26 Chevron Phillips Chemical Company Lp Methods for increasing polymer production rates with halogenated hydrocarbon compounds
EP3710510B1 (en) 2017-11-13 2021-09-22 ENI S.p.A. Process for preparing polycarbonate and catalytic system used
US11180587B2 (en) 2019-12-13 2021-11-23 Chevron Phillips Chemical Company Lp Polymerization of propylene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174981B1 (en) * 1998-12-17 2001-01-16 Phillips Petroleum Company Polymerization process
CN101065183A (zh) * 2004-11-26 2007-10-31 英尼奥斯制造业比利时有限公司 淤浆聚合方法
CN101065408A (zh) * 2004-11-26 2007-10-31 英尼奥斯制造业比利时有限公司 浆料相聚合法
WO2010063444A1 (en) * 2008-12-04 2010-06-10 Saudi Basic Industries Corporation Polyethylene for the production of open head drums
CN101796081A (zh) * 2007-09-03 2010-08-04 英尼奥斯制造业比利时有限公司 淤浆相聚合方法
CN101796082A (zh) * 2007-09-03 2010-08-04 英尼奥斯制造业比利时有限公司 淤浆相聚合方法
WO2010115614A1 (en) * 2009-04-10 2010-10-14 Saudi Basic Industries Corporation Ethylene copolymer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA844157B (en) 1983-06-06 1986-01-29 Exxon Research Engineering Co Process and catalyst for polyolefin density and molecular weight control
CA1268754A (en) 1985-06-21 1990-05-08 Howard Curtis Welborn, Jr. Supported polymerization catalyst
US5055438A (en) 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
EP0672688B2 (en) 1990-06-22 2002-04-17 ExxonMobil Chemical Patents Inc. Aluminum-free monocyclopentadienyl metallocene catalysts for olefin polymerization
US6671564B1 (en) 2000-10-03 2003-12-30 Data I/O Corporation Portable programming system and control method therefor
EP1799727A2 (en) * 2004-06-21 2007-06-27 ExxonMobil Chemical Patents Inc. Low fouling and high activity polymerization process
KR20130008644A (ko) * 2006-03-30 2013-01-22 토탈 리서치 앤드 테크놀로지 펠루이 소량의 소거제 존재하의 에틸렌 슬러리 중합 방법
EP2030993A1 (en) * 2007-09-03 2009-03-04 INEOS Manufacturing Belgium NV Slurry phase polymerisation process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174981B1 (en) * 1998-12-17 2001-01-16 Phillips Petroleum Company Polymerization process
CN101065183A (zh) * 2004-11-26 2007-10-31 英尼奥斯制造业比利时有限公司 淤浆聚合方法
CN101065408A (zh) * 2004-11-26 2007-10-31 英尼奥斯制造业比利时有限公司 浆料相聚合法
CN101796081A (zh) * 2007-09-03 2010-08-04 英尼奥斯制造业比利时有限公司 淤浆相聚合方法
CN101796082A (zh) * 2007-09-03 2010-08-04 英尼奥斯制造业比利时有限公司 淤浆相聚合方法
WO2010063444A1 (en) * 2008-12-04 2010-06-10 Saudi Basic Industries Corporation Polyethylene for the production of open head drums
WO2010115614A1 (en) * 2009-04-10 2010-10-14 Saudi Basic Industries Corporation Ethylene copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424236A (zh) * 2018-06-14 2021-02-26 维尔萨利斯股份公司 用来产生聚合物的反应设置和程序
CN112424236B (zh) * 2018-06-14 2023-10-24 维尔萨利斯股份公司 用来产生聚合物的反应设置和程序
US11834530B2 (en) 2018-06-14 2023-12-05 Versalis S.P.A. Reaction configuration and procedure for polymers production
CN114634587A (zh) * 2021-02-01 2022-06-17 中国石油化工股份有限公司 淤浆聚合连续生产超高分子量聚乙烯的方法
CN114634587B (zh) * 2021-02-01 2024-04-09 中国石油化工股份有限公司 淤浆聚合连续生产超高分子量聚乙烯的方法

Also Published As

Publication number Publication date
WO2012175632A1 (en) 2012-12-27
CN103748118B (zh) 2016-07-06
US9279023B2 (en) 2016-03-08
US20140142260A1 (en) 2014-05-22
RU2607086C2 (ru) 2017-01-10
BR112013033155A2 (pt) 2017-01-31
EP2723783A1 (en) 2014-04-30
RU2014102109A (ru) 2015-07-27
BR112013033155B1 (pt) 2020-12-22

Similar Documents

Publication Publication Date Title
CN103007867B (zh) 用于聚合的环流型反应器
CN101228195A (zh) 吹塑聚乙烯树脂
US10995168B2 (en) Process for the preparation of ethylene polymers using a number of reactors arranged in series
KR101532803B1 (ko) 슬러리 상 중합 방법
CN103748118B (zh) 淤浆相聚合法
US8183333B2 (en) Slurry phase polymerisation process
KR101422889B1 (ko) 슬러리 상 중합 방법
US8202950B2 (en) Slurry phase polymerisation process
US20120264892A1 (en) Method for improving ethylene polymerization reaction
EP1905785A1 (en) Process for the preparation of ethylene polymers using a number of reactors arranged in series
CN101495224A (zh) 用于聚合的环流型反应器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant