CN103746133B - 咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法 - Google Patents

咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法 Download PDF

Info

Publication number
CN103746133B
CN103746133B CN201310439962.2A CN201310439962A CN103746133B CN 103746133 B CN103746133 B CN 103746133B CN 201310439962 A CN201310439962 A CN 201310439962A CN 103746133 B CN103746133 B CN 103746133B
Authority
CN
China
Prior art keywords
polyphenylene sulfide
ion liquid
glyoxaline ion
preparation
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310439962.2A
Other languages
English (en)
Other versions
CN103746133A (zh
Inventor
郭强
李夏
钱君质
毕宸洋
张天骄
陈新新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201310439962.2A priority Critical patent/CN103746133B/zh
Publication of CN103746133A publication Critical patent/CN103746133A/zh
Application granted granted Critical
Publication of CN103746133B publication Critical patent/CN103746133B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法。该质子交换膜的组成及质量百分比为:磺化度为57%~80%的SPPS:70%~90%;咪唑类离子液体:0.1%~5%;制膜溶剂:5%~25%。本发明方法是以SPPS为基体,咪唑类离子液体为填充相,制备出均匀混合制膜液,采用流延成膜的方法经干燥制备出复合膜。本发明制备成本低,工艺简单,所制得的质子交换膜电导率高,阻醇性能好,在30 °C~110 °C下的电导率为3.10×10‑3 S/cm~3.50×10‑2 S/cm,阻醇系数达到1.00×10‑7 cm2/s~9.00×10‑7 cm2/s,吸水率为20%~200%。

Description

咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其 制备方法
技术领域
本发明涉及一种咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法。
背景技术
离子液体是在室温或近于室温下呈液态的由阴阳离子组成的室温熔融盐,具有导电性、难挥发、不燃烧、电化学稳定等优点。因此,将离子液体应用与电化学研究可以减轻放电负荷,作为电解质的使用温度也远远低于熔融盐。
磺化聚苯硫醚(SPPS)材料因具有高机械强度、优异的热稳定性及化学稳定性成为直接甲醇燃料电池用质子交换膜的重点研究材料。用浓硫酸对聚苯硫醚磺化,将磺酸基团引入到聚苯硫醚的主链上,由于磺酸基亲水相与聚合物骨架上苯环、碳硫键等疏水相的存在,可使得聚苯硫醚材料具有一定的质子传导率,并且聚苯硫醚制备成本较低、耐热稳定性优异能满足燃料电池对质子交换膜材料的要求。但是,这种材料的磺化度(DS,SPPS每100个重复单元所含的磺酸基团数目)会直接影响质子交换膜的性能,因此要选择合适的磺化度来进行掺杂制膜。在磺化聚苯硫醚质子交换膜的方案设计上,通常需要对磺化聚苯硫醚磺化度及改性的方法进行综合考虑,得到最佳的质子交换膜。
发明内容
本发明的目的之一在于提供一种咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料。
本发明的目的之二在于提供该质子交换膜材料的制备方法。
一种咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料,其特征在于该材料的组成及其质量百分含量为:
磺化聚苯硫醚 70%~90%;
咪唑类离子液体 0.1%~5%;
制模溶剂 5%~25%;
所述的磺化聚苯硫醚的结构为:
所述的咪唑类离子液体的结构为:,式中f=2~7;R’为氢或含1~4个碳原子的烷基;R为含1~4个碳原子的烷基;X为:Cl、Br、I、BF4或PF6
上述的磺化聚苯硫醚的磺化度为57%~80%。
一种制备上述的咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料的方法,其特征在于该方法的具体步骤为:
a. 将不同磺化度的磺化聚苯硫醚溶解在制膜溶剂中,配制成质量百分比浓度为5.0%~35.0%的制膜液;
b. 在步骤a所得的制膜液中加入咪唑类离子液体,70 °C~100 °C下,惰性气氛保护下搅拌10 h~24 h,冷却至室温,抽滤除去不溶物,干燥,即得到咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料。
上述的咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料的制备方法,其特征在于所用的制膜溶剂为:N,N-二甲基甲酰胺DMF、N,N-二甲基乙酰胺DMAC或二甲基亚砜DMSO。该咪唑类离子液体名称为:咪唑-1-甲(乙或丙或丁)烷基-3-烷基硅氧基氯(或溴或碘或四氟硼酸或六氟硼酸)盐离子液体。
本发明所得咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料经流延或压制成膜,然后在40 °C~90 °C下挥发溶剂,得到湿膜;再将所得湿膜在50 °C ~100 °C下恒温干燥2 h~24 h;或者先在50 °C~70 °C下干燥10 h~12 h,再升温至70 °C~120 °C干燥4h~10 h,得到咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜。
说明:
1.磺化聚苯硫醚磺化度(DS):SPPS每100个重复单元所含的磺酸基团数。根据反应时间的不同,可制备出不同DS的磺化聚苯硫醚。本实施例中,采用DS为57%~80%的SPPS进行咪唑类离子液体掺杂改性,磺化度可通过核磁共振或化学反滴定法测得。
2.使用的咪唑类离子液体的结构通式为
其中,R'为氢或含1~4个碳原子的烷基;R为含1~4个碳原子的烷基;X-为无机或有机离子单元,包括:Cl-、Br-、I-、BF4 -、PF6 -,f=2~7。
本发明的离子液体掺杂改性磺化聚苯硫醚质子交换膜及制备方法的优点在于:1.操作简单,采用中等磺化度的SPPS作为基体材料,以克服过高磺化度SPPS存在的吸水率过高,复合膜稳定性较差的缺点,并保证复合膜具有一定的机械强度;2.离子液体本身具有导电性、难挥发性、电化学稳定窗口比其它电解质水溶液大等特点,采用咪唑类离子液体掺杂的方式,使SPPS基体与离子液体之间发生协同效应,不仅降低离子液体在SPPS基体中的流失率,同时也能提高质子交换膜的电导率,以提高复合膜的综合性能。
本发明方法制备成本低,所制得的质子交换膜电导率高,阻醇性能好,在30 °C~110 °C下的电导率为3.10×10-3 S/cm~3.50×10-2 S/cm,阻醇系数达到1.00×10-7 cm2/s~9.00×10-7 cm2/s,吸水率为20%~200%。
附图说明
图1 咪唑氯盐离子液体掺杂改性磺化聚苯硫醚红外谱图。
具体实施方式
实施例一:
(1)取1.28115 g SPPS(DS为61.4%)于100 ml单口瓶中,加入30 ml DMF,组装油浴加热装置、球形冷凝管,打开磁力搅拌,升温至60 °C,配成制膜液;
(2)取20ml N-甲基咪唑和20ml γ-氯丙基三乙氧基硅烷加入到150ml平底烧瓶中,在40 °C下磁力搅拌反应4 h制备得到咪唑氯盐离子液体,其结构式:
(3)在步骤(1)所得的制膜液中加入0.12863 g咪唑氯盐离子液体,氮气保护70 °C下机械搅拌反应10 h;冷却至室温,抽滤除去不溶物,即得到咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料;
取7 ml咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料流延成膜,得到湿膜,首先在50 °C下干燥10 h,然后在80 °C下干燥4 h,从烘箱中取出,待其自然冷却至室温后,揭膜。
对上述实施例所制得的咪唑氯盐离子液体掺杂改性SPPS质子交换膜应用实验,其过程和结果如下所述:
(1)咪唑氯盐离子液体掺杂SPPS质子交换膜电导率测试:
在交流两电极法的基础上进行改进,自行设计并建立了一套简易可靠的膜电阻测试装置。检测温度为30 °C~110 °C。咪唑氯盐离子液体掺杂的磺化聚苯硫醚质子交换膜30°C时的电导率为3.10×10-3 S/cm,90 °C时达到最大值1.10×10-2 S/cm。
(2)咪唑氯盐离子液体掺杂SPPS质子交换膜阻醇性能测试:
采用隔膜扩散池评价膜的阻醇性能。测试前将膜试样在去离子水中浸泡24 h,并在测试温度下稳定1 h以上后进行测试。将膜夹于两半室中间,在一侧注入60 ml的4 mol/L甲醇溶液,另一侧注入相当体积的去离子水使得其液面与甲醇的液面相平。采用气相色谱测量去离子水中甲醇浓度随时间的变化情况。由Fick扩散第二定律可得甲醇透过系数:
P······膜试样的甲醇渗透系数(cm2/s)
S······去离子水侧甲醇浓度随时间变化率(mol L-1s-1)
V2······去离子水侧体积(ml)
l······膜试样的厚度(cm)
A······膜试样的有效面积(cm2)
c10······甲醇溶液侧的初始甲醇浓度(mol/L)
通过试验,在如上所述反应条件下,咪唑氯盐离子液体掺杂SPPS的质子交换膜的阻醇系数为1.25×10-7 cm2/s。
(3)咪唑氯盐离子液体掺杂SPPS质子交换膜吸水率测试:
将咪唑氯盐离子液体掺杂SPPS膜试样置于烘箱中,在120 °C下干燥24 h,称得干膜质量(Mdry),然后将膜浸入去离子水中,室温浸泡24 h使其充分溶胀,取出湿膜,吸去表面水份,称得湿膜质量(Mwet)。膜的吸水率Sw为:
通过试验,在如上所述反应条件下,咪唑氯盐离子液体掺杂改性SPPS质子交换膜的吸水率为24.9%。
实施例二:
(1)取1.13115 g SPPS(DS为69.7%)于100 ml单口瓶中,加入30 ml DMAC,组装油浴加热装置、球形冷凝管,打开磁力搅拌,升温至60 °C,配成制膜液;
(2)取20ml N-甲基咪唑和20ml γ-氯丙基三乙氧基硅烷加入到150ml平底烧瓶中,在40 °C下磁力搅拌反应4 h制备得到咪唑氯盐离子液体,向溶液中继续加入10 ml四氟硼酸铵反应2 h后过滤得到咪唑四氟硼酸盐离子液体。其结构式:
(3)在步骤(1)所得的制膜液中加入0.13873 g咪唑四氟硼酸盐离子液体,氮气保护70 °C下机械搅拌反应10 h;冷却至室温,抽滤除去不溶物,即得到咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料。
取7 ml咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料流延成膜,得到湿膜,首先在50 °C下干燥10 h,然后在80 °C下干燥4 h,从烘箱中取出,待其自然冷却至室温后,揭膜。
对上述实施例所制得的咪唑四氟硼酸盐离子液体掺杂SPPS质子交换膜应用实验,其过程和结果如下所述:
(1)咪唑四氟硼酸盐离子液体掺杂SPPS质子交换膜电导率测试:
测试方法如实例1所述。咪唑四氟硼酸盐离子液体掺杂SPPS质子交换膜30 °C时的电导率为3.32×10-3 S/cm,90 °C时达到最大值1.42×10-2 S/cm。
(2)咪唑四氟硼酸盐离子液体掺杂SPPS质子交换膜阻醇性能测试:
测试方法如实例1所述。咪唑四氟硼酸盐离子液体掺杂SPPS质子交换膜的阻醇系数为3.52×10-7 cm2/s。
(3)咪唑四氟硼酸盐离子液体掺杂SPPS质子交换膜吸水率测试:
测试方法如实例1所述。咪唑四氟硼酸盐离子液体掺杂SPPS质子交换膜的吸水率为49.8%。
实施例三:
(1)取1.03100 g SPPS(DS为75.4%)于100 ml单口瓶中,加入30 ml DMSO,组装油浴加热装置、球形冷凝管,打开磁力搅拌,升温至60 °C,配成制膜液;
(2)取20ml N-甲基咪唑和20ml γ-氯丙基三乙氧基硅烷加入到150ml平底烧瓶中,在40 °C下磁力搅拌反应4 h制备得到咪唑氯盐离子液体,向溶液中继续加入10 ml六氟硼酸铵反应2 h后过滤得到咪唑六氟硼酸盐离子液体。其结构式:
(3)在步骤(1)所得的制膜液中加入0.11872 g咪唑六氟硼酸盐离子液体,氮气保护70 °C下机械搅拌反应10 h;冷却至室温,抽滤除去不溶物,即得到咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料。
取7 ml咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料流延成膜,得到湿膜,首先在50 °C下干燥10 h,然后在80 °C下干燥4 h,从烘箱中取出,待其自然冷却至室温后,揭膜。
对上述实施例所制得的咪唑六氟硼酸盐离子液体掺杂SPPS质子交换膜应用实验,其过程和结果如下所述:
(1)咪唑六氟硼酸盐离子液体掺杂SPPS质子交换膜电导率测试:
测试方法如实例1所述。咪唑六氟硼酸盐离子液体掺杂SPPS质子交换膜30 °C时的电导率为5.92×10-3 S/cm,90 °C时达到最大值2.98×10-2 S/cm。
(2)咪唑六氟硼酸盐离子液体掺杂SPPS质子交换膜阻醇性能测试:
测试方法如实例1所述。咪唑六氟硼酸盐离子液体掺杂SPPS质子交换膜的阻醇系数为5.76×10-7 cm2/s。
(3)咪唑六氟硼酸盐离子液体掺杂SPPS质子交换膜吸水率测试:
测试方法如实例1所述。咪唑六氟硼酸盐离子液体掺杂SPPS质子交换膜的吸水率为98.02%。
实施例四:
(1)取0.94562 g SPPS(DS为79.2%)于100 ml单口瓶中,加入30 ml DMF,组装油浴加热装置、球形冷凝管,打开磁力搅拌,升温至60 °C,配成制膜液;
(2) )取20ml N-甲基咪唑和20ml γ-氯丙基三乙氧基硅烷加入到150ml平底烧瓶中,在40 °C下磁力搅拌反应4 h制备得到咪唑氯盐离子液体,向溶液中继续加入10 ml溴化铵反应2 h后过滤得到咪唑溴盐离子液体。其结构式:
(3)在步骤(1)所得的制膜液中加入0.12873 g咪唑溴盐离子液体,氮气保护70 °C下机械搅拌反应10 h;冷却至室温,抽滤除去不溶物,即得到咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料。
取7 ml咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料流延成膜,得到湿膜,首先在50 °C下干燥10 h,然后在80 °C下干燥4 h,从烘箱中取出,待其自然冷却至室温后,揭膜。
对上述实施例所制得的咪唑溴盐离子液体掺杂SPPS质子交换膜应用实验,其过程和结果如下所述:
(1)咪唑溴盐离子液体掺杂SPPS质子交换膜电导率测试:
测试方法如实例1所述。咪唑溴盐离子液体掺杂SPPS质子交换膜30 °C时的电导率为3.93×10-3 S/cm,90 °C时达到最大值1.89×10-2 S/cm。
(2)咪唑溴盐离子液体掺杂SPPS质子交换膜阻醇性能测试:
测试方法如实例1所述。咪唑溴盐离子液体掺杂SPPS质子交换膜的阻醇系数为2.71×10-7 cm2/s。
(3)咪唑溴盐离子液体掺杂SPPS质子交换膜吸水率测试:
测试方法如实例1所述。咪唑溴盐离子液体掺杂SPPS质子交换膜的吸水率为123.46%。

Claims (2)

1.一种咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料的制备方法,该材料的组成及其质量百分含量为:
磺化聚苯硫醚 70%~90%;
咪唑类离子液体 0.1%~5%;
制模溶剂 5%~25%;
所述的磺化聚苯硫醚的结构为:
所述的咪唑类离子液体的结构为:,式中f=2~7;R’为氢或含1~4个碳原子的烷基;R为含1~4个碳原子的烷基;X为:Cl、Br、I、BF4或PF6;其特征在于该方法的具体步骤为:
a.将不同磺化度的磺化聚苯硫醚溶解在制膜溶剂中,配制成质量百分比浓度为5.0%~35.0%的制膜液;
b.在步骤a所得的制膜液中加入咪唑类离子液体,70 °C~100 °C下,惰性气氛保护下搅拌10 h~24 h,冷却至室温,抽滤除去不溶物,干燥,即得到咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料。
2.根据权利要求1所述的咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料的制备方法,其特征在于所用的制膜溶剂为:N,N-二甲基甲酰胺DMF、N,N-二甲基乙酰胺DMAC或二甲基亚砜DMSO。
CN201310439962.2A 2013-09-22 2013-09-22 咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法 Expired - Fee Related CN103746133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310439962.2A CN103746133B (zh) 2013-09-22 2013-09-22 咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310439962.2A CN103746133B (zh) 2013-09-22 2013-09-22 咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103746133A CN103746133A (zh) 2014-04-23
CN103746133B true CN103746133B (zh) 2016-08-17

Family

ID=50503138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310439962.2A Expired - Fee Related CN103746133B (zh) 2013-09-22 2013-09-22 咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103746133B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313067B (zh) * 2018-12-11 2021-05-04 中国科学院大连化学物理研究所 基于离子液体有静电作用复合碱性电解质膜及制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908632A (zh) * 2010-07-15 2010-12-08 上海大学 三元掺杂改性speek质子交换膜制备方法
WO2011035795A1 (en) * 2009-09-24 2011-03-31 Ewe-Forschungszentrum Für Energietechnologie E. V. Proton exchange membrane comprising polymer blends for use in high temperature proton exchange membrane fuel cells
CN102516531A (zh) * 2011-12-21 2012-06-27 上海大学 咪唑类离子液体接枝speek质子交换膜材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244920A (ja) * 2005-03-04 2006-09-14 Fujitsu Ltd 固体電解質組成物および高分子型燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035795A1 (en) * 2009-09-24 2011-03-31 Ewe-Forschungszentrum Für Energietechnologie E. V. Proton exchange membrane comprising polymer blends for use in high temperature proton exchange membrane fuel cells
CN101908632A (zh) * 2010-07-15 2010-12-08 上海大学 三元掺杂改性speek质子交换膜制备方法
CN102516531A (zh) * 2011-12-21 2012-06-27 上海大学 咪唑类离子液体接枝speek质子交换膜材料及其制备方法

Also Published As

Publication number Publication date
CN103746133A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
CN102516531B (zh) 咪唑类离子液体接枝speek质子交换膜材料及其制备方法
Sen et al. Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites
CN103408796B (zh) 一种用于甲醇燃料电池聚合物复合膜的制备方法
Sen et al. Nafion/poly (1-vinyl-1, 2, 4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells
Yuan et al. A Proton‐Barrier Separator Induced via Hofmeister Effect for High‐Performance Electrolytic MnO2–Zn Batteries
Boroglu et al. The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly (vinyl alcohol) and imidazole
CN102122720B (zh) 含氟丙烯酸酯聚合物阴离子交换膜及其制备方法
Erkartal et al. Anhydrous proton conducting poly (vinyl alcohol)(PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid)(PAMPS)/1, 2, 4-triazole composite membrane
CN101768284B (zh) 一种全氟型高温质子导体复合膜的制备方法
Liu et al. Novel crosslinked alkaline exchange membranes based on poly (phthalazinone ether ketone) for anion exchange membrane fuel cell applications
Fang et al. Novel anion exchange membranes based on pyridinium groups and fluoroacrylate for alkaline anion exchange membrane fuel cells
KR102126034B1 (ko) 이온 교환막, 그 제조방법 및 그것을 포함한 레독스 플로우 전지
Marrero et al. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties
Ju et al. Construction of alkali-stable anion exchange membranes with hydrophilic/hydrophobic microphase separation structure by adjusting side chain length
CN103050719A (zh) 质子型离子液体基质子交换膜及其制备
CN107383404A (zh) 一种含氟支化磺化聚酰亚胺质子导电膜的制备方法
CN106784942B (zh) 一种高强度、高质子传导率的高温质子传导复合膜及其在高温燃料电池中的应用
Tang et al. Tailoring of microporosity of Tröger's base (TB) high temperature proton exchange membrane by miscible polymer blending
Tang et al. On the stability of imidazolium and benzimidazolium salts in phosphoric acid based fuel cell electrolytes
CN103746133B (zh) 咪唑类离子液体掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法
Shi et al. Long side-chain imidazolium functionalized poly (vinyl chloride) membranes with low cost and high performance for vanadium redox flow batteries
CN103601818B (zh) 一种壳聚糖改性-聚合物复合膜的制备方法
CN111525187B (zh) 一种锂电池用磺化聚乙烯醇固态聚合物电解质膜及其制备方法
Boroglu et al. Proton‐conducting blend membranes of crosslinked poly (vinyl alcohol)–sulfosuccinic acid ester and poly (1‐vinyl‐1, 2, 4‐triazole) for high temperature fuel cells
CN103560259A (zh) 一种poss交联型磺化聚酰亚胺质子交换膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20190922

CF01 Termination of patent right due to non-payment of annual fee