CN103740662B - 一种提高酶热稳定性的方法 - Google Patents

一种提高酶热稳定性的方法 Download PDF

Info

Publication number
CN103740662B
CN103740662B CN201310567945.7A CN201310567945A CN103740662B CN 103740662 B CN103740662 B CN 103740662B CN 201310567945 A CN201310567945 A CN 201310567945A CN 103740662 B CN103740662 B CN 103740662B
Authority
CN
China
Prior art keywords
parents
small peptide
enzyme
recombinase
heat stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310567945.7A
Other languages
English (en)
Other versions
CN103740662A (zh
Inventor
陈坚
堵国成
陆信曜
刘松
张娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201310567945.7A priority Critical patent/CN103740662B/zh
Publication of CN103740662A publication Critical patent/CN103740662A/zh
Application granted granted Critical
Publication of CN103740662B publication Critical patent/CN103740662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • C12N9/1044Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种提高酶热稳定性的方法,通过将双亲短肽与重组酶进行融合表达获得热稳定性的提高的重组酶。其中优选的双亲短肽的序列为DWLKAFYDKVAEKLKEAFKVQPYLDDWLKAFYDKVAEKLKEAF。该方法具有效果显著、工艺简单、便于推广。本发明为快速提高工业酶热稳定性提高了新的方法和思路。

Description

一种提高酶热稳定性的方法
技术领域
本发明涉及一种提高酶热稳定性的方法,特别是一种利用双亲短肽融合表达提高重组酶的热稳定性的方法。
背景技术
双亲短肽是具有亲水和亲油能力的小分子肽,广泛存在于膜蛋白及脂肪代谢相关酶类的结构中。其双亲的特点能够帮助酶分子与疏水性底物结合、实现酶分子的定位等。
生物活性酶在工业生产中具有广泛的应用,而提高酶的热稳定性是工业酶的研究重点之一。目前,提高酶热稳定性的方法主要包括:1.定向进化:通过定点突变,随即突变,饱和突变等技术,筛选得到热稳定的突变株;2.从嗜热微生物中筛选热稳定性的酶。但是,这些方法并不适用于所有酶分子热稳定性改造中。
发明内容
本发明要解决的技术问题是提供一种提高酶热稳定性的方法,通过在重组酶的N端或C端融合表达双亲短肽实现酶热稳定性的提高。
为解决上述技术问题提供如下技术方案:
第一步双亲短肽基因的获得
根据双亲短肽的氨基酸序列,化学合成相应的DNA序列,并将其克隆至大肠杆菌表达质粒pET-22b(+)的Nde I和Nco I酶切位点之间上,构建成为pET-22b(+)/AP质粒;
第二步融合双亲短肽的重组酶表达质粒的构建
将重组酶基因克隆至pET-22b(+)/AP质粒的Nco I和Hind III位点之间。构建成为表达融合双亲短肽的重组酶表达质粒pET-22b(+)/AP-enzyme。
第三步融合双亲短肽的重组酶表达菌株的构建
将重组质粒pET-22b(+)/AP-enzyme转化宿主大肠杆菌(E.coli BL21(DE3)),构建高效表达目的酶的诱导型大肠杆菌基因工程菌。
菌株经培养表达目的酶的方法为:
培养基组成(g/L):
种子培养基:蛋白胨10,酵母提取物5,氯化钠5;
发酵培养基:将下列组分溶解在0.9L水中:蛋白胨12g,酵母提取物24g,甘油4mL。;
各组分溶解后高压灭菌;冷却到60℃,再加100mL灭菌的170mmol/L KH2PO4/0.72mol/L K2HPO4的溶液(2.31g的KH2PO4和12.54gK2HPO4溶在足量的水中,使终体积为100mL;高压灭菌或用0.22μm的滤膜过滤除菌);
培养方法:种子培养,挑取工程菌单菌落接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,摇床转速200r/min,培养12h;发酵培养,按10%的接种量接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,当OD600达到0.6时,将培养温度降为16℃,同时加入终浓度为1.0mM的诱导剂IPTG。
目的酶热稳定的测定方法:
将目的酶分别应用疏水层析、离子交换层析等分离手段,得到电泳纯的目的酶。将目的酶在一定温度下保温,测定酶活相比初始未保温时损失50%所需要的时间(T1/2)。
本发明提供了一种提高酶热稳定性的方法,应用双亲短肽融合表达重组酶能够提高目的重组酶的热稳定性。该方法具有效果显著、工艺简单、便于推广。本发明为快速提高工业酶热稳定性提高了新的方法和思路。
具体实施方式
以下通过实施例来进一步阐明本发明,下列实施例中未注明具体条件的实验方法,基本上都按照常见的分子克隆手册所述的条件进行操作。
材料和方法:所用限制性内切酶,T4DNA连接酶,PCR试剂,DNA Marker等均购于TaKaRa宝生物公司;大肠杆菌感受态细胞E.coli JM109,引物,质粒提取试剂盒,PCR产物纯化试剂盒均购于上海生工生物工程公司。
实施例1:双亲短肽的氨基酸序列并克隆至质粒pET-22b(+)
1AEAEAKAKAEAEAKAK
2.VNYGNGVSCSKTKCSVNWGQAFQERYTAGTNSFVSGVSGVASGAGSIGRR
3.DWLKAFYDKVAEKLKEAFKVEPLRADWLKAFYDKVAEKLKEAF
4.DWLKAFYDKVAEKLKEAFGLLPVLEDWLKAFYDKVAEKLKEAF
5.DWLKAFYDKVAEKLKEAFKVQPYLDDWLKAFYDKVAEKLKEAF
6.DWLKAFYDKVAEKLKEAFNGGARLADWLKAFYDKVAEKLKEAF
按照以上氨基酸序列通过化学合成DNA序列,并克隆至质粒pET-22b(+)等到质粒pET-22b(+)/AP
实施例2:重组质粒pET-22b(+)/AP-enzyme的构建
将目的酶基因克隆至表达载体pET-22b(+)/AP的Nco I和Hind III位点。连接产物转化感受态大肠杆菌JM109进行转化。转化方法如下:
(1)无菌状态下取感受态细胞200μL置于无菌的微量离心管中;
(2)每管加入1-2μL重组质粒,轻轻旋转以混合内容物,在冰上放置30min;
(3)42℃热休克90s(准确),不要摇动离心管;
(4)快速将离心管转移至冰浴中,使细胞冷却1-2min;
(5)每管加入无抗生素的普通LB培养液800μL;
(6)用无菌铺菌器将200μL菌液铺于含氨苄青霉素的琼脂平板,37℃平放20min直至液体被吸收,然后倒置培养过夜,观察。
挑选阳性转化子,测序验证,结果表明连接成功。
实施例3:融合双亲短肽的重组酶表达菌株的构建
感受态大肠杆菌BL21(DE3)进行转化。转化方法如下:
(1)无菌状态下取感受态细胞200μL置于无菌的微量离心管中;
(2)每管加入1-2μL重组质粒,轻轻旋转以混合内容物,在冰上放置30min;
(3)42℃热休克90s(准确),不要摇动离心管;
(4)快速将离心管转移至冰浴中,使细胞冷却1-2min;
(5)每管加入无抗生素的普通LB培养液800μL;
(6)用无菌铺菌器将200μL菌液铺于含氨苄青霉素的琼脂平板,37℃平放20min直至液体被吸收,然后倒置培养过夜,观察。
挑选阳性转化子,提取质粒验证,证明转化成功。
实施例4:发酵生产融合双亲短肽的脂肪氧合酶
脂肪氧合酶基因序列如Genebank NO:PA119所示,根据实施例2,实施例3所述方法得到融合双亲短肽的重组脂肪氧合酶的表达菌株,以该菌株作为种子发酵生产重组脂肪氧合酶。
培养基组成(g/L):
种子培养基:蛋白胨10,酵母提取物5,氯化钠5。
发酵培养基:将下列组分溶解在0.9L水中:蛋白胨12g,酵母提取物24g,甘油4mL。
各组分溶解后高压灭菌。冷却到60℃,再加100mL灭菌的170mmol/L KH2PO4/0.72mol/L K2HPOx的溶液(2.31g的KH2PO4和12.54g K2HPO4溶在足量的水中,使终体积为100mL。高压灭菌或用0.22μm的滤膜过滤除菌)。
培养方法:种子培养,挑取工程菌单菌落接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,摇床转速200r/min,培养12h;发酵培养,按10%的接种量接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,当OD600达到0.6时,将培养温度降为16℃,同时加入终浓度为1.0mM的诱导剂IPTG,发酵24h。
将发酵液15000rpm离心10min得到菌体,将菌体溶解于150mM Tris-Hcl,pH7.5的缓冲液中,并依次通过疏水层析、离子交换层析得到电泳纯的重组酶。在50℃下测定重组酶的热稳定性,如表1所示:
表1.融合双亲短肽提高脂肪氧合酶的热稳定性,以未融合双亲短肽的为对照
对照 1 2 3 4 5 6
T1/2min(50℃) 10 18 39 38 22 252 187
实施例5:发酵生产融合双亲短肽的碱性淀粉酶
以实施例2,实施例3所述方法得到融合双亲短肽的重组碱性淀粉酶的表达菌株,以该菌株作为种子发酵生产重组碱性淀粉酶。碱性淀粉酶基因序列如Genebank NO:HV220894.1所示。
培养基组成(g/L):
种子培养基:蛋白胨10,酵母提取物5,氯化钠5。
发酵培养基:将下列组分溶解在0.9L水中:蛋白胨12g,酵母提取物24g,甘油4mL。
各组分溶解后高压灭菌。冷却到60℃,再加100mL灭菌的170mmol/L KH2PO4/0.72mol/L K2HPO4的溶液(2.31g的KH2PO4和12.54gK2HPO4溶在足量的水中,使终体积为100mL。高压灭菌或用0.22μm的滤膜过滤除菌)。
培养方法:种子培养,挑取工程菌单菌落接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,摇床转速200r/min,培养12h;发酵培养,按10%的接种量接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,当OD600达到0.6时,将培养温度降为16℃,同时加入终浓度为1.0mM的诱导剂IPTG,发酵24h。
将发酵液15000rpm离心10min得到菌体,将菌体溶解于150mM Tris-Hcl,pH7.5的缓冲液中,并依次通过疏水层析、离子交换层析得到电泳纯的重组酶。在50℃下测定重组酶的热稳定性,如表2所示:
表2.融合双亲短肽提高碱性淀粉酶的热稳定性,以未融合双亲短肽的为对照
对照 1 2 3 4 5 6
T1/2min(60℃) 25 40 60 57 80 350 300
实施例6:发酵生产融合双亲短肽的谷氨酰胺转肽酶
以实施例2,实施例3所述方法得到融合双亲短肽的重组谷氨酰胺转肽酶的表达菌株,以该菌株作为种子发酵生产重组谷氨酰胺转肽酶。谷氨酰胺转肽酶基因序列如Genebank NO:AF531437所示。
培养基组成(g/L):
种子培养基:蛋白胨10,酵母提取物5,氯化钠5。
发酵培养基:将下列组分溶解在0.9L水中:蛋白胨12g,酵母提取物24g,甘油4mL。
各组分溶解后高压灭菌。冷却到60℃,再加100mL灭菌的170mmol/L KH2PO4/0.72mol/L K2HPO4的溶液(2.31g的KH2PO4和12.54gK2HPO4溶在足量的水中,使终体积为100mL。高压灭菌或用0.22μm的滤膜过滤除菌)。
培养方法:种子培养,挑取工程菌单菌落接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,摇床转速200r/min,培养12h;发酵培养,按10%的接种量接入装液量为25mL的三角瓶(250mL)中,培养温度37℃,当OD600达到0.6时,将培养温度降为16℃,同时加入终浓度为1.0mM的诱导剂IPTG,发酵24h。
将发酵液15000rpm离心10min得到菌体,将菌体溶解于150mM Tris-Hcl,pH7.5的缓冲液中,并依次通过疏水层析、离子交换层析得到电泳纯的重组酶。在50℃下测定重组酶的热稳定性,如表2所示:
表3.融合双亲短肽提高谷氨酰胺转肽酶的热稳定性,以未融合双亲短肽的为对照
对照 1 2 3 4 5 6
T1/2min(50℃) 12 21 40 45 100 328 298
本发明以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (1)

1.一种提高酶热稳定性的方法,其特征在于将双亲短肽与重组酶进行融合表达,所述双亲短肽融合在重组酶的N端或者C端,双亲短肽的序列为:
AEAEAKAKAEAEAKAK。
CN201310567945.7A 2012-05-10 2012-05-10 一种提高酶热稳定性的方法 Active CN103740662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310567945.7A CN103740662B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210145190.7A CN102660570B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法
CN201310567945.7A CN103740662B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201210145190.7A Division CN102660570B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法

Publications (2)

Publication Number Publication Date
CN103740662A CN103740662A (zh) 2014-04-23
CN103740662B true CN103740662B (zh) 2015-08-19

Family

ID=46770148

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201310567644.4A Active CN103740660B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法
CN201310567742.8A Active CN103756979B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法
CN201210145190.7A Active CN102660570B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法
CN201310567945.7A Active CN103740662B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201310567644.4A Active CN103740660B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法
CN201310567742.8A Active CN103756979B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法
CN201210145190.7A Active CN102660570B (zh) 2012-05-10 2012-05-10 一种提高酶热稳定性的方法

Country Status (2)

Country Link
US (1) US9040274B2 (zh)
CN (4) CN103740660B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805579B (zh) * 2014-02-19 2016-05-18 江南大学 一种热稳定的淀粉酶突变体及其制备方法和应用
CN105420205B (zh) * 2015-12-31 2018-12-04 江南大学 一种分泌量提高的谷氨酰胺转氨酶
CN106701724B (zh) * 2016-12-27 2019-10-08 江南大学 一种碱性果胶酶活性包涵体的制备及其应用
CN110295159A (zh) * 2018-03-07 2019-10-01 江南大学 一种酶突变体
CN110241063B (zh) * 2019-06-28 2021-01-29 江南大学 一种增强谷氨酰胺酶耐盐性的方法
CN114149987B (zh) * 2021-12-07 2024-02-13 安徽大学 一种人工改造的β-半乳糖苷酶GaLT1及其在水解乳糖中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096382A2 (en) * 2000-06-15 2001-12-20 Prokaria Ehf. Thermostable cellulase
US20060263855A1 (en) * 2005-03-14 2006-11-23 Wood David W Intein-mediated protein purification using in vivo expression of an elastin-like protein
US7696309B2 (en) * 2006-10-23 2010-04-13 The Brigham And Women's Hospital, Inc. Protease resistant mutants of stromal cell derived factor-1 in the repair of tissue damage
CN101250509B (zh) * 2008-03-28 2010-04-14 江南大学 一种高温角质酶及其基因序列
US8268796B2 (en) * 2008-06-27 2012-09-18 Children's Hospital & Research Center At Oakland Lipophilic nucleic acid delivery vehicle and methods of use thereof
JP5730293B2 (ja) * 2009-06-03 2015-06-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ペプチドの組換え生成
US9308277B2 (en) * 2010-02-25 2016-04-12 Mesoblast International Sàrl Protease-resistant mutants of stromal cell derived factor-1 in the repair of tissue damage
WO2013026919A1 (de) * 2011-08-24 2013-02-28 Technische Universität Dresden Verfahren zur beschichtung von substraten mit mindestens einer monolage selbstassemblierender proteine

Also Published As

Publication number Publication date
CN103740660B (zh) 2015-08-19
CN103740662A (zh) 2014-04-23
US20140322788A1 (en) 2014-10-30
CN102660570A (zh) 2012-09-12
US9040274B2 (en) 2015-05-26
CN103740660A (zh) 2014-04-23
CN103756979A (zh) 2014-04-30
CN102660570B (zh) 2014-05-14
CN103756979B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
CN103740660B (zh) 一种提高酶热稳定性的方法
Zhang et al. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system
Luan et al. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production
Geng et al. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid
CN102154188B (zh) 大肠杆菌DH5α的nfi基因敲除突变株及其制备方法和应用
US20140178961A1 (en) Constructs and strains for fixing carbon dioxide and methods for preparing the same
Bustamante et al. ICEAfe1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans
You et al. Characterization of a prodigiosin synthetase PigC from Serratia marcescens jx-1 and its application in prodigiosin analogue synthesis
Van Zyl et al. Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus
CN103740661B (zh) 一种提高酶热稳定性的方法
CN103740659B (zh) 一种提高酶热稳定性的方法
Peng et al. Next‐generation microbial workhorses: comparative genomic analysis of fast‐growing vibrio strains reveals their biotechnological potential
Lee et al. Observation of 2, 3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level
CN105950596B (zh) 一种双功能酸性脲酶基因及其表达与应用
Chen et al. Genome sequence of Geobacillus thermoglucosidasius DSM2542, a platform hosts for biotechnological applications with industrial potential
CN102653743A (zh) 通过定向进化构建的热稳定性提高的脂肪酶突变体
CN102653742A (zh) 一种耐高温的华根霉脂肪酶突变体
CN102653741B (zh) 高热稳定性华根霉脂肪酶
WO2015154209A1 (zh) 一种高产l-丙氨酸且耐受自来水的菌株及其构建方法
CN105755016B (zh) 嗜铁素合成基因簇及其应用
CN103952382B (zh) 一种维生素c磷酸化酶及其应用
CN102816787B (zh) 利用重组大肠杆菌高效表达Staphyloccocus aureus α-乙酰乳酸脱羧酶
CN104130998B (zh) 定点突变获得的恶臭假单胞菌腈水解酶突变株及其构建方法
CN101613681B (zh) 重组极端耐热α-淀粉酶的复性与纯化方法
CN103436511A (zh) 一种高温碱性蛋白酶及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: No. 258 Wuxing Jiayuan, Liangxi District, Wuxi City, Jiangsu Province

Patentee after: Jiangnan University

Address before: 1800 No. 214122 Jiangsu city of Wuxi Province Li Lake Avenue

Patentee before: Jiangnan University

CP02 Change in the address of a patent holder