CN103739128A - 高浓度难降解有机废水的预处理系统和预处理方法 - Google Patents

高浓度难降解有机废水的预处理系统和预处理方法 Download PDF

Info

Publication number
CN103739128A
CN103739128A CN201310703592.9A CN201310703592A CN103739128A CN 103739128 A CN103739128 A CN 103739128A CN 201310703592 A CN201310703592 A CN 201310703592A CN 103739128 A CN103739128 A CN 103739128A
Authority
CN
China
Prior art keywords
reaction tank
waste water
pond
iron
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310703592.9A
Other languages
English (en)
Other versions
CN103739128B (zh
Inventor
郑旭晨
林莹
骆椿明
屈立宇
李娜
沈东升
冯华军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU ZHISHUI WATER TECHNOLOGY Co Ltd
Zhejiang Gongshang University
Original Assignee
HANGZHOU ZHISHUI WATER TECHNOLOGY Co Ltd
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU ZHISHUI WATER TECHNOLOGY Co Ltd, Zhejiang Gongshang University filed Critical HANGZHOU ZHISHUI WATER TECHNOLOGY Co Ltd
Priority to CN201310703592.9A priority Critical patent/CN103739128B/zh
Publication of CN103739128A publication Critical patent/CN103739128A/zh
Application granted granted Critical
Publication of CN103739128B publication Critical patent/CN103739128B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种高浓度难降解有机废水的预处理系统和预处理方法,所述预处理系统包括沿水流方向依次连接的碳粒投加池、铁碳微电解池、pH调节池、沉淀池和光催化池,所述铁碳微电解池包括相互连通的第一反应池和第二反应池,第一反应池和第二反应池内均安装有铁铜合金材质的折流板,且均设有pH控制模块与碳粒浓度控制模块。所述预处理方法即是在所述预处理系统中进行的。在铁碳微电解池中安装铁铜合金材质的折流板,不必额外投加铁屑,铜以铜屑的形式混入铁碳混合物中,有效防止铁碳结痂;将铁碳微电解池分成相互连通的第一反应池和第二反应池,并分别设置pH控制模块和碳粒浓度控制模块,提高了对有机物的降解效率。

Description

高浓度难降解有机废水的预处理系统和预处理方法
技术领域
本发明属于高浓度难降解有机废水的处理技术领域,具体涉及一种高浓度难降解有机废水的预处理系统和预处理方法。 
背景技术
高浓度难降解有机废水的处理,是目前国内外污水处理界公认的难题。高浓度难降解有机废水包括:焦化废水、石化/油类废水、纺织/印染废水、化工废水等等。所谓“高浓度”,是指这类废水中有机物浓度(以COD计)较高,一般均在2000mg/L以上;所谓“难降解”是指这类废水的可生化性较低,BOD5/COD值一般均在0.3以下,难以直接进行生物降解。所以,业内普遍将COD浓度大于2000mg/L、BOD5/COD值小于0.3的有机废水统一称为高浓度难降解有机废水。 
高浓度难降解有机废水因其所含的有机物很难被微生物直接利用,在生化处理前需采取预处理措施。铁碳微电解法因其成本低、效率高,成为了废水处理工程中普遍采用的物化预处理措施。铁碳微电解法利用Fe2+/Fe0和H+/H2两个电极的电势差0.447v,产生的[H]具有强还原性对废水中的有机物进行破坏,使大分子难降解有机物被分解为易生化降解的小分子有机物。 
传统的铁碳微电解法是在废水中直接投加铁屑和活性碳颗粒,如公开号为CN102464422B的中国专利文献公开了一种工业废水的预处理方法和装置,该装置包括:微电解池、平流沉淀池(1)、臭氧氧化池、脱硫池、平流沉淀池(2)、辐流沉淀池、砂滤池、气浮池、氨吹脱塔、一级氨循环吸收塔、二级氨循环吸收塔组成,依次通过:铁碳微电解-臭氧氧化-氧化钙、氯化钙化学沉淀-氨吹脱-酸吸收这5个步骤对废水进行预处理。 
该方法的步不足之处在于,由于铁碳反应时铁的析出易导致铁碳结痂,微电解长期运行后,铁屑容易板结,导致处理效果大幅度下降,甚至无法运行。并且通过增加后续处理步骤来弥补铁碳微电解对有机物降解的 不足,使得预处理步骤非常繁琐。 
公布号为CN102992527A的中国专利文献公开了一种预处理高浓度难降解有机废水的方法,首先将高浓度难降解有机废水进行Ⅰ级铁碳微电解和Ⅰ级芬顿氧化处理,然后在Ⅰ级铁碳微电解和Ⅰ级芬顿氧化出水中加入零价铁进行Ⅱ级微电解处理,Ⅰ级铁碳微电解和Ⅰ级芬顿氧化出水中的Fe3+与零价铁组成Fe3+/Fe2+和Fe2+/Fe0原电池的两个新电极。新原电池的电动势为1.218v,是原来的近3倍,得失电子能力更大,氧化还原反应更为剧烈,一些在Ⅰ级铁碳微电解和Ⅰ级芬顿氧化过程中未被彻底分解的有机物能在Ⅱ级微电解过程中得到彻底分解。 
该方法在铁碳反应时不直接投加铁屑,而是投加纳米材料零价铁,但零价铁制备过程复杂,且易于消耗,增加了处理成本。 
发明内容
本发明提供了一种用于高浓度难降解有机废水预处理系统,对铁碳微电解池进行改造,有效提高铁碳微电解对有机物的降解效率。 
一种高浓度难降解有机废水预处理系统,包括沿水流方向依次连接的碳粒投加池、铁碳微电解池、pH调节池、沉淀池和光催化池,所述铁碳微电解池包括相互连通的第一反应池和第二反应池,第一反应池和第二反应池内均安装有铁铜合金材质的折流板,且均设有pH控制模块与碳粒浓度控制模块。 
铁碳微电解池内为酸性环境,折流板采用铁铜合金材质制成,在酸性条件下,亚铁离子逐渐从折流板上溶出,与碳粒发生微电解反应,对废水中的大分子有机物进行降解。由于不必额外投加铁屑,因此不会出现大面积的铁碳结痂现象。而铜由于惰性较大,铁碳微电解池的酸性环境还无法使铜离子溶出,在亚铁离子不断溶出的过程中,铜以铜屑的形式混入铁碳混合物中,有效防止铁碳结痂。作为优选,所述折流板分为沿水流方向交错分布的左右两排。左右交错分布的两排折流板使折流板与水体的接触时间更长,进一步提高处理效率。并且,折流板是以可拆卸方式安装的,当折流板被消耗后,便于更换新的折流板。 
本发明还将铁碳微电解池分成相互连通的两个部分,根据有机物 被降解的程度,将有机物的降解过程分成两个阶段,分别在第一反应池和第二反应池中进行。由于第一反应池和第二反应池内设定的pH参数、碳粒浓度参数均不相同,因此在第一反应池及第二反应池内设置pH控制模块和碳粒浓度控制模块,对池内的pH变化、碳粒浓度变化分别进行实时监测并进行相应调节,进一步提高了对废水的预处理效果。 
作为优选,所述pH控制模块包括伸入废水中的第一探头和酸碱投加器,以及接收第一探头的输出信号从而控制酸碱投加器工作的第一控制器,所述酸碱投加器的开口位于第一反应池或第二反应池的进水口处。第一探头实时检测池内的水体pH值并输出信号给第一控制器,第一控制器根据接收的信号控制酸碱投加器向池中加酸或者加碱,将池中水体pH值控制在设定范围内。酸碱投加器布置在第一反应池或第二反应池的进水口处,有利于投加的酸或者碱迅速稀释。 
同样地,作为优选,所述碳粒浓度控制模块包括伸入废水中的第二探头和碳粒投加器,以及接收第二探头的输出信号从而控制碳粒投加器工作的第二控制器,所述碳粒投加器的开口位于第一反应池或第二反应池的进水口处。 
作为进一步优选,所述第一反应池或第二反应池的后端设有碳粒回收泵,该碳粒回收泵与碳粒投加器相连。所述碳粒回收泵在第一反应池或第二反应池的后端回收碳粒,并将其输送至碳粒投加器中,实现碳粒的循环利用。 
本发明还提供了一种高浓度难降解有机废水预处理方法,该预处理方法在本发明所述高浓度难降解有机废水预处理系统中进行,包括以下步骤: 
(1)将待处理废水引入碳粒投加池中,调节待处理废水的pH值至3~4,同时投加碳粒并混匀; 
在铁碳微电解池上游设置碳粒投加池,使碳粒充分混合于废水中后再与折流板充分接触,提高处理效率;作为优选,所述碳粒投加池中设有搅拌装置,使得碳粒在待处理废水中混合均匀,也便于准确调节待处理废水的pH值。 
作为优选,碳粒投加池中碳粒的浓度为30~50g/L,并将待处理废水 的pH值调节至3~4,便于第一反应池中的铁碳微电解反应及时顺利地进行。 
(2)将碳粒投加池出水引入铁碳微电解池,依次在第一反应池、第二反应池中对废水中的有机物进行铁碳微电解; 
碳粒投加池出水首先进入第一反应池,此时废水中有机物含量较高,为提高有机物的降解效率,在第一反应池中,相邻两块折流板之间的距离优选为3~5cm,在第二反应池内,相邻两块折流板之间的距离优选为5~10cm;并分别通过pH控制模块和碳粒浓度控制模块控制第一反应池中pH值为3~4,碳粒浓度为30~50g/L,碳粒投加池出水在第一反应池中的水力停留时间为2~4h;控制第二反应池中pH值为4~6,碳粒浓度为50~100g/L,第一反应池出水在第二反应池中的水力停留时间为2~4h。 
更优选地,控制第一反应池中pH值为3,碳粒浓度为50g/L,碳粒投加池出水在第一反应池中的水力停留时间为4h;控制第二反应池中pH值为5,碳粒浓度为100g/L,第一反应池出水在第二反应池中的水力停留时间为4h。在该反应条件下,废水中COD的被降解率最高,最高可得达72.4%,色度从200倍下降至20倍,B/C比从0提高至0.41。 
第一反应池内相邻两块折流板之间的距离较近,既有利于延长废水在第一反应池内的停留时间,其中折流板的密度也较大,在较为酸性的环境下(pH值为3~4)溶入水体中的亚铁离子也越多,使得铁碳微电解反应更为充分。 
经第一反应池处理后的废水中有机物含量已经降低,因此第二反应池中相邻两块折流板之间的距离拉大,pH值也有所升高,减少酸碱投加量,在保证处理效果的同时节约成本。同时由于铁碳微电解反应会产生大量的三价铁离子,而三价铁离子的存在不利于后续光催化反应的进行,因此第二反应池内碳粒浓度升高,便于去除三价铁离子。 
(3)将第二反应池出水引入pH调节池,调节pH值至大于6.5后引入沉淀池,使废水中因铁碳微电解产生的铁离子沉淀; 
实际操作中,三价铁离子在酸性条件下难以沉淀完全,废水仍旧呈红色。因此本发明中将pH调节池中的废水调节至中性,优选为6.5~7.5,保证三价铁离子沉淀完全。 
作为优选,pH调节池出水在沉淀池中的水力停留时间为1~4h;更优选为4h,保证三价铁离子和少量的亚铁离子完全沉淀,使废水澄清,便于进行后续的光催化处理。 
(4)将沉淀池出水引入投加有纳米TiO2的光催化池中,对废水中的有机物进行光催化降解,待光催化池出水达标后排放。 
经铁碳微电解后,废水中还有较多的难降解有机物,因此将沉淀池出水(上清液)引入光催化池进行光催化降解,以进一步提高废水的可生化性。作为优选,光催化池中纳米TiO2的浓度为50~500g/L;所述光催化池内安装有若干紫外灯,所有紫外灯均匀布置在光催化池的内壁上。 
通过铁碳微电解池-光催化池的协同作用,高浓度难降解有机废水的可生化性得到大大改善,废水中COD的被降解率最高达80.6%,色度从200倍降至10倍,B/C比从0提高至0.43。 
与现有技术相比,本发明的有益效果体现在: 
(1)本发明在铁碳微电解池中安装铁铜合金材质的折流板,在酸性条件下,亚铁离子逐渐从折流板上溶出,与碳粒发生微电解反应,对废水中的大分子有机物进行降解。由于不必额外投加铁屑,因此不会出现大面积的铁碳结痂现象;铁铜合金板使用周期为3个月,与投加铁屑相比,成本较低;而铜由于惰性较大,铁碳微电解池的酸性环境还无法使铜离子溶出,在亚铁离子不断溶出的过程中,铜以铜屑的形式混入铁碳混合物中,有效防止铁碳结痂; 
(2)本发明根据废水中有机物的被降解程度,将铁碳微电解池分成相互连通的第一反应池和第二反应池,将铁碳微电解反应分成两个阶段进行,并分别在第一反应池和第二反应池内设置pH控制模块和碳粒浓度控制模块,对池内的pH变化、碳粒浓度变化分别进行实时监测并进行相应调节,提高了对有机物的降解效率; 
(3)本发明利用铁碳微电解池-光催化池协同作用,进一步提高高浓度难降解有机废水的可生化性。 
附图说明
图1为本发明一种高浓度难降解有机废水预处理系统的结构示意 图; 
图2为图1中铁碳微电解池的顶部结构示意图。 
具体实施方式
实施例1高浓度难降解有机废水预处理系统 
如图1所示,本实施方式一种高浓度难降解有机废水预处理系统,包括沿水流方向依次连接的碳粒投加池1、铁碳微电解池2、pH调节池3、沉淀池4和纳米TiO2光催化池5。 
碳粒投加池1内设有搅拌装置6,搅拌装置6包括伸入废水中的搅拌轴61,驱动搅拌轴61转动的电机62,以及安装在搅拌轴61上的搅拌桨叶63。搅拌装置6用于将碳粒投加池1中的活性炭颗粒充分混合于废水中,然后再流入铁碳微电解池2中。 
由图1可见,铁碳微电解池2中可拆卸地安装有折流板23,折流板23采用铁铜合金材料制成,且分为沿水流方向交错排布的左右两排。在酸性条件的铁碳微电解池2中,亚铁离子从折流板23上溶出,与碳粒发生微电解反应,由于不必额外投加铁屑,因此不会出现大面积铁碳结痂现象,并且析出的铜屑也会防止铁碳结痂。 
与铁碳微电解池中废水中有机物的被降解程度相适应,铁碳微电解池2分为相互连通的第一反应池21和第二反应池22,第一反应池21和第二反应池22的容积比为1:1。 
进入第一反应池21时,废水中的有机物较高,因此第一反应池21中相邻两块折流板23之间的距离较近,有利于延长废水在第一反应池内的停留时间,使铁碳微电解反应充分进行。经第一反应池21处理后,废水中有机物含量已经降低,因此第二反应池22中相邻两块折流板23之间的距离拉大,在保证处理效果的同时节约成本。 
折流板的可拆卸安装方式多样,如图1、图2所示,本具体实施方式中,第一反应池21和第二反应池22的内壁上设有与折流板23端部相配合的条形定位槽24,第一反应池21和第二反应池22的底面设有一排容置槽25,每块折流板23的底部均嵌入一容置槽25内。便于安装和更换折流板23。 
由图1可见,为实时监测第一反应池21和第二反应池22内铁碳微电解反应的进行,第一反应池21和第二反应池22内均设有pH控制模块7和碳粒浓度控制模块8。 
pH控制模块7包括伸入废水中的第一探头71和酸碱投加器72,以及接收第一探头71的输出信号并控制酸碱投加器72向废水中投加酸或碱的第一控制器73。为保证投加的酸或者碱迅速稀释,酸碱投加器72的开口位于第一反应池21或第二反应池22的进水口处。 
同样地,碳粒浓度控制模块8包括伸入水体内的第二探头81和碳粒投加器82,接收第二探头81的输出信号从而控制碳粒投加器82工作的第二控制器83。 
碳粒投加器82的开口也位于第一反应池21或第二反应池22的进水口处,且为实现碳粒的循环利用,第一反应池21或第二反应池22的后端设有与碳粒投加器82相连的碳粒回收泵84。 
实施例2高浓度难降解有机废水预处理方法 
利用实施例1的预处理系统对表1中的高浓度难降解有机废水样品进行预处理: 
表1水样中盐度、COD、色度指标 
物质 COD(mg/L) 色度(倍) B/C比 pH
浓度 3.4×104 200 0 5.6
废水中COD主要由苯酚(有毒,难以被微生物降解)提供,预处理包括以下步骤: 
(1)将废水引入碳粒投加池中,调节待处理废水的pH值至3,同时投加碳粒至浓度为50g/L,通过搅拌装置混匀; 
(2)将碳粒投加池出水引入第一反应池,第一反应池内相邻两块折流板之间的距离为3cm,pH值为3,碳粒浓度为50g/L,水力停留时间为4h; 
(3)将第一反应池出水引入第二反应池,第二反应池内相邻两块折流板之间的距离为5cm,pH值为5,碳粒浓度为100g/L,水力停留时间为4h; 
(4)将第二反应池出水引入pH调节池,调节pH值至7后引入沉淀池,pH调节池出水在沉淀池中的水力停留时间为4h; 
(5)将沉淀池出水引入纳米TiO2光催化池,对废水中的有机物进行光催化降解,纳米TiO2光催化池中纳米TiO2的浓度为500g/L,待光催化池出水达标后排放。 
实施例3高浓度难降解有机废水预处理方法 
利用实施例1的预处理系统对表1中的高浓度难降解有机废水样品进行预处理,预处理包括以下步骤: 
(1)将废水引入碳粒投加池中,调节待处理废水的pH值至4,同时投加碳粒至浓度为30g/L,通过搅拌装置混匀; 
(2)将碳粒投加池出水引入第一反应池,第一反应池内相邻两块折流板之间的距离为5cm,pH值为4,碳粒浓度为30g/L,水力停留时间为2h; 
(3)将第一反应池出水引入第二反应池,第二反应池内相邻两块折流板之间的距离为10cm,pH值为6,碳粒浓度为50g/L,水力停留时间为2h; 
(4)将第二反应池出水引入pH调节池,调节pH值至7后引入沉淀池,pH调节池出水在沉淀池中的水力停留时间为1h; 
(5)将沉淀池出水引入纳米TiO2光催化池,对废水中的有机物进行光催化降解,纳米TiO2光催化池中纳米TiO2的浓度为50g/L,待光催化池出水达标后排放。 
实施例4高浓度难降解有机废水预处理方法 
利用实施例1的预处理系统对表1中的高浓度难降解有机废水样品进行预处理,但铁碳微电解池为一体结构,未被分成第一反应池和第二反应池。预处理包括以下步骤: 
(1)将废水引入碳粒投加池中,调节待处理废水的pH值至4,同时投加碳粒至浓度为40g/L,通过搅拌装置混匀; 
(2)将碳粒投加池出水引入铁碳微电解池,铁碳微电解池内相邻两 块折流板之间的距离为8cm,pH值为4,碳粒浓度为40g/L,水力停留时间为6h; 
(3)将铁碳微电解池出水引入pH调节池,调节pH值至7后引入沉淀池,pH调节池出水在沉淀池中的水力停留时间为4h; 
(4)将沉淀池出水引入纳米TiO2光催化池,对废水中的有机物进行光催化降解,纳米TiO2光催化池中纳米TiO2的浓度为50g/L,待光催化池出水达标后排放。 
实施例5高浓度难降解有机废水预处理方法 
利用实施例1的预处理系统对表2中的高浓度难降解有机废水样品进行预处理: 
表2水样中盐度、COD、色度指标 
物质 COD(mg/L) 色度(倍) B/C比 pH
浓度 1.3×104 500 0 7.7
废水中COD主要由卤代芳香烃(有毒,难以被微生物降解)提供,预处理包括以下步骤: 
(1)将废水引入碳粒投加池中,调节待处理废水的pH值至3,同时投加碳粒至浓度为50g/L,通过搅拌装置混匀; 
(2)将碳粒投加池出水引入第一反应池,第一反应池内相邻两块折流板之间的距离为3cm,pH值为3,碳粒浓度为50g/L,水力停留时间为4h; 
(3)将第一反应池出水引入第二反应池,第二反应池内相邻两块折流板之间的距离为5cm,pH值为5,碳粒浓度为100g/L,水力停留时间为4h; 
(4)将第二反应池出水引入pH调节池,调节pH值至7后引入沉淀池,pH调节池出水在沉淀池中的水力停留时间为4; 
(5)将沉淀池出水引入纳米TiO2光催化池,对废水中的有机物进行光催化降解,纳米TiO2光催化池中纳米TiO2的浓度为500g/L,待光催化池出水达标后排放。 
实施例6高浓度难降解有机废水预处理方法 
利用实施例1的预处理系统对表2中的高浓度难降解有机废水样品进行预处理,但铁碳微电解池中为一体结构,未被分成第一反应池和第二反应池,也未安装铁铜合金材质的折流板。预处理包括以下步骤: 
(1)将废水引入碳粒投加池中,调节待处理废水的pH值至3,同时投加碳粒至浓度为50g/L,通过搅拌装置混匀; 
(2)将碳粒投加池出水引入铁碳微电解池,铁碳微电解池内pH值为3,铁屑浓度为150g/L,碳粒浓度为30g/L,水力停留时间为6h; 
(3)将铁碳微电解池出水引入pH调节池,调节pH值至7后引入沉淀池,pH调节池出水在沉淀池中的水力停留时间为4h; 
(4)将沉淀池出水引入纳米TiO2光催化池,对废水中的有机物进行光催化降解,纳米TiO2光催化池中纳米TiO2的浓度为50g/L,待光催化池出水达标后排放。 
实施例7高浓度难降解有机废水预处理方法 
利用实施例1的预处理系统对表2中的高浓度难降解有机废水样品进行预处理,但不包含光催化池,预处理方法包括以下步骤: 
(1)将废水引入碳粒投加池中,调节待处理废水的pH值至3,同时投加碳粒至浓度为50g/L,通过搅拌装置混匀; 
(2)将碳粒投加池出水引入第一反应池,第一反应池内相邻两块折流板之间的距离为3cm,pH值为3,碳粒浓度为50g/L,水力停留时间为4h; 
(3)将第一反应池出水引入第二反应池,第二反应池内相邻两块折流板之间的距离为5cm,pH值为5,碳粒浓度为100g/L,水力停留时间为4h; 
(4)将第二反应池出水引入pH调节池,调节pH值至7后引入沉淀池,pH调节池出水在沉淀池中的水力停留时间为4h,沉淀完成后达标出水。 
检测各实施例出水中影响废水可生化性的指标(表3)。 
表3 
Figure BDA0000440956330000111
由表3可见,实施例2的废水处理效果最好,与进水相比,第二反应池出水的COD含量下降了72.4%,色度从200倍下降到20倍,B/C比由0提高至0,41;与进水相比,光催化池出水的COD含量下降了80.6%,色度从200倍下降到10倍,B/C比由0提高至0.43。 

Claims (10)

1.一种高浓度难降解有机废水预处理系统,其特征在于,包括沿水流方向依次连接的碳粒投加池、铁碳微电解池、pH调节池、沉淀池和光催化池,所述铁碳微电解池包括相互连通的第一反应池和第二反应池,第一反应池和第二反应池内均安装有铁铜合金材质的折流板,且均设有pH控制模块与碳粒浓度控制模块。
2.如权利要求1所述的高浓度难降解有机废水预处理系统,其特征在于,在第一反应池内,相邻两块折流板之间的距离为3~5cm,在第二反应池内,相邻两块折流板之间的距离为5~10cm。
3.如权利要求1所述的高浓度难降解有机废水预处理系统,其特征在于,所述pH控制模块包括伸入废水中的第一探头和酸碱投加器,以及接收第一探头的输出信号从而控制酸碱投加器工作的第一控制器,所述酸碱投加器的开口位于第一反应池或第二反应池的进水口处。
4.如权利要求1所述的高浓度难降解有机废水预处理系统,其特征在于,所述碳粒浓度控制模块包括伸入废水中的第二探头和碳粒投加器,以及接收第二探头的输出信号从而控制碳粒投加器工作的第二控制器,所述碳粒投加器的开口位于第一反应池或第二反应池的进水口处。
5.如权利要求4所述的高浓度难降解有机废水预处理系统,其特征在于,所述第一反应池或第二反应池的后端设有碳粒回收泵,该碳粒回收泵与碳粒投加器相连。
6.一种高浓度难降解有机废水预处理方法,其特征在于,在如权利要求1~5任一所述的高浓度难降解有机废水预处理系统中进行,包括以下步骤:
(1)将待处理废水引入碳粒投加池中,调节待处理废水的pH值至3~4,同时投加碳粒并混匀;
(2)将碳粒投加池出水引入铁碳微电解池,依次在第一反应池、第二反应池中对废水中的有机物进行铁碳微电解;
(3)将第二反应池出水引入pH调节池,调节pH值至大于6.5后引入沉淀池,使废水中因铁碳微电解产生的铁离子沉淀;
(4)将沉淀池出水引入投加有纳米TiO2的光催化池中,对废水中的有机物进行光催化降解,待光催化池出水达标后排放。
7.如权利要求6所述的高浓度难降解有机废水预处理方法,其特征在于,碳粒投加池中碳粒浓度为30~50g/L。
8.如权利要求6所述的高浓度难降解有机废水预处理方法,其特征在于,控制第一反应池中pH值为3~4,碳粒浓度为30~50g/L,碳粒投加池出水在第一反应池中的水力停留时间为2~4h;控制第二反应池中pH值为4~6,碳粒浓度为50~100g/L,第一反应池出水在第二反应池中的水力停留时间为2~4h。
9.如权利要求6所述的高浓度难降解有机废水预处理方法,其特征在于,pH调节池出水在沉淀池中的水力停留时间为1~4h。
10.如权利要求6所述的高浓度难降解有机废水预处理方法,其特征在于,光催化池中纳米TiO2的浓度为50~500g/L。
CN201310703592.9A 2013-12-18 2013-12-18 高浓度难降解有机废水的预处理系统和预处理方法 Expired - Fee Related CN103739128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310703592.9A CN103739128B (zh) 2013-12-18 2013-12-18 高浓度难降解有机废水的预处理系统和预处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310703592.9A CN103739128B (zh) 2013-12-18 2013-12-18 高浓度难降解有机废水的预处理系统和预处理方法

Publications (2)

Publication Number Publication Date
CN103739128A true CN103739128A (zh) 2014-04-23
CN103739128B CN103739128B (zh) 2015-06-17

Family

ID=50496220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310703592.9A Expired - Fee Related CN103739128B (zh) 2013-12-18 2013-12-18 高浓度难降解有机废水的预处理系统和预处理方法

Country Status (1)

Country Link
CN (1) CN103739128B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607189A (zh) * 2015-01-09 2015-05-13 刘百山 一种反应速度可控的铁-二氧化钛-碳三元微电解复合纳米催化剂及其制备方法
CN105060659A (zh) * 2015-09-18 2015-11-18 黑龙江大学 一种针对高浓度硫酸铵工业废水的处理方法
CN107010699A (zh) * 2017-05-27 2017-08-04 江苏艾特克环境工程设计研究院有限公司 一种印染废水的微电解预处理工艺及其装置
CN109879418A (zh) * 2019-03-01 2019-06-14 北京大学深圳研究生院 一种厌氧氨氧化反应装置及运行方法
CN111003862A (zh) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 一种难降解废水处理系统
CN111003868A (zh) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 一种难降解废水处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033105A (zh) * 2007-02-01 2007-09-12 彭云龙 一种光电磁集成的废水高级氧化方法及其装置
CN201151690Y (zh) * 2007-11-21 2008-11-19 朱辉 一种使用固体微电解填料的废水处理装置
CN201777952U (zh) * 2010-09-10 2011-03-30 昆明理工大学 一种用于处理含重金属废水的一体化装置
CN102826693A (zh) * 2012-08-08 2012-12-19 青岛昊源环境工程技术有限公司 一种电辅助结合紫外光催化氧化高盐有机废水的方法及系统
CN102951708A (zh) * 2012-09-24 2013-03-06 潍坊海洁环保设备有限公司 多元催化铁碳微电解填料及其制备方法
CN103073134A (zh) * 2013-01-14 2013-05-01 常州大学 一种利用铁炭微电解和催化剂处理甲萘酚废水的方法
CN203653306U (zh) * 2013-12-18 2014-06-18 杭州智水水务科技有限公司 用于高浓度难降解有机废水预处理的铁碳微电解池和预处理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033105A (zh) * 2007-02-01 2007-09-12 彭云龙 一种光电磁集成的废水高级氧化方法及其装置
CN201151690Y (zh) * 2007-11-21 2008-11-19 朱辉 一种使用固体微电解填料的废水处理装置
CN201777952U (zh) * 2010-09-10 2011-03-30 昆明理工大学 一种用于处理含重金属废水的一体化装置
CN102826693A (zh) * 2012-08-08 2012-12-19 青岛昊源环境工程技术有限公司 一种电辅助结合紫外光催化氧化高盐有机废水的方法及系统
CN102951708A (zh) * 2012-09-24 2013-03-06 潍坊海洁环保设备有限公司 多元催化铁碳微电解填料及其制备方法
CN103073134A (zh) * 2013-01-14 2013-05-01 常州大学 一种利用铁炭微电解和催化剂处理甲萘酚废水的方法
CN203653306U (zh) * 2013-12-18 2014-06-18 杭州智水水务科技有限公司 用于高浓度难降解有机废水预处理的铁碳微电解池和预处理系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607189A (zh) * 2015-01-09 2015-05-13 刘百山 一种反应速度可控的铁-二氧化钛-碳三元微电解复合纳米催化剂及其制备方法
CN104607189B (zh) * 2015-01-09 2016-09-28 嘉兴瑞奕环保科技有限公司 一种反应速度可控的铁-二氧化钛-碳三元微电解复合纳米催化剂及其制备方法
CN105060659A (zh) * 2015-09-18 2015-11-18 黑龙江大学 一种针对高浓度硫酸铵工业废水的处理方法
CN107010699A (zh) * 2017-05-27 2017-08-04 江苏艾特克环境工程设计研究院有限公司 一种印染废水的微电解预处理工艺及其装置
CN109879418A (zh) * 2019-03-01 2019-06-14 北京大学深圳研究生院 一种厌氧氨氧化反应装置及运行方法
CN109879418B (zh) * 2019-03-01 2021-12-28 北京大学深圳研究生院 一种厌氧氨氧化反应装置及运行方法
CN111003862A (zh) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 一种难降解废水处理系统
CN111003868A (zh) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 一种难降解废水处理工艺
CN111003862B (zh) * 2019-12-25 2022-04-19 广州市环境保护工程设计院有限公司 一种难降解废水处理系统
CN111003868B (zh) * 2019-12-25 2022-04-19 广州市环境保护工程设计院有限公司 一种难降解废水处理工艺

Also Published As

Publication number Publication date
CN103739128B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN103739128B (zh) 高浓度难降解有机废水的预处理系统和预处理方法
CN101591082B (zh) 有机电镀废水多元氧化预处理方法及装置
CN103641230B (zh) 利用铁炭-Fenton一体化反应器进行有机废水预处理的方法
JP2022063837A (ja) 同時に、高濃度のアンモニア態窒素と、有機構成物を含む廃水の処理方法
CN104961304A (zh) 一种高浓度氟化工废水处理工艺
CN103130379A (zh) 一种焦化蒸氨废水的处理方法
CN109734248B (zh) 一种反渗透浓缩水深度处理方法与设备
CN102923901B (zh) 一种深度处理乙烯废碱液的方法
CN105461135A (zh) 一种高浓度难降解有机石化废水预处理工艺
CN111606519A (zh) 一种电镀废水深度处理方法
CN103951107A (zh) 一种处理焦化废水的装置及方法
CN111423066A (zh) 污水处理系统
CN105692972A (zh) 一种工业废水深度处理及循环利用方法
CN110451681B (zh) 一种促进高级氧化效果的废水处理控制方法
CN112551677A (zh) 一种新型芬顿氧化法工业废水处理工艺
CN203653306U (zh) 用于高浓度难降解有机废水预处理的铁碳微电解池和预处理系统
CN116462374A (zh) 一种复合型污水处理厂中工业废水的预处理方法
CN103086575A (zh) 大蒜加工废水深度处理系统及方法
CN114212946A (zh) 一种ro浓水处理系统及处理方法
CN113880318A (zh) 一种用于处理化工废水的两段高级氧化工艺、系统及应用
CN114262117A (zh) 一种有机废水深度降解cod的系统及工艺
CN103663844A (zh) 一种乙烯废碱液的处理方法
CN113184972A (zh) 一种序批式反应去除废水中有机污染物的方法
CN205740599U (zh) 一种高浓度煤气化废水处理系统
CN111533368A (zh) 污水的处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20181218