CN103702740A - 用于从气体混合物中吸附co2的多孔吸附结构 - Google Patents
用于从气体混合物中吸附co2的多孔吸附结构 Download PDFInfo
- Publication number
- CN103702740A CN103702740A CN201280037099.1A CN201280037099A CN103702740A CN 103702740 A CN103702740 A CN 103702740A CN 201280037099 A CN201280037099 A CN 201280037099A CN 103702740 A CN103702740 A CN 103702740A
- Authority
- CN
- China
- Prior art keywords
- fibrous
- cellulose nano
- adsorption structure
- drying
- coupling agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
- B01J20/28007—Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
- B01J20/3212—Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
- B01J20/3217—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
- B01J20/3219—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3257—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
- B01J20/3259—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulfur with at least one silicon atom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
- B01D2253/202—Polymeric adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/25—Coated, impregnated or composite adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/304—Linear dimensions, e.g. particle shape, diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/311—Porosity, e.g. pore volume
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/06—Polluted air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4812—Sorbents characterised by the starting material used for their preparation the starting material being of organic character
- B01J2220/4825—Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/603—Including strand or fiber material precoated with other than free metal or alloy
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明涉及多孔吸附结构,该结构能够可逆的吸附和脱附循环以用于从气体混合物中捕获CO2,该多孔吸附结构包括由经表面改性的纤维素纳米纤维网所形成的载体基质。该载体基质具有至少为20%的孔隙率。所述经表面改性的纤维素纳米纤维由直径为约4nm~约1000nm以及长度为100nm~1mm的纤维素纳米纤维组成,其由与其表面共价结合的偶联剂所覆盖。所述偶联剂包含至少一种单烷基二烷氧基氨基硅烷。
Description
技术领域
本发明总体上涉及用于从气体混合物中吸附CO2的多孔吸附结构(porous adsorbent structure),以及该结构的制备方法和用途。
背景技术
从气体混合物中捕获CO2不仅就环保方面而且就经济方面而言也具有相当大的潜力。尤其是从大气中去除CO2以减轻全球气候变化被认为是在技术的投资组合方面的重要且大有可为的选择(例如参见WO2010/091831和其中引用的文献)。
已知有胺改性的固体吸附剂适用于从类似于烟气或空气的气流中捕获CO2(例如参见WO2010/091831和其中引用的文献)。通常,胺改性的固体吸附剂是指其中胺通过物理吸附或共价结合的方式得以固定在多孔固体基质上的一类材料。在科学和专利文献中已对用于捕获CO2的几种固体载体和胺进行了研究。到目前为止的专利中,包括有二氧化硅(WO2008/021700)、碳质材料(US6547S54)、聚合材料(WO2008/131132,WO2009/067625)、天然纤维(WO2009/067625,WO2010/091831)和粘土(US6908497)作为固体载体。
虽然CO2的去除效率是一个重要因素,但对于用于从大气中去除CO2的可行性技术来说,显然有要满足的进一步要求。目前的预计表明,每捕获一吨CO2就需要至少1kg的吸附材料。因此,为避免浪费的大量形成,非常希望能找到不仅高效而且可由例如像天然纤维的生物基材料制造的CO2吸附剂,所述天然纤维来源于可容易回收的再生资源。纤维素就是这样一种生物材料,其具有很多优点,如丰度(abundance)、生物降解性、生物相容性以及高比表面积。
从植物中能以具有约30~100μm直径以及数毫米长度的纤维的形式获得纤维素。这些纤维素纤维由在高等植物的生物合成的过程中所形成的直径为2~10nm以及长度为几十微米的纤维素微纤维组成。众所周知,纤维素纤维会解体成微纤维聚集体并且在US4483743中首次对其进行了描述。在本发明中,所制造的纤维素原纤(cellulose fibril)具有4nm~1μm的直径以及100nm~1mm的长度,其在下文中称作纤维素纳米纤维。有时,有直径超过1μm的纤维素原纤存在于产物中,此为本文所描述的产物所需的特性。在文献中存在的几个符号代表具有与本文所指的纤维素纳米纤维相似的尺寸的产物,其中最重要的符号为纳米原纤化纤维素(nanofibrillated cellulose)(缩写为NFC)、微原纤化纤维素(microfibrillated cellulose)(缩写为MFC)、纤维素纳米晶须(cellulose nanowhisker)以及纳米微晶纤维素(cellulose nanocrystal)。
通常已知并且在一些科学和专利文献(例如EP2196478)中存在有用氨基硅烷来改性具有在微米范围内的直径的纤维素纤维,以及具有4nm~1μm的直径以及100nm~1mm长度的纤维素纳米纤维。
到目前为止,胺改性纤维素纳米纤维已用于复合材料结构(WO2010/066905)并且用作抗微生物的组织。本领域用于制备胺改性纤维素纳米纤维的方法是,将氨基硅烷和纤维素纳米纤维浸泡在水溶液或醇溶液中,充分搅拌所得的混合物并且过滤湿浆料。然后,用烘箱干燥或风干湿浆料。从而产生了非多孔、高密度的胺改性纤维素纳米纤维膜。由于在活性胺位点不易与CO2分子接近,因此这些薄膜不适合用于CO2的捕获。
综上所述,虽然用于从气体混合物中捕获CO2的多种方法和装置基本上是公知的,但仍有对改进技术方案的强烈需求。
发明内容
本发明解决了上述的以及进一步的任务。
根据本发明的一方面,提供了多孔吸附结构,该结构能够可逆的吸附和脱附循环以用于从气体混合物中捕获CO2,该结构包括经表面改性的纤维素纳米纤维的载体基质(support matrix),该经表面改性的纤维素纳米纤维由直径为约4nm~约1000nm的纤维素纳米纤维组成,该纤维素纳米纤维由与其表面共价结合的偶联剂所覆盖。根据本发明,该载体基质为具有的孔隙率至少为20%,优选为50%以上,更优选为60%以上的纳米纤维网,其中孔隙率定义为空隙的体积除以总体积,以及所述偶联剂包含至少一种单烷基二烷氧基氨基硅烷。纤维素纳米纤维的多孔网可以具有气溶胶的特性。
在从属权利要求中限定了多孔吸附结构和其制备方法的有利的实施方式。
本文使用的通用术语“纤维素纳米纤维”的定义是其直径从约4nm至约1000nm变化的纤维素纤维状的纳米结构,其特别但不只包括长度约为1μm或更长的纤维素纳米原纤(cellulose nanofibrils),以及长度约为100~500nm以及直径小于10nm的纤维素纳米晶须。
正如通常所知道的,气溶胶是具有高孔隙率和表面积,低密度和其他令人感兴趣的机械和非机械性能的固体材料。由纤维素来制造气溶胶已为人所知,并且其可由NFC悬浮液、细菌纤维素、纤维素纳米颗粒(WO2011/030170)、纤维素纳米晶须以及通过溶解纤维素来制备。与在WO2011/030170中所使用定义类似,术语“气溶胶”在此处应理解为具有至少为20%的孔隙率的开放式多孔结构。然而,本发明所使用的载体基质的制备可伴有不同程度的孔隙率:20%以上,优选50%以上,以及更优选60%以上。它们通常具有的BET(Brunauer-Emmett-Teller)表面积大于2m2/g,优选大于5m2/g,以及更优选大于6m2/g。
根据本发明,使用纤维素纳米纤维材料来制备纳米纤维网往往会含有一定量的长纤维和/或大直径的纤维,此后简称为“大型纤维素纤维(largecellulose fiber)”。如本文所使用的“大型纤维素纤维”,将其定义为具有在大于1μm至原始植物纤维直径范围内的直径,即30~100μm,和/或具有超过1mm的长度。然而,本发明的一项关键要求是,具有不超过1000nm直径的小型纤维素纳米纤维必须以足够大的比例存在。从操作要点的角度看,纤维素纳米纤维的平均直径要足够小,以便于2%(w/w)的纤维素纳米纤维材料悬浮于水中以形成水凝胶,该水凝胶在0.1Hz的剪切速率下具有至少为2000mPa*s的粘度。
根据本发明,偶联剂应包含至少一种单烷基二烷氧基氨基硅烷。该术语于此处应理解为具有通式(I)的指定氨基官能团的硅烷化合物
其中,R1、R2和R3独立地选自C1-C5烷基。优选R1,R2和R3选自甲基和乙基,并且R1和R2优选为相同。基团R4为直链或支链C3-C12烷基部分,其中NH基团任选地取代一个或多个CH2基团。通常,这样的NH基团的存在给硅烷试剂提供了额外的胺官能度(amine functionality)。这样的化合物通常是已知的,并且部分可以从不同的供应商购买。下文将进一步讨论这些硅烷化合物的优选选择。
令人惊奇地发现是,将上文所定义的单烷基二烷氧基氨基硅烷应用于作为纤维素纳米纤维网而形成的多孔载体基质,导致了吸附结构具有十分有利的性能。这样的吸附结构能够进行可逆的吸附和脱附循环以用于从气体混合物中捕获CO2。特别地,人们发现,单烷基二烷氧基氨基硅烷基本上得出比现有技术中所使用的三烷氧基氨基硅烷更好的结果。本发明的一个关键特征是单烷基二烷氧基氨基硅烷的存在。
虽然专利文件JP20082666630A和EP2196478都公开了含有由单烷基二烷氧基氨基硅烷部分覆盖的纤维素纳米纤维的一些类型的结构,但它们并不涉及吸附CO2的目的以及使用单烷基二烷氧基氨基硅烷的相关的关键特征。它们并没有像本发明一样公开旨在制备高多孔结构的具体的方法步骤。而是,通常寻求提供具有经改进的机械性能的材料。
本发明的吸附结构具有良好的可回收性,即它们可以经受大量CO2的吸附/脱附循环,而不会出现任何性能的大幅丧失。此外,它们在干燥状态下运行,即不像先前公开的吸附结构,其不需要用液体润湿就能和CO2反应。
作为本发明的一个方面,该吸附结构用于从环境空气中去除CO2。可以预期的是,该吸附剂也可用于其他反应性物质,如SO2。
在WO2010/091831A1中已经描述了用于从环境空气中除去CO2的基本过程。在一个典型的吸附过程中,环境空气以适当的流速通过吸附材料,例如将该吸附材料配置成毡(mat)状结构,从而使CO2上样至吸附材料。之后,该结构可以再生,即通过升温和/或降压再次释放所吸附的CO2。可以通过任何形式的热交换器、气体或通过直接或间接的太阳辐射来向结构添加所需的热量。在再生过程中,适合的构造类似于百叶窗、多层的穿孔板(perforatedplates)、盖有盖子的圆柱形结构等使吸附结构与环境保持隔离以捕获所释放的CO2以及将其导出系统。
因此,根据本发明的另一方面,提供了一种用于从环境空气中除去CO2的方法,该方法包括以下步骤:
a)提供根据本发明的多孔吸附结构;
b)形成通过所述吸附结构的环境空气流,从而使CO2上样至吸附剂材料;
c)中断所述气流;
d)通过释放吸附至其上的CO2来再生所述吸附结构;以及
e)根据需要,任选地重复步骤b)~d)。
应当理解的是,可以“离线”实施所述再生步骤d),即通过除去所述吸附结构并将其接到合适的再生装置。为此,可以利用多个吸附结构以避免延长工艺的中断时间。
根据另一方面,提供了一种用于制备如上所定义的多孔吸附结构的方法,该方法包括以下步骤:
a)在溶剂中提供具有约4nm~约1000nm直径以及100nm~1mm长度的纤维素纳米纤维的第一数量的均匀悬浮液(a first amount of homogenizedsuspension of cellulose nanofibers);
b)向其添加包含至少一种单烷基二烷氧基氨基硅烷的第二数量的偶联剂,从而使得在所述溶剂中形成经表面改性的纤维素纳米纤维的均匀悬浮液;
c)通过离心、过滤或加压来机械地浓缩所述悬浮液,从而获得湿浆料;
d)可选地用所述溶剂来清洗所述湿浆料;
e)通过干燥操作来去除所述溶剂,从而获得经干燥的材料,所述干燥操作选自冷冻干燥、常压冷冻干燥、空气干燥、真空干燥、加热或它们的组合,优选冷冻干燥;以及
f)使所述经干燥的材料在惰性气氛中经历加热过程,从而获得所述多孔吸附结构。
上文所定义的方法开始于纤维素纳米纤维的均匀悬浮液,其可通过各种已知的方法获得,向其中添加经选择的偶联剂。溶剂的选择取决于多种因素,包括所选择的偶联剂、所选偶联剂的水解、干燥方法、环境因素和经济性。在许多应用中优选使用水性介质(权利要求10),特别是去离子水。在一实施方式中,该水性介质是经过酸化的,优选用乙酸或CO2来酸化。在一特别优选的实施方式中,用CO2来酸化水性介质。
为了避免无法接受的孔隙率的损失,重要的是通过不会引起多孔结构塌陷的方法来进行溶剂的去除。因此,通过冷冻干燥、常压冷冻干燥、空气干燥、真空干燥、加热或它们的组合来除去溶剂,优选冷冻干燥。
根据另一方面,提供了一种用于制备如上所定义的多孔吸附结构的方法,该方法包括以下步骤:
a)提供具有约4nm~约1000nm直径以及100nm~1mm长度的第一数量的纤维素纳米纤维,其形成具有至少20%孔隙率的纤维素纳米纤维的干网(dry web);
b)通过向溶剂中添加包含至少一种单烷基二烷氧基氨基硅烷的第二数量的偶联剂来形成溶液,所述溶剂为具有不超过5重量%水含量的有机溶剂;
c)将所述干的纤维素纳米纤维网浸泡在所述溶液中,从而形成经溶剂覆盖的纤维素纳米纤维网;
d)经过预定的浸泡时间后,通过过滤去除所述溶剂,从而获得含有经所述偶联剂涂覆的纤维素纳米纤维的残余物;
e)可选地用所述溶剂来清洗所述残余物;
f)使所述残余物经历干燥操作,从而获得经干燥的材料,所述干燥操作选自空气干燥、真空干燥、加热或它们的组合;以及
g)使所述经干燥或经再次干燥的材料在惰性气氛中经历加热过程,从而获得所述多孔吸附结构。
上文所定义的另一种方法开始于纳米纤维的干网,然后将其浸泡在溶液中,该溶液在适当的溶剂中含有经选择的偶联剂。正如上面已经提到的,溶剂的选择取决于多种因素,包括所选择的偶联剂、所选偶联剂的水解、干燥方法、环境因素和经济性。在该方法的许多应用中,优选使用乙醇。
上文所定义的各个可选的清洗步骤d)和e)使未经吸附的偶联剂得到回收,从而有助于经济和生态的改进工艺。
在许多实施方式中,偶联剂只包含一种单烷基二烷氧基氨基硅烷。然而,本发明并不限定这种情况,并且如果偶联剂包含至少另一种单烷基二烷氧基氨基硅烷(权利要求2),这在实际上可能是有利的。
如上所定义的单烷基二烷氧基氨基硅烷的化合物类别包括大量的化合物。通常的理解是,两个优选为相同的烷氧基R1O和R2O(即两个甲氧基或两个乙氧基)为共价偶联到纤维素纳米纤维结构提供了官能度(functionality)。这样的键合发生在烷氧基(一个或多个)水解期间,随后生成的硅烷醇基团与纳米纤维表面上的羟基缩合。与此相反,在本申请的上下文中烷基R3通常作为惰性部分。另一方面,氨基对捕获CO2分子起着重要的作用。对于本发明的预期目的,重要的是,经共价结合的硅烷试剂的氨基仍自由地与CO2发生反应,而胺的部分与纤维素纳米纤维的结合被认为是不可取的。根据本发明,使用主要包含一种或多种单烷基二烷氧基氨基硅烷的偶联剂,就吸附结构的整体性能方面而言导致了出奇的好的效果。不受理论的束缚,看来与这些有利的效果相关的事实是,一方面单烷基二烷氧基氨基硅烷不形成任何三维的聚硅氧烷,而另一方面其能通过形成线性结构来构成所需要的多孔吸附结构。
在一优选的实施方式中(权利要求3),单烷基二烷氧基氨基硅烷中的每一个均选自由以下组成的组:
-3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyldiethoxysilane),
-N-(2-氨基乙基)-3-氨基丙基-甲基二甲氧基硅烷(N-(2-Aminoethyl)-3-aminopropyl-methyldimethoxysilane),以及
-N-(3-甲基二甲氧基甲硅烷基丙基)二亚乙基三胺(N-(3-Methyl-dimethoxysilylpropyl)diethylenetriamine)。
第一种化合物(3-氨基丙基甲基二乙氧基硅烷(CAS3179-76-8))是具有位于丙基取代基末端的反应性胺基的单胺官能团硅烷。第二种化合物(N-(2-氨基乙基)-3-氨基丙基-甲基二甲氧基硅烷(CAS3069-29-2))是二胺官能团硅烷,其中将上述的第一化合物的反应性胺基的氢原子中的一个替换为氨基乙基。第三种化合物(N-(3-甲基二甲氧基甲硅烷基丙基)二亚乙基三胺)是三胺官能团硅烷,其中将上述的第二化合物的反应性胺基的氢原子中的一个替换为氨基乙基。前两种化合物能够买到而第三种化合物可以通过已知的方法来合成。
在另一实施方式中(权利要求4),偶联剂还包含相对于总偶联剂重量,含量高达60重量%的三烷氧基氨基硅烷。术语“三烷氧基氨基硅烷”于此处应理解为具有通式(II)的指定氨基官能团的硅烷化合物
其中,R5、R6和R7独立地选自C1-C5烷基。优选R5,R6和R7选自甲基和乙基,并且优选它们为相同的。基团R8为直链或支链C3-C12烷基部分,其中NH基团任选地取代一个或多个CH2基团。
这也包括三烷氧基氨基硅烷的混合物,在这种情况下,三烷氧基氨基硅烷的总量不得超过上述60%的上限。在另一实施方式中,偶联剂还包含相对于总偶联剂重量,含量高达25重量%的三烷氧基氨基硅烷。
在一具体的实施方式中(权利要求5),三烷氧基氨基硅烷(一种或多种)选自由以下组成的组:
-3-氨基丙基三乙氧基硅烷(3-aminopropyltriethoxysilane)(CAS919-30-2),
-3-氨基丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane)(CAS13822-56-5),
-N-(2-氨基乙基)-3-氨基丙基-三甲氧基硅烷(N-(2-Aminoethyl)-3-aminopropyl-trimethoxysilane)(CAS1760-24-3),
-N-(2-氨基乙基)-3-氨基丙基-三乙氧基硅烷(N-(2-Aminoethyl)-3-aminopropyl-triethoxysilane)(CAS5089-72-5),以及
-N-(3-三甲氧基甲硅烷基丙基)二亚乙基三胺(N-(3-Trimethoxysilylpropyl)diethylenetriamine)(CAS35141-30-1)。
对于许多实际应用来说,吸附结构优选进一步包括加强结构(reinforcingstructure)(权利要求6)。这种加强结构可以具有取决于应用的多种构造。例如,它们能通过混合长的加强纤维或依照蜂窝状结构来形成。在一实施方式中,使用增强纤维毡(mat)来形成约为A4尺寸大小(即约21x30cm)或15x15cm的CO2吸附板,然而,当然任何其他的尺寸也都是可以的。
虽然包括真空冷冻干燥和常压冷冻干燥的冷冻干燥方法易作用于上述进一步所定义的任何纤维素纳米纤维材料,但这对于非冷冻干燥法(例如空气干燥)的情况并不总是如此。出人意料的是,结果发现当使用仅具有少量大型纤维素纤维的优质纤维素纳米纤维材料时,空气干燥会产生相对较低孔隙率的结构。因此,本发明的经济和生态上有利的实施方式依赖于使用具有可测量的大型纤维素纤维混合物的低质量的纤维素纳米纤维材料,并且实施非冷冻干燥法(权利要求7和15)。
附图说明
结合附图,通过参照下文中本发明的各种实施方式的描述,本发明的上述和其它特征及目的以及实现它们的方式将变得更加明显,并且能更好地理解本发明本身。各图示出了在具体的吸附和脱附的条件下针对一定数量的循环的CO2吸附/脱附的质量平衡,上述条件包括气体介质和流速、温度、在给定的温度下表现出的相对湿度(RH)以及循环时间。在所有的这些测量中,第一次循环内的脱附量高于第一次循环的吸附量,这在图2和图4的测量结果中尤为明显。这种效果归因于这样的事实,在试验开始前已将样品在环境空气中储藏了一定的时间,从而其已吸附了一定量的CO2。
图1:实施例3,吸附剂质量0.8g,
吸附:1l/min空气,25℃,RH0%25℃,60min,
脱附:0.8l/min氩气,90℃,RH0%25℃,30min;
图2:实施例3,吸附剂质量0.8g,
吸附:1l/min空气,25℃,RH40%25℃,60min,
脱附:0.8l/min氩气,90℃,RH0%25℃,60min;
图3:实施例5,吸附剂质量1.2g,
吸附:1l/min空气,25℃,RH40%25℃,60min,
脱附:0.8l/min氩气,90℃,RH40%25℃,60min;
图4:实施例8,吸附剂质量1.1g,
吸附:1l/min空气,25℃,RH40%25℃,60min,
脱附:0.8l/min氩气,90℃,RH40%25℃,45min;
图5:实施例9,吸附剂质量0.8g,
吸附:1l/min空气,25℃,RH40%25℃,60min,
脱附:0.8l/min氩气,90℃,RH40%25℃,60min;
图6:实施例10,吸附剂质量1.0g,
吸附:1l/min空气,25℃,RH40%25℃,60min,
脱附:0.8l/min氩气,90℃,RH40%25℃,60min。
在上述条件下,为达到CO2的最大捕获容量所需的时间通常为12小时量级,这明显要长于上文所示的吸附时间60min。然而,使用更短的为1h量级的循环往往在工业规模的过程中更可行。因此,在附图中所给出的结果被认为是针对所研究的系统的实际性能的重要指标。
具体实施方式
1.纤维素纳米纤维的分离
在10L的恒温玻璃反应器内放入1.2kg具有13.5%(w/w)干料含量的精炼纤维山毛榉木浆纤维悬浮液(refined fibrous beech wood pulp suspension)(从Rettenmeier&GmbH&Co.KG,Germany公司获得的ArbocelP10111),在恒温15℃的情况下,用8.8kg的去离子水将其稀释。可将起始材料视作纤维素纳米纤维和大型纤维素纤维的混合物。以148rpm的转速将所得悬浮液搅拌21h,以使其溶胀(swelling)。之后,由连接到玻璃反应器的inline Ultra-Turrax系统(Megatron MT3000,Kinematica AG,Switzerland)以15000rpm的转速搅匀该悬浮液170min。经均匀化的悬浮液要经受由高剪切式均化器(Microfluidizer Type M-110Y,Microfluidics Corporation,USA)产生的高剪切应力。由此,以9.75g/s的速率泵送所述悬浮液按顺序穿过400μm和200μm的相互作用腔室(interaction chambers)10次,并且随后按顺序穿过200μm和75μm的相互作用腔室5次。
2.制造经干燥的多孔纤维素纳米纤维
将根据实施例1所获得的纤维素纳米纤维的悬浮液以3600rpm的转速离心20min并随后将其冷冻干燥以去除其中的水分。在直径为40mm的铜筒中注入25ml的溶液以进行冷冻干燥。然后将铜筒浸泡在液氮中并且无需加热和/或冷却,在冷冻干燥器中干燥冻结的样品。
3.由纤维素纳米纤维悬浮液开始制备多孔吸附结构
在搅拌条件下,使0.96g的3-氨基丙基甲基二乙氧基硅烷(3-amino-propylmethyldiethoxysilane)在7.5g脱矿质水中水解2h。向烧杯中的具有干质含量为3.2%(w/w)的25g纤维素纳米纤维添加所述经水解的硅烷-水混合物,并且添加脱矿质水至40.8g。使用Ultra-Turrax搅拌器以12000rpm的转速均化所得的混合物5min。搅拌所述经均化的混合物2h。然后将该混合物注入铜模中并将其浸入液氮。在冷冻干燥器中干燥冻结的混合物48h。冷冻干燥后于120℃在氩气中对该样本进行热处理。
由此制得的多孔结构具有1.15mmolCO2/g吸附剂的CO2捕获能力,以及在CO2吸附的第一个60min内具有为约10μmolCO2/g吸附剂/min的CO2吸收速率。其BET表面积为22.9m2/g。图1和图2示出了两种不同情况下的循环吸附/脱附的性能,即干燥空气的吸附和短脱附循环(图1),以及潮湿空气的吸附和较长脱附循环(图2)。
4.掺入加强结构
在实施例3所描述的过程的一种变化中,将所述溶液注入盘状的铜模具中,其中敷设有具有10mm筛目尺寸的聚氨酯纤维的强化网。随后进行如第2节中的冷冻干燥。
5.由干燥的多孔纤维素纳米纤维开始制备多孔吸附结构
将根据实施例2所获得的1g干燥的多孔纤维素纳米纤维网产物浸入含有溶在100g乙醇中的4g3-氨基丙基甲基二乙氧基硅烷的溶液中,并保持24h。随后,通过过滤除去溶液,并且在空气中干燥所得的残余物,从而获得经硅烷涂覆的纤维素纳米纤维样本。在惰性气体中将该样本于120℃放置(cure)2h,由此获得多孔吸附结构。
在吸附CO2的第一个60min内的CO2吸收速率为10μmolCO2/g吸附剂/min。其BET表面积为8.8m2/g。图3示出了其循环吸附/脱附的性能。
6.由含有大型纤维素纤维混合物的纤维素纳米纤维悬浮液开始制备吸附结构(无冷冻干燥)
在搅拌的情况下,使3.09g的N-(2-氨基乙基)-3-氨基丙基-甲基二甲氧基硅烷(N-(2-Aminoethyl)-3-aminopropyl-methyldimethoxysilane)在7.5g脱矿质水中水解2h。将实施例1中所描述的6g精炼纤维山毛榉木浆纤维悬浮液(13.5%w/w)与乙醇/水的混合物(95/5,w/w)进行溶剂交换(3次),在每次交换前先用Ultra-Turrax均化1min。将经溶剂交换的纤维素纳米纤维、硅烷-水的混合物以及142.5g乙醇转移至烧杯中,并添加乙醇/水的混合物(95/5,w/w)至162g。
使用Ultra-Turrax来混合所得的混合物1min,接下来搅拌2h后将其完全地注入Nutsche过滤器中,并通过重力作用过滤。保留物在室温下干燥数天并随后于60℃放置3h。由此制得的多孔结构具有1.1mmolCO2/g吸附剂的CO2捕获能力。
7.由纤维素纳米纤维悬浮液开始制备多孔吸附结构(仅三烷氧基硅烷)
对于本实施例和以下实施例,以简短的列表的形式给出实验步骤。
·在烧杯中加入46.2g纤维素纳米纤维悬浮液(3.2wt.%)并且添加脱矿质水至288g
·Ultra turraxed数分钟,转速:12000~17000rpm
·加入12g的3-氨基丙基三乙氧基硅烷(3-aminopropyltriethoxysilane)
·以500rpm的转速搅拌混合物24h
·以3600rpm的转速离心20min
·在液N2中冷冻
·在冷冻干燥器中真空冷冻48h
·在氩气中于120℃放置2h
暴露在CO2中12h后的CO2捕获能力为0.32mmol/g,以及BET表面积为15.9m2/g。
8.由纤维素纳米纤维悬浮液开始制备多孔吸附结构(与实施例7类似,但使用二烷氧基)
·在烧杯中加入46.2g纤维素纳米纤维悬浮液(3.2wt.%)并且添加脱矿质水至288g
·Ultra turraxed数分钟,转速:12000~17000rpm
·加入12g的3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyl-diethoxysilane)
·以500rpm的转速搅拌混合物24h
·以3600rpm的转速离心20min
·在液N2中冷冻
·在冷冻干燥器中真空冷冻48h
·于60℃放置180min
暴露在CO2中12h后的CO2捕获能力为1.277mmol/g,以及BET表面积为9.6m2/g。图4示出了其循环吸附/脱附的性能。
9.由纤维素纳米纤维悬浮液开始制备多孔吸附结构(二烷氧基,CO2酸化)
·在烧杯中加入46.2g纤维素纳米纤维悬浮液(3.2wt.%)并且添加脱矿质水至288g
·Ultra turraxed数分钟,转速:12000~17000rpm
·100%的CO2开始鼓泡直到pH值达到约3.8
·逐步加入6g的3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyl-diethoxysilane)以使pH值从不超过7
·在鼓泡CO2的情况下以500rpm的转速搅拌混合物24h
·以3600rpm的转速离心20min
·在液N2中冷冻
·在冷冻干燥器中真空冷冻48h
·在氩气中于120℃放置2h
该吸附剂的BET表面积为16.5m2/g。图5示出了其循环吸附/脱附的性能。
10.由纤维素纳米纤维悬浮液开始制备多孔吸附结构(与实施例9类似,无CO2)
·在烧杯中加入46.2g纤维素纳米纤维悬浮液(3.2wt.%)并且添加脱矿质水至294g
·Ultra turraxed数分钟,转速:12000~17000rpm
·加入6g的3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyl-diethoxysilane)
·以500rpm的转速搅拌混合物24h
·以3600rpm的转速离心20min
·在液N2中冷冻
·在冷冻干燥器中真空冷冻48h
·在氩气中于120℃放置2h
该吸附剂的BET表面积为29.8m2/g。图6示出了其循环吸附/脱附的性能。
11.由含有大型纤维素纤维混合物的纤维素纳米纤维悬浮液开始制备多孔吸附结构(无冷冻干燥)
·在搅拌的情况下,于7.5g脱矿质水中水解2.87g的3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyl-diethoxysilane)2h
·6g精炼纤维山毛榉木浆(13.5%w/w)与乙醇/水的混合物(95/5,w/w)进行3次溶剂交换(每次交换前ultra turraxed1min)
·在烧杯中加入142.5g乙醇、经溶剂交换的含有大型纤维素纤维的混合物的纤维素纳米纤维、以及硅烷-水的混合物,并且添加乙醇/水的混合物(95/5,w/w)至162g
·Ultra turraxed1min
·搅拌混合物2h
·将该溶液全部注入Nutsche过滤器
·由重力过滤并在室温下干燥数天
·于60℃放置3h
CO2捕获能力为0.8mmol/g。
12.由含有大型纤维素纤维混合物的纤维素纳米纤维悬浮液开始制备多孔吸附结构(混合二烷氧基/三烷氧基,无冷冻干燥)
·在搅拌的情况下,于7.5g脱矿质水中水解0.76g的3-氨基丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane)和2.15g的3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyl-diethoxysilane)2h
·6g精炼纤维山毛榉木浆(13.5%w/w)与乙醇/水的混合物(95/5,w/w)进行3次溶剂交换(每次交换前ultra turraxed1min)
·在烧杯中加入142.5g乙醇、经溶剂交换的含有大型纤维素纤维的混合物的纤维素纳米纤维、以及硅烷-水的混合物,并且添加乙醇/水的混合物(95/5,w/w)至162g
·Ultra turraxed1min
·搅拌混合物2h
·将该溶液全部注入Nutsche过滤器
·由重力过滤并在室温下干燥数天
·于60℃放置3h
CO2捕获能力为0.87mmol/g。
13.由含有大型纤维素纤维混合物的纤维素纳米纤维悬浮液开始制备多孔吸附结构
·可密封的玻璃瓶中加入2.87g的3-氨基丙基二乙氧基硅烷(3-aminopropyldiethoxysilane)并添加水至71.75g,封闭约1周
·在烧杯中加入6g精炼纤维山毛榉木浆(13.5%w/w)、经水解的硅烷溶液并加水至162g
·Ultra turraxed1min
·搅拌混合物2h
·将该溶液注入Nutsche过滤器
·由重力过滤并在室温下干燥数天
·于60℃放置3h
CO2捕获能力为0.34mmol/g。
14.由纤维素纳米纤维悬浮液开始制备多孔吸附结构(改变纸浆原料)
·在烧杯中加入120.84g纤维素纳米纤维悬浮液(1.2wt.%)并且添加脱矿质水至288g
·Ultra turraxed数分钟,转速:12000~17000rpm
·加入12g的3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyl-diethoxysilane)
·以500rpm的转速搅拌混合物24h
·以3600rpm的转速离心20min
·在液N2中冷冻
·在冷冻干燥器中真空冷冻48h
·在惰性气中于120℃放置2h
暴露在CO2中12h后的CO2捕获能力为1.56mmol/g,以及BET表面积为6.5m2/g。在吸附CO2的第一个60min内的CO2吸收速率为10μmol/g/min。
15.由不含大型纤维素纤维混合物的纤维素纳米纤维悬浮液开始制备多孔吸附结构
·在烧杯中加入120.84g纤维素纳米纤维悬浮液(1.2wt.%)并且添加脱矿质水至288g
·Ultra turraxed数分钟,转速:12000~17000rpm
·加入12g的3-氨基丙基甲基二乙氧基硅烷(3-aminopropylmethyl-diethoxysilane)
·以500rpm的转速搅拌混合物24h
·将该溶液注入Nutsche过滤器
·由重力过滤并在室温下干燥数天
·在惰性气体中于120℃放置2h
CO2捕获能力为0.06mmol/g。
16.使用由纤维素纳米纤维制成的多孔吸附结构来从空气中捕获CO2的过程
将由纤维素纳米纤维制成的毡状吸附结构插入到流通式容器中。在第一步工序(吸附)中,于-10~40℃的温度和大气压力(0.7~1.3barabs)下暴露在气流中0.1~24小时。在此期间,该吸附结构从气流中吸附CO2或CO2和水蒸气。接下来启动第二步工序(脱附),在5~240分钟内,通过真空泵/真空管将该容器抽真空至1~250mbarabs,并且将吸附剂加热至50~110℃。由真空泵/真空管将离开该容器的气流(“脱附流”)抽出,其包含0.5~100%的CO2,其余为空气和/或水蒸气。造成脱附流中的空气含量的原因是在抽真空后空气残留在系统容积内,以及在脱附过程中空气通过泄漏和/或的有意的开口渗入到容器内。脱附步骤完成后,冷却吸附剂至脱附温度,并开始下一个吸附循环。
Claims (15)
1.一种多孔吸附结构,其能够可逆的吸附和脱附循环以用于从气体混合物中捕获CO2,所述结构包括经表面改性的纤维素纳米纤维的载体基质,所述经表面改性的纤维素纳米纤维由直径为约4nm~约1000nm以及长度为100nm~1mm的纤维素纳米纤维组成,所述纤维素纳米纤维由与其表面共价结合的偶联剂所覆盖,
其特征在于:
i)所述载体基质为具有至少20%孔隙率的纳米纤维网,以及
ii)所述偶联剂包含至少一种单烷基二烷氧基氨基硅烷。
2.权利要求1所述的吸附结构,其中所述偶联剂包含至少另一种单烷基二烷氧基氨基硅烷。
3.权利要求1或2所述的吸附结构,其中所述单烷基二烷氧基氨基硅烷中的每一个均选自由以下组成的组:
-3-氨基丙基甲基二乙氧基硅烷,
-N-(2-氨基乙基)-3-氨基丙基-甲基二甲氧基硅烷,以及
-N-(3-甲基二甲氧基甲硅烷基丙基)二亚乙基三胺。
4.权利要求1~3中任一项所述的吸附结构,其中所述偶联剂还包含:相对于总偶联剂重量,含量高达60重量%的三烷氧基氨基硅烷。
5.权利要求4所述的吸附结构,其中所述三烷氧基氨基硅烷选自由以下组成的组:
-3-氨基丙基三乙氧基硅烷,
-3-氨基丙基三甲氧基硅烷,
-N-(2-氨基乙基)-3-氨基丙基-三甲氧基硅烷,
-N-(2-氨基乙基)-3-氨基丙基-三乙氧基硅烷,以及
-N-(3-三甲氧基甲硅烷基丙基)二亚乙基三胺。
6.权利要求1~5中任一项所述的吸附结构,还包含加强结构。
7.权利要求1~6中任一项所述的吸附结构,其中所述载体基质还包含大型纤维素纤维的混合物,所述大型纤维素纤维具有大于1μm的直径和/或超过1mm的长度。
8.权利要求1~7中任一项所述的吸附结构的用途,用于从气体流中去除CO2,优选从大气中去除CO2。
9.制备权利要求1~7中任一项所述的多孔吸附结构的方法,其包括以下步骤:
a)在溶剂中提供具有约4nm~约1000nm直径以及100nm~1mm长度的纤维素纳米纤维的第一数量的均匀悬浮液;
b)向其添加包含至少一种单烷基二烷氧基氨基硅烷的第二数量的偶联剂,从而使得在所述溶剂中形成经表面改性的纤维素纳米纤维的均匀悬浮液;
c)通过离心、过滤或加压来机械地浓缩所述悬浮液,从而获得湿浆料;
d)可选地用所述溶剂来清洗所述湿浆料;
e)通过干燥操作来去除所述溶剂,从而获得经干燥的材料,所述干燥操作选自冷冻干燥、常压冷冻干燥、空气干燥、真空干燥、加热或它们的组合,优选冷冻干燥;以及
f)使所述经干燥的材料在惰性气氛中经历加热过程,从而获得所述多孔吸附结构。
10.权利要求9所述的方法,其中所述溶剂为优选经过酸化的水性介质,其中优选用乙酸或CO2来酸化,更优选用CO2来酸化。
11.制备权利要求1~7中任一项所述的多孔吸附结构的方法,其包括以下步骤:
a)提供具有约4nm~约1000nm直径以及100nm~1mm长度的第一数量的纤维素纳米纤维,所述纤维素纳米纤维形成具有至少20%孔隙率的纤维素纳米纤维的干网;
b)通过向溶剂中添加包含至少一种单烷基二烷氧基氨基硅烷的第二数量的偶联剂来形成溶液,所述溶剂为具有不超过5重量%水含量的有机溶剂;
c)将所述干的纤维素纳米纤维网浸泡在所述溶液中,从而形成经溶剂覆盖的纤维素纳米纤维网;
d)经过预定的浸泡时间后,通过过滤去除所述溶剂,从而获得含有经所述偶联剂涂覆的纤维素纳米纤维的残余物;
e)可选地用所述溶剂来清洗所述残余物;
f)使所述残余物经历干燥操作,从而获得经干燥的材料,所述干燥操作选自空气干燥、真空干燥、加热或它们的组合;以及
g)使所述经干燥的材料在惰性气氛中经历加热过程,从而获得所述多孔吸附结构。
12.权利要求9~11中任一项所述的方法,其中所述单烷基二烷氧基氨基硅烷中的每一个均选自由以下组成的组:
-3-氨基丙基甲基二乙氧基硅烷,
-N-(2-氨基乙基)-3-氨基丙基-甲基二甲氧基硅烷,以及
-N-(3-甲基二甲氧基甲硅烷基丙基)二亚乙基三胺。
13.权利要求9~12中任一项所述的方法,其中所述偶联剂还包含:相对于总偶联剂重量,含量最高达60重量%的三烷氧基氨基硅烷。
14.权利要求13所述的方法,其中所述三烷氧基氨基硅烷选自由以下组成的组:
-3-氨基丙基三乙氧基硅烷,
-3-氨基丙基三甲氧基硅烷,
-N-(2-氨基乙基)-3-氨基丙基-三甲氧基硅烷,
-N-(2-氨基乙基)-3-氨基丙基三乙氧基硅烷,以及
-N-(3-三甲氧基甲硅烷基丙基)二亚乙基三胺。
15.权利要求9~14中任一项所述的用于制备权利要求7所述的多孔吸附结构的方法,其中步骤a)所提供的所述纤维素纳米纤维的经均化的悬浮液或所述第一数量的纤维素纳米纤维还包含大型纤维素纤维的混合物,所述大型纤维素纤维具有大于1μm的直径和/或超过1mm的长度,以及其中所述干燥操作包括冷冻干燥、常压冷冻干燥、空气干燥、真空干燥、加热或它们的组合。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11168838.8 | 2011-06-06 | ||
EP20110168838 EP2532410A1 (en) | 2011-06-06 | 2011-06-06 | Porous adsorbent structure for adsorption of CO2 from a gas mixture |
PCT/EP2012/060778 WO2012168346A1 (en) | 2011-06-06 | 2012-06-06 | Porous adsorbent structure for adsorption of co2 from a gas mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103702740A true CN103702740A (zh) | 2014-04-02 |
CN103702740B CN103702740B (zh) | 2016-11-09 |
Family
ID=46208598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280037099.1A Active CN103702740B (zh) | 2011-06-06 | 2012-06-06 | 用于从气体混合物中吸附co2的多孔吸附结构 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20140134088A1 (zh) |
EP (2) | EP2532410A1 (zh) |
CN (1) | CN103702740B (zh) |
WO (1) | WO2012168346A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105032364A (zh) * | 2015-07-02 | 2015-11-11 | 南京林业大学 | 用速生木材制造二氧化碳吸附材料的方法 |
CN110818287A (zh) * | 2019-12-30 | 2020-02-21 | 衢州顺天钙业有限公司 | 一种高分散性高比表面积氢氧化钙的制备方法 |
US11420150B2 (en) | 2020-02-21 | 2022-08-23 | King Fahd University Of Petroleum And Minerals | Aminated magnesium oxide adsorbent and a method of capturing carbon dioxide |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102058518B1 (ko) | 2012-07-13 | 2019-12-23 | 사피 네덜란드 서비시즈 비.브이. | 비-유도체화 나노셀룰로오스의 제조를 위한 저 에너지법 |
EP2874487A1 (en) * | 2012-07-17 | 2015-05-27 | Antecy B.V. | Method for accelerating growth of plants in a controlled environment |
GB201215380D0 (en) | 2012-08-29 | 2012-10-10 | Ccm Res Ltd | Methods and compositions |
GB2505437A (en) * | 2012-08-29 | 2014-03-05 | Ccm Res Ltd | A method of affixing carbon dioxide onto the surface of a cellulosic material |
CN104703676B (zh) * | 2012-08-29 | 2018-01-19 | Ccm研究有限公司 | 用于捕捉二氧化碳的方法和组合物 |
US10427086B2 (en) | 2013-04-18 | 2019-10-01 | Climeworks Ag | Low-pressure drop structure of particle adsorbent bed for adsorption gas separation process |
AU2014255974B2 (en) * | 2013-04-18 | 2018-02-22 | Climeworks Ag | Low-pressure drop structure of particle adsorbent bed for adsorption gas separation process |
US11007470B2 (en) | 2013-04-18 | 2021-05-18 | Climeworks Ag | Low-pressure drop structure of particle adsorbent bed for improved adsorption gas separation process |
WO2018083109A1 (en) | 2016-11-04 | 2018-05-11 | Climeworks Ag | Low-pressure drop structure of particle adsorbent bed for improved adsorption gas separation process |
WO2014208917A2 (ko) * | 2013-06-25 | 2014-12-31 | 동국대학교 산학협력단 | 홀로셀룰로오스 에어로겔 및 이를 이용한 중금속 흡착제 |
US10350576B2 (en) * | 2013-10-29 | 2019-07-16 | Wisconsin Alumni Research Foundation | Sustainable aerogels and uses thereof |
US10232305B2 (en) | 2014-06-03 | 2019-03-19 | Climeworks Ag | Direct air capture device |
EP3166708B1 (en) | 2014-07-10 | 2021-11-10 | Climeworks AG | Steam assisted vacuum desorption process for carbon dioxide capture |
EP3023455A1 (en) | 2014-11-21 | 2016-05-25 | Fundacíon Tecnalia Research & Innovation | Porous cellulosic materials and process for their preparation |
WO2017009241A1 (en) * | 2015-07-10 | 2017-01-19 | Climeworks Ag | Amine-functionalized fibrillated cellulose for co2 adsorption and methods for making same |
CN115069062A (zh) | 2016-11-23 | 2022-09-20 | 天空树公司 | 用于二氧化碳可逆吸附的改进方法及设备 |
EP3548565A1 (en) | 2016-11-29 | 2019-10-09 | Climeworks AG | Methods for the removal of co2 from atmospheric air or other co2-containing gas in order to achieve co2 emissions reductions or negative co2 emissions |
CA3047846A1 (en) | 2016-12-23 | 2018-06-28 | Carbon Engineering Ltd. | Method and system for synthesizing fuel from dilute carbon dioxide source |
WO2018210617A1 (en) | 2017-05-15 | 2018-11-22 | Climeworks Ag | Improved low-pressure drop structure of particle adsorbent bed for adsorption gas separation process |
WO2019092127A1 (en) | 2017-11-10 | 2019-05-16 | Climeworks Ag | Materials for the direct capture of carbon dioxide from atmospheric air |
JP2019136669A (ja) * | 2018-02-13 | 2019-08-22 | 真庭バイオケミカル株式会社 | 吸着材及びその製造方法 |
AU2019284807A1 (en) | 2018-06-14 | 2020-10-15 | Climeworks Ag | Method and device for adsorption/desorption of carbon dioxide from gas streams with heat recovery unit |
JP7089178B2 (ja) * | 2018-07-23 | 2022-06-22 | ダイキン工業株式会社 | 全熱交換素子およびその製造方法 |
WO2020039452A1 (en) * | 2018-08-20 | 2020-02-27 | INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) | An enhanced carbon dioxide sorbent nanofiber membrane and a device thereof |
EP4061912B1 (fr) | 2019-11-19 | 2024-03-06 | Arkolia Energies | Installation de production de méthane |
US20230173427A1 (en) | 2020-05-27 | 2023-06-08 | Climeworks Ag | Atmospheric steam desorption for direct air capture |
WO2021239749A1 (en) | 2020-05-27 | 2021-12-02 | Climeworks Ag | Methods and devices for steam driven carbon dioxide capture |
CA3175191A1 (en) | 2020-05-29 | 2021-12-02 | Alexander SPITERI | Method for capture of carbon dioxide from ambient air and corresponding adsorber structures with a plurality of parallel surfaces |
BR112022025426A2 (pt) | 2020-06-22 | 2023-01-24 | Climeworks Ag | Método para separar dióxido de carbono gasoso de uma mistura de gases, uso de um material sorvente e unidade para separar dióxido de carbono gasoso de uma mistura de gases |
CN115916379A (zh) | 2020-07-16 | 2023-04-04 | 克莱姆沃克斯有限公司 | 用于从气体流中捕获co2的氨基吸附剂 |
WO2022128431A1 (en) | 2020-12-18 | 2022-06-23 | Climeworks Ag | Improved materials for direct air capture and uses thereof |
CN117881475A (zh) | 2021-07-21 | 2024-04-12 | 克莱姆沃克斯有限公司 | 用于直接空气捕获的胺官能化纤维 |
WO2023088812A1 (en) | 2021-11-19 | 2023-05-25 | Climeworks Ag | Regeneration of degraded amino-sorbents for carbon capture |
KR20240139046A (ko) | 2021-11-25 | 2024-09-20 | 클라임웍스 아게 | Co2 포집을 위한 수착제 물질, 이의 용도 및 이를 제조하는 방법 |
CA3238580A1 (en) | 2021-12-09 | 2023-06-15 | Visuta ENGKAGUL | Method for separating gaseous carbon dioxide from a gas mixture |
EP4448142A1 (en) | 2021-12-16 | 2024-10-23 | Climeworks AG | Co2 adsorption system and method for co2 adsorption using humidity stable polystyrene-divinylbenzene amine functionalized polymeric adsorbents |
WO2024002881A1 (en) | 2022-06-28 | 2024-01-04 | Climeworks Ag | Sorbent materials for co2 capture, uses thereof and methods for making same |
WO2024002882A1 (en) | 2022-06-29 | 2024-01-04 | Climeworks Ag | Sorbent materials for co2 capture, uses thereof and methods for making same |
WO2024006506A1 (en) | 2022-07-01 | 2024-01-04 | W. L. Gore & Associates, Inc. | Structure with external support for particle adsorbent bed for adsorption gas separation process |
US20240050885A1 (en) | 2022-08-15 | 2024-02-15 | W. L. Gore & Associates, Inc. | Structures and methods for enhancing capture of carbon dioxide from ambient air |
EP4374950A1 (en) | 2022-11-25 | 2024-05-29 | Climeworks AG | Sorbent materials for co2 capture, uses thereof and methods for making same |
US20240189755A1 (en) | 2022-12-13 | 2024-06-13 | W. L. Gore & Associates, Inc. | Low-pressure drop structure of particle adsorbent bed for improved adsorption gas separation process |
WO2024132899A1 (en) | 2022-12-21 | 2024-06-27 | Climeworks Ag | Uses of amino sorbents for capturing of co2 from gas streams |
US12128382B1 (en) | 2024-04-26 | 2024-10-29 | Saudi Arabian Oil Company | Cellulous nanofiber aerogels-based bio unit for sequestering flow back CO2 after hydraulic fracturing operations |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008266630A (ja) * | 2007-03-26 | 2008-11-06 | Kyoto Univ | 表面改質ミクロフィブリル化セルロース及びこれを含有してなる複合化樹脂 |
CN101612528A (zh) * | 2004-02-05 | 2009-12-30 | 米利波尔公司 | 形成涂覆结构的方法 |
EP2196478A1 (en) * | 2008-12-12 | 2010-06-16 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Surface modified cellulose nanofibrils |
WO2010091831A1 (en) * | 2009-02-11 | 2010-08-19 | Eth Zurich | Amine containing fibrous structure for adsorption of co2 from atmoshperic air |
WO2011030170A1 (en) * | 2009-09-14 | 2011-03-17 | The University Of Nottingham | Cellulose nanoparticle aerogels, hydrogels and organogels |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4483743A (en) | 1981-10-22 | 1984-11-20 | International Telephone And Telegraph Corporation | Microfibrillated cellulose |
US6547854B1 (en) | 2001-09-25 | 2003-04-15 | The United States Of America As Represented By The United States Department Of Energy | Amine enriched solid sorbents for carbon dioxide capture |
US6908497B1 (en) | 2003-04-23 | 2005-06-21 | The United States Of America As Represented By The Department Of Energy | Solid sorbents for removal of carbon dioxide from gas streams at low temperatures |
CA2600751C (en) * | 2005-03-11 | 2012-08-07 | University Of Ottawa | Functionalized adsorbent for removal of acid gases and use thereof |
US7795175B2 (en) | 2006-08-10 | 2010-09-14 | University Of Southern California | Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air |
AU2008242845B2 (en) | 2007-04-17 | 2012-08-23 | Carbon Sink, Inc. | Capture of carbon dioxide (CO2) from air |
EP2212008A1 (en) | 2007-11-20 | 2010-08-04 | Global Research Technologies, LLC | Air collector with functionalized ion exchange membrane for capturing ambient co2 |
-
2011
- 2011-06-06 EP EP20110168838 patent/EP2532410A1/en not_active Withdrawn
-
2012
- 2012-06-06 WO PCT/EP2012/060778 patent/WO2012168346A1/en active Application Filing
- 2012-06-06 CN CN201280037099.1A patent/CN103702740B/zh active Active
- 2012-06-06 EP EP12725832.5A patent/EP2717992B1/en active Active
- 2012-06-06 US US14/123,832 patent/US20140134088A1/en not_active Abandoned
-
2017
- 2017-10-13 US US15/783,343 patent/US20180043303A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101612528A (zh) * | 2004-02-05 | 2009-12-30 | 米利波尔公司 | 形成涂覆结构的方法 |
JP2008266630A (ja) * | 2007-03-26 | 2008-11-06 | Kyoto Univ | 表面改質ミクロフィブリル化セルロース及びこれを含有してなる複合化樹脂 |
EP2196478A1 (en) * | 2008-12-12 | 2010-06-16 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Surface modified cellulose nanofibrils |
WO2010091831A1 (en) * | 2009-02-11 | 2010-08-19 | Eth Zurich | Amine containing fibrous structure for adsorption of co2 from atmoshperic air |
WO2011030170A1 (en) * | 2009-09-14 | 2011-03-17 | The University Of Nottingham | Cellulose nanoparticle aerogels, hydrogels and organogels |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105032364A (zh) * | 2015-07-02 | 2015-11-11 | 南京林业大学 | 用速生木材制造二氧化碳吸附材料的方法 |
CN110818287A (zh) * | 2019-12-30 | 2020-02-21 | 衢州顺天钙业有限公司 | 一种高分散性高比表面积氢氧化钙的制备方法 |
US11420150B2 (en) | 2020-02-21 | 2022-08-23 | King Fahd University Of Petroleum And Minerals | Aminated magnesium oxide adsorbent and a method of capturing carbon dioxide |
Also Published As
Publication number | Publication date |
---|---|
CN103702740B (zh) | 2016-11-09 |
US20140134088A1 (en) | 2014-05-15 |
WO2012168346A1 (en) | 2012-12-13 |
EP2532410A1 (en) | 2012-12-12 |
EP2717992A1 (en) | 2014-04-16 |
EP2717992B1 (en) | 2021-08-11 |
US20180043303A1 (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103702740B (zh) | 用于从气体混合物中吸附co2的多孔吸附结构 | |
Geng et al. | Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg (II) ions from water | |
Jiang et al. | Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate | |
Wang et al. | Eco-friendly poly (acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu (II) and sustainable catalytic applications | |
Gao et al. | Advanced superhydrophobic and multifunctional nanocellulose aerogels for oil/water separation: A review | |
Xu et al. | Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds | |
Shen et al. | Nanocellulose-based composite phase change materials for thermal energy storage: status and challenges | |
Zhao et al. | Facile preparation of self-assembled chitosan-based POSS-CNTs-CS composite as highly efficient dye absorbent for wastewater treatment | |
Sehaqui et al. | Functional cellulose nanofiber filters with enhanced flux for the removal of humic acid by adsorption | |
Valdebenito et al. | CO2 adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes | |
Muhd Julkapli et al. | Nanocellulose as a green and sustainable emerging material in energy applications: a review | |
Sepahvand et al. | Recent developments in nanocellulose-based aerogels as air filters: A review | |
Montes et al. | Aerogels and their applications | |
Lu et al. | Superoleophilic and flexible thermoplastic polymer nanofiber aerogels for removal of oils and organic solvents | |
Jiang et al. | Aqueous synthesis of compressible and thermally stable cellulose nanofibril–silica aerogel for CO2 adsorption | |
Zhang et al. | Encapsulating amidoximated nanofibrous aerogels within wood cell tracheids for efficient cascading adsorption of uranium ions | |
Wang et al. | Superelastic three-dimensional nanofiber-reconfigured spongy hydrogels with superior adsorption of lanthanide ions and photoluminescence | |
CN108465377A (zh) | 一种再生纤维素/壳聚糖复合抗菌纳滤膜的制备方法 | |
Adegoke et al. | Cellulose derivatives and cellulose-metal-organic frameworks for CO2 adsorption and separation | |
Cai et al. | Thermo‐controlled, self‐released smart wood tailored by nanotechnology for fast clean‐up of highly viscous liquids | |
Guo et al. | Regenerated cellulose/polyethyleneimine composite aerogel for efficient and selective adsorption of anionic dyes | |
Beaumont et al. | Cellulose nanofibrils: From hydrogels to aerogels | |
KR20140143292A (ko) | 소수성 분말의 수분산 조성물 및 이를 이용한 펄프지 및 유리섬유의 제조방법 | |
Prasad et al. | Review on recent advances in cellulose nanofibril based hybrid aerogels: Synthesis, properties and their applications | |
CN117881475A (zh) | 用于直接空气捕获的胺官能化纤维 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |