CN103688388B - 用于蓄能器的分离器和蓄能器 - Google Patents

用于蓄能器的分离器和蓄能器 Download PDF

Info

Publication number
CN103688388B
CN103688388B CN201280036112.1A CN201280036112A CN103688388B CN 103688388 B CN103688388 B CN 103688388B CN 201280036112 A CN201280036112 A CN 201280036112A CN 103688388 B CN103688388 B CN 103688388B
Authority
CN
China
Prior art keywords
layer
separator
accumulator
active material
separator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280036112.1A
Other languages
English (en)
Other versions
CN103688388A (zh
Inventor
M.韦格纳
J.法努斯
J.格里明格
M.滕策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN103688388A publication Critical patent/CN103688388A/zh
Application granted granted Critical
Publication of CN103688388B publication Critical patent/CN103688388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种用于蓄能器(2)的分离器(1)。本发明分离器(1)尤其是可以采用在锂硫电池中。为了获得改善的循环稳定性,分离器(1)包括至少一个第一层(5)和至少一个第二层(6,7),其中至少一个第一层(5)包括具有相对于至少一个电极活性材料亲和的特性的材料,并且其中至少一个第二层(6,7)包括具有相对于电极活性材料排斥的特性的材料。在此,至少一个第一层(5)和至少一个第二层(6,7)尤其是可以直接相邻地布置。本发明此外涉及包括本发明分离器(1)的蓄能器(2)。

Description

用于蓄能器的分离器和蓄能器
技术领域
本发明涉及一种用于蓄能器的分离器。本发明尤其是涉及具有改善的循环稳定性的用于锂硫电池的分离器,以及涉及包括分离器的锂硫电池。
背景技术
二次电池具有用于大量应用领域的大的潜能。在此,例如基于氧化还原对锂/硫的二次电池由于硫的高比电容而可以是特别优选的。但是对于大量应用,在此尤其是这种蓄能器的循环稳定性仍可能具有改善潜能。
因此例如对于锂/硫电池已知的是,这些锂/硫电池也许具有所谓的往复机制。该往复机制基本上基于所形成的锂硫种类的不同可溶性。具体地,在这种电池中运行的总反应包含具有在三和八之间的硫链长度的多种聚硫化物中间级。所述聚硫化物中间级在通常的电解质系统中良好地可溶。而反应产物Li2S2和Li2S在许多溶剂中或电解质系统中几乎不可溶。
由于聚硫化物的不同可溶性,长链聚硫化物扩散到金属锂阳极,在所述金属锂阳极处所述聚硫化物直接与锂反应并且被还原。在此形成的中等链和短链聚硫化物又可以扩散到阴极并且在那里再次被氧化成长链聚硫化物,或者也与具有较高硫氧化级的存在的硫种类进行归中反应。在与阳极处的锂反应时,例如可以导致形成不可溶解的硫化物种类,其可以在阳极处脱落。快速聚硫化物往复此外也可能使电池单元的完全再充电变得困难或妨碍电池单元的完全再充电。
从文献US 7,282,296 B1已知分离器和电极结构,以便尤其是保护活性金属阳极免于与空气、湿气或其他电池组分的有害反应。分离器在此应该具有高度离子传导能力,以便简化制造和改善电池的效率。在此,分离器包括不同化学兼容性的两个层。第一层直接施加在阳极处并且与该阳极化学兼容。所述第一层因此与电池的其他组分、周围环境或阳极本身不形成对于电池有害的化合物。第二层基本上对于电池的其他组分(例如电解质)和周围环境是不可穿透的,并且因此防止电池与这些组分接触。第二层在此与第一层化学兼容。
发明内容
本发明的主题是用于蓄能器、尤其是用于锂硫电池的分离器,其包括至少一个第一层和至少一个第二层,其中所述至少一个第一层包括具有相对于至少一种电极活性材料亲和的特性的材料,并且其中所述至少一个第二层包括具有相对于电极活性材料排斥的特性的材料,其中所述至少一个第一层和其中所述至少一个第二层尤其是直接相邻地布置。
分离器在本发明的意义上尤其可以是用于分离蓄能器中的阳极和阴极的装置。在此,分离器尤其是可以防止,非故意的活性材料从阳极到达阴极并且尤其是从阴极到达阳极。此外,分离器可以用于将阳极和阴极彼此电分离。
活性材料此外尤其是可以是给予蓄能器其本来的功能性或对于蓄能器的功能性来说所需要的材料。在此,活性材料例如可以在蓄能器的充电状态下存在并且在放电过程期间通过电化学工艺被分解。可替换地,活性材料可以在放电过程期间构成,使得所述活性材料可以在蓄能器的放电状态下存在。此外,在本发明的意义上可以将活性材料理解为以下材料:其是由在阳极和/或阴极中布置的材料通过在充电和/或放电过程期间发生的电化学工艺构成的中间级。对于锂硫电池的情况,例如可以将活性材料以仅示范性和非限制性的方式理解为不同的硫化锂种类或聚硫化物种类。
分离器根据本发明具有至少一个第一层和至少一个第二层。在本发明的意义上可以将层尤其是理解为每个适当的层。在此,分离器可以具有至少一个第一层和至少一个第二层、也即总共至少两个层,或者优选多个层。
根据本发明,第一层包括具有相对于至少一种电极活性材料亲和的特性的材料或者由该材料构成。这在本发明的意义上可以尤其是意味着,第一层相对于至少一种活性材料具有吸引力。尤其是,亲和特性可以包括例如以空间、共价或静电方式达成结合的努力。因此,尤其是从轻吸引力直至共价结合可以包括每种状态。由此,活性材料可以固定在第一层中。第二层此外包括具有相对于电极活性材料排斥的特性的材料或者由该材料构成。在本发明的意义上可以将排斥的特性尤其是理解为恰恰是不存在亲和力,而是例如存在推斥力。这例如可以同样通过静电力实现。此外,排斥特性在本发明的的意义上同样包括活性材料的不可穿透性。这例如可以通过设置第二层实现,所述第二层不具有孔或通过通道等,其中活性材料可以通过所述孔或通过通道等到达。因此,第二层对于活性材料可以是不能透过的。第二层因此可以对于活性材料构成壁垒、例如扩散壁垒。
所述至少一个第一层和所述至少一个第二层在此可以优选地直接相邻地布置。这在本发明的意义上可以尤其是意味着,至少两个层在不存在中间层的情况下来设置,也即直接彼此紧靠。
通过本发明分离器可以明显减少或甚至完全防止:活性材料非故意地例如从阴极到达阳极或者相反。由此例如可以在锂硫电池情况下尤其是有效地抵抗往复机制。
由此例如可以更有效地制定充电和/或放电过程的有效性并且此外减少或完全防止通过不可溶沉淀物引起的活性材料的损失。此外,例如对于锂硫电池的情况可以保证在元素硫中聚硫化物的完全氧化,这引起容量的改善。
通过由总共至少两个层组成的本发明多层结构,在此可以特别有效地制定保持作用。具体地,例如可以通过第二层已经明确地减少或甚至完全防止活性材料的迁移。对于尽管具有相对于活性材料排斥的特性的第二层的构型而活性材料穿过第二层的情况,该活性材料被第一层吸引并且留在该第一层中。通过这种方式可以甚至在活性材料穿透第二层的情况下进一步减少至相对电极的迁移。可替换地,活性材料可以首先被固定在第一层中,由此穿透第二层进一步变得困难。因此,相对于由现有技术已知的解决方案可以进一步减少活性材料的保持。
此外,分离器可以通过几乎不受限的循环持续时间保持稳定。由此活性材料的保持在大的循环数上也可以保持稳定,这使分离器本身以及此外装备有分离器的蓄能器的长时间稳定性得以延长。
此外,根据本发明的分离器可以关于各个层的形状和外形而在几乎不受限的实施中被制造,使得根据本发明的分离器对于大量应用领域是可匹配的或者对于所述应用领域是可使用的。由此,装备有本发明分离器的蓄能器也具有大量应用领域。
在此,原则上可以自由选择:以何种定向来布置层。但是可以优选的是,第二层针对电极定向,该电极的活性材料应该被阻挡。因此对于锂硫电池的情况例如第二层可以在阴极的方向上被定向,而第一层可以在阳极的方向上定向。在这种情况下,活性材料被保持在阴极的空间周围环境中,这可以进一步改善容量。
在一种构型的范围中,分离器可以具有数量为3+2n个层,其中3+2n个层就第一和第二层而言可以交替地布置。总之,本发明分离器因此可以特别有利地扩展到多于两个的层。在本发明的意义上,在该构型中,除了设置两个层、即第一层和第二层之外尤其是可以设置三个或多于三个的层。这可以特别有利地实现,其方式是,层布置总是被扩展具有关于活性材料亲和的特性的第一层和具有关于活性材料排斥的特性的第二层。因此总是存在3+2n个层,其中n可以是零或每个整数(n=0,1,2,3…)。因为在该构型中总是设置奇数个层,所以此外优选地可以分别比存在第一层更多地存在第二层。在该构型中,因此可以设置大量层,这些层总是构成活性材料的有效壁垒,或者吸引活性材料。由此可以特别有效地防止活性材料从一个电极迁移到相对电极。
此外,尤其是在该构型中在设置三个或更多层时可以实现,在一个构型中,第一层可以布置在两个第二层之间。在该构型中,可以实现用于活性材料的有效外壳或保持架,在所述外壳中或保持架中固定活性材料。具体地,活性材料不仅仅通过关于活性材料亲和的层被吸引或结合。此外该活性材料附加地通过邻接第一层的两个第二层被阻止从第一层逸出。因此,活性材料例如从阴极到阳极的非故意迁移在该构型中可以还更有效地被防止。这种构型在此不仅在设置仅三个层情况下而且在设置大量第一或第二层的情况下是可行的。尤其是在多于三个的层情况下,在该构型中可以特别有效地防止活性材料的穿透,因为用于活性材料的大量外壳形成。即使活性材料因此应该穿透外壳,所述活性材料也被可靠地固定在相邻的外壳中。该构型在此基本上在每个适当的层组合或者层布置情况下可以被构造。此外,可以在两个第二层之间布置仅一个第一层或任意数量的第一层。
在另一构型的范围中,分离器可以具有尤其是布置在至少一个第一层中的传导添加物。通过设置传导添加物可以抵抗通过在第一层中所积聚的活性材料引起的容量损失。具体地,尤其是固定在第一层中或定位在那里的活性材料原则上首先不再能够作为活性电极组分供蓄能器的功能使用。因为活性材料虽然例如不到达阳极,但是对于该活性材料不能自身迁移到阴极的情况下也不再到达阴极,所以该状态也许可能引起活性材料损失和从而必要时引起装备有本发明分离器的蓄能器的容量损失。该效应在该构型中可以有效地被阻止。因此,可以实现分离器层和从而活性材料的电接触。
传导添加物在此在本发明的意义上尤其是可以是导电材料,诸如石墨或炭黑。该导电材料优选地可以布置在至少一个第一层中,因为尤其是这里可以期望活性材料的提高的浓度。但是也在至少一个第二层中,传导附加物可以用于实现接触。该接触在此允许固定在层结构中的活性材料的电化学氧化和还原。由此,蓄能器的容量保持稳定。但是符合目的地,传导附加物不布置在所有层中,因为否则阳极和阴极之间的电连接也许可能导致短路。至少一个层可以不装备传导添加物。在此可能优选的是,可针对阳极定向的层、也即尤其是末端层不具有传导添加物。在该情况下,活性材料此外可以毫无问题地例如与阴极交互作用。
在此可能优选的是,传导添加物以≤20%的量存在。以该量,已经可以实现层结构或在层结构中定位的活性材料的足够的电化学结合。但是在此可以基本上保持相对于活性材料的亲和或排斥的特性。
在另一构型的范围中,至少一个第一层可以具有≥1μm至≤100μm、例如≥10μm至≤50μm的范围中的厚度,和/或至少一个第二层可以具有≥1μm至≤100μm、例如≥10μm至≤50μm的范围中的厚度。这种厚度足以实现高效的壁垒或尺寸被确定为足够的接纳区域。此外,给出分离器的大的兼容性,由此本发明分离器尤其是在该构型中可用于大量的也紧凑的应用领域。
在另一构型的范围中,至少一个第一层可以包括具有至少一个杂原子的聚合物或者由该聚合物构成,和/或第二层可以包括利用阴离子基团和/或负极化基团功能化的聚合物或者由该聚合物构成。关于用于第一层的材料,具有至少一个尤其是作为单个原子嵌入分子结构中的杂原子是特别适合的,因为它们具有例如对聚硫化物特别强的亲和力。这些材料因此尤其是对于使用于锂硫电池中是有利的。在此,杂原子可以是可自由选择的。非限制性例子包括氧或硫。用于第一层的示例性聚合物例如包括聚氧化乙烯或其衍生物。衍生物在此尤其是可以指的是基于聚氧化乙烯或包含聚氧化乙烯的材料。关于用于第二层的材料可以优选利用阴离子基团和/或负极化基团功能化的聚合物。在此,这种聚合物尤其是可以具有阴离子基团或负极化的基团,其负电荷或极化在大的分子区域上定位。因此,这里尤其是可以涉及聚合物,所述聚合物具有共轭负电荷或极化。这种聚合物可以通过与锂离子仅小的交互作用而获得足够高的锂离子传导能力。此外,这种聚合物由于尤其是被移位的负电荷或负极化而提供对对应的硫化物种类的静电推斥力,由此在不消极影响锂离子输送的情况下产生壁垒作用。阴离子功能化的聚合物的例子是聚苯乙烯或其衍生物,例如聚磺苯乙烯、4-卤素-聚苯乙烯(其中卤素可以是溴、碘或氯)、4-硝基-聚苯乙烯、4-羟基-聚苯乙烯、2,6-二羟基-4-硝基-聚苯乙烯或者其适当的组合。
在另一构型的范围中,至少一个第一层和/或至少一个第二层可以是多孔的,以便接纳尤其是液态的电解质。适当的电解质系统例如包括1,3-二氧戊环(Dioxylan,DOL)和锂-双三氟甲磺酰基-酰亚胺(LiTFSI)形式的二甲氧基乙烷(DME)。在该构型中,分离器因此可以接纳适当的电解质,使得可以实现良好的离子传导能力。在此不需要在选择第一或第二层的材料时注意离子传导能力特性。对应的材料的选择更确切地说可以对准与活性材料的交互作用。在该构型中,分离器因此可以是特别有效的。适当的多孔性在此可以处于≥20%至≤90%、尤其是≥30%至≤70%的范围中。
本发明的主题另外是蓄能器,尤其是锂硫电池,其包括至少一个本发明分离器。本发明蓄能器尤其是具有关于分离器所描述的优点。具体地,本发明蓄能器尤其是具有改善的循环性能和改善的寿命。
附图说明
本发明主题的其它优点和有利扩展方案通过附图图解并且在随后的描述中予以阐述。在此要注意的是,附图仅具有所描述的字符并且不被认为以任何形式限制本发明。其中
图1示出在本发明蓄能器中布置的本发明分离器的一种实施方式的示意图;
图2示出在本发明蓄能器中布置的本发明分离器的另一实施方式的示意图;和
图3示出在本发明蓄能器中布置的本发明分离器的另一实施方式的示意图。
具体实施方式
在图1中示出根据本发明的分离器1的一种实施方式。分离器1尤其是可以布置在蓄能器2中。蓄能器2例如是可以是锂离子电池。所述蓄能器可以应用在电工具、计算机、混合动力车辆、纯电运行的车辆或其他类型的移动或静止应用中,其中尤其是具有比能量的蓄能器2是有利的。
蓄能器2可以具有阳极3和阴极4。阳极3和阴极4在此尤其是根据蓄能器2的类型来构造并且可以包括适当的活性材料。例如对于锂硫电池的情况,阳极例如可以由金属锂构造。阴极4此外可以构成阴极基质,所述阴极基质典型地包括硫、诸如石墨、炭黑、碳纳米管、碳纳米纤维或其他导电碳种类的传导添加物、以及诸如聚偏二氟乙烯(PVDF)、基于纤维素的粘结剂或特氟隆的粘结剂。传导添加物可以是有利的,因为元素硫以及硫化锂和二硫化锂是不导电的。尤其是阴极4在此针对锂硫电池单元的情况根据蓄能器2的充电状态具有聚硫化物作为活性材料。
例如为了防止活性材料从阴极4迁移到阳极3,分离器1包括至少一个第一层5和至少一个第二层6、7。根据图1,设置两个第二层6、7。在此,至少一个第一层5包括具有相对于至少一个电极活性材料(诸如一种或多种聚硫化物)亲和的特性的材料。与此相对地,至少一个第二层6、7包括具有对于电极活性材料(诸如一种或多种聚硫化物)排斥的特性的材料。在图1中,在此可以看出,至少一个层5和至少一个第二层6、7可以直接相邻地布置。此外,根据图1,至少一个第一层5分别布置在两个第二层6、7之间。
至少一个第一层5可以具有≥1μm至≤100μm、例如≥10μm至≤50μm的范围中的厚度。可替换地或附加地,至少一个第二层6、7可以具有≥1μm至≤100μm、例如≥10μm至≤50μm的范围中的厚度。由此,分离器1的希望的保持行为是特别高效的,其中给出良好的紧凑性。
另外,至少一个第一层5可以包括具有至少一种杂原子的聚合物,和/或至少一个第二层6、7可以包括利用阴离子基团和/或负极化基团功能化的聚合物。优选的例子以非限制性的方式对于至少一个第一层5包括聚氧化乙烯或其衍生物并且对于至少一个第二层6、7包括聚苯乙烯或其衍生物。
为了与相应的层5、6、7的材料的选择无关地设置通过分离器1的良好离子传导能力并且从而能够实现蓄能器2的功率强的功能,至少一个第一层5和/或至少一个第二层6、7可以是多孔的,以便接纳尤其是液态电解质。在此,整个分离器可以是多孔的或者仅定义的电解质区域是多孔的。
在图2中示出本发明分离器1或本发明蓄能器2的另一实施方式。分离器1或蓄能器2在此基本上对应于在图1中的描述,使得具有相同附图标记的相同或对应构件被描述。另外,分离器1或蓄能器2的在图1中描述的特征以相同的方式对于根据图2的分离器1或蓄能器2是可行的。
在根据图2的实施方式中,分离器1总共包括五个层。在此,设置两个第一层5和8以及另外设置三个第二层6、7和9。如也在根据图1的实施方式中那样,在根据图2的实施方式中,分离器1具有数量为3+2n个层,其中3+2n个层就第一层5、8和第二层6、7、9而言交替地布置。
在图3中示出本发明分离器1或本发明蓄能器2的另一实施方式。分离器1或蓄能器2在此基本上对应于在图1和2中的描述,使得具有相同附图标记的相同或对应构件被描述。另外,分离器1或蓄能器2的在图1中描述的特征以相同的方式对于根据图3的分离器1或蓄能器2是可能的。
根据图3,分离器1具有传导添加物10。传导添加物10例如可以仅被布置在至少一个第一层5中或布置在多个第一层5、8中。另外,传导添加物可以布置在每个任意的层中。但是有利的是,所述传导添加物不设置在朝向阳极3的层7中。
传导添加物可以例如具有石墨或炭黑或者由前述材料构成。另外,传导添加物10在量上可以处于≤20%的范围中。

Claims (15)

1.用于蓄能器(2)的分离器,包括至少一个第一层(5)和至少一个第二层(6,7),其中所述至少一个第一层(5)包括具有相对于至少一种电极活性材料亲和的特性的材料,并且其中所述至少一个第二层(6,7)包括具有相对于电极活性材料排斥的特性的材料,其中所述至少一个第一层(5)和所述至少一个第二层(6,7)直接相邻地布置,
其中所述分离器(1)具有布置在至少一个第一层(5)中的导电的传导添加物(10)。
2.根据权利要求1所述的分离器,其中所述传导添加物是石墨或炭黑。
3.根据权利要求1所述的分离器,其中所述分离器(1)具有数量为3+2n个层,并且其中3+2n个层由第一层(5)和第二层(6,7)交替地布置。
4.根据权利要求1至3之一所述的分离器,其中所述第一层(5)布置在两个第二层(6,7)之间。
5.根据权利要求1至3之一所述的分离器,其中所述传导添加物(10)以小于等于20%的量存在。
6.根据权利要求1至3之一所述的分离器,其中所述至少一个第一层(5)具有1μm至100μm的范围中的厚度,和/或其中所述至少一个第二层(6、7)具有1μm至100μm的范围中的厚度。
7.根据权利要求6所述的分离器,其中所述至少一个第一层(5)具有10μm至50μm的范围中的厚度。
8.根据权利要求6所述的分离器,其中所述至少一个第二层(6、7)具有10μm至50μm的范围中的厚度。
9.根据权利要求1至3之一所述的分离器,其中所述至少一个第一层(5)包括具有至少一种杂原子的聚合物,和/或其中所述至少一个第二层(6、7)包括利用阴离子基团和/或负极化基团功能化的聚合物。
10.根据权利要求9所述的分离器,其中所述至少一个第一层(5)包括聚氧化乙烯或其衍生物,和/或其中所述至少一个第二层(6,7)包括聚苯乙烯或其衍生物。
11.根据权利要求1至3之一所述的分离器,其中所述至少一个第一层(5)和/或所述至少一个第二层(6、7)是多孔的,以便接纳电解质。
12.根据权利要求11所述的分离器,其中所述电解质是液态的电解质。
13.根据权利要求1至3之一所述的分离器,其中所述蓄能器是锂硫电池。
14.蓄能器,包括至少一个根据权利要求1至13之一所述的分离器(1)。
15.根据权利要求14所述的蓄能器,其中所述蓄能器是锂硫电池。
CN201280036112.1A 2011-07-22 2012-05-30 用于蓄能器的分离器和蓄能器 Active CN103688388B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011079662A DE102011079662A1 (de) 2011-07-22 2011-07-22 Separator für einen Energiespeicher und Energiespeicher
DE102011079662.2 2011-07-22
PCT/EP2012/060094 WO2013013867A1 (de) 2011-07-22 2012-05-30 Separator für einen energiespeicher und energiespeicher

Publications (2)

Publication Number Publication Date
CN103688388A CN103688388A (zh) 2014-03-26
CN103688388B true CN103688388B (zh) 2017-12-26

Family

ID=46172794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280036112.1A Active CN103688388B (zh) 2011-07-22 2012-05-30 用于蓄能器的分离器和蓄能器

Country Status (5)

Country Link
US (1) US10673043B2 (zh)
JP (1) JP5859122B2 (zh)
CN (1) CN103688388B (zh)
DE (1) DE102011079662A1 (zh)
WO (1) WO2013013867A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088910A1 (de) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Lithium-Schwefel-Zellen-Separator mit Polysulfidsperrschicht
JP6191763B2 (ja) 2013-10-18 2017-09-06 エルジー・ケム・リミテッド 分離膜、リチウム−硫黄電池、電池モジュール、分離膜の製造方法、リチウム−硫黄電池の製造方法
DE102014221261A1 (de) 2014-10-20 2016-04-21 Robert Bosch Gmbh Separator und galvanische Zelle mit robuster Trennung von Kathode und Anode
KR101790833B1 (ko) * 2014-10-31 2017-10-26 주식회사 엘지화학 전해질 담지층을 적용한 리튬-황 전지 구조
US11114688B2 (en) 2015-06-18 2021-09-07 University Of Southern California Lithium-ion mixed conductor membrane improves the performance of lithium-sulfur battery and other energy storage devices
KR102038543B1 (ko) * 2016-01-28 2019-10-30 주식회사 엘지화학 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183901B1 (en) * 1998-12-17 2001-02-06 Moltech Corporation Protective coating for separators for electrochemical cells
CN1389948A (zh) * 2001-06-01 2003-01-08 三星Sdi株式会社 锂硫电池
WO2003012896A1 (en) * 2001-07-27 2003-02-13 Newturn Energy Co., Ltd. Porous separator and method of manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123596A (en) * 1977-03-02 1978-10-31 Chloride Silent Power Limited Cathode structure for sodium sulphur cells
US4650730A (en) * 1985-05-16 1987-03-17 W. R. Grace & Co. Battery separator
US4850730A (en) * 1988-04-25 1989-07-25 Jimenez Francisco G Disposable toothbrush
US6376123B1 (en) * 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
US5853916A (en) * 1996-10-28 1998-12-29 Motorola, Inc. Multi-layered polymeric gel electrolyte and electrochemical cell using same
US6302928B1 (en) 1998-12-17 2001-10-16 Moltech Corporation Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers
US6225002B1 (en) * 1999-02-05 2001-05-01 Polyplus Battery Company, Inc. Dioxolane as a proctector for lithium electrodes
FR2841045B1 (fr) * 2002-06-17 2004-12-24 Electricite De France Accumulateur au lithium
US7282296B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
KR100502357B1 (ko) * 2003-08-29 2005-07-20 삼성에스디아이 주식회사 고분자 필름을 구비한 양극 및 이를 채용한 리튬-설퍼 전지
US8268197B2 (en) * 2006-04-04 2012-09-18 Seeo, Inc. Solid electrolyte material manufacturable by polymer processing methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183901B1 (en) * 1998-12-17 2001-02-06 Moltech Corporation Protective coating for separators for electrochemical cells
CN1389948A (zh) * 2001-06-01 2003-01-08 三星Sdi株式会社 锂硫电池
WO2003012896A1 (en) * 2001-07-27 2003-02-13 Newturn Energy Co., Ltd. Porous separator and method of manufacturing the same

Also Published As

Publication number Publication date
US20140234692A1 (en) 2014-08-21
JP2014523630A (ja) 2014-09-11
US10673043B2 (en) 2020-06-02
JP5859122B2 (ja) 2016-02-10
CN103688388A (zh) 2014-03-26
DE102011079662A1 (de) 2013-01-24
WO2013013867A1 (de) 2013-01-31

Similar Documents

Publication Publication Date Title
CN103688388B (zh) 用于蓄能器的分离器和蓄能器
Mai et al. Self‐healing materials for energy‐storage devices
Zhao et al. A smart flexible zinc battery with cooling recovery ability
Song et al. Recent progress in stretchable batteries for wearable electronics
Song et al. Stretchable aqueous batteries: progress and prospects
Fan et al. Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes
Nevers et al. Engineering radical polymer electrodes for electrochemical energy storage
Villaluenga et al. Nanostructured single-ion-conducting hybrid electrolytes based on salty nanoparticles and block copolymers
Chen et al. Design and Performance of Rechargeable Sodium Ion Batteries, and Symmetrical Li‐Ion Batteries with Supercapacitor‐Like Power Density Based upon Polyoxovanadates
Amanchukwu et al. Evaluation and stability of PEDOT polymer electrodes for Li–O2 batteries
CN104241677A (zh) 长循环寿命的锂硫电化学电池
CN101443857B (zh) 高电子电导率聚合物及使用该聚合物的高容量、高功率的电化学能量存储装置
JP2017517860A (ja) 長いサイクル寿命のリチウム硫黄固体電気化学セル
Cui et al. Enhanced cyclability of Li/polysulfide batteries by a polymer-modified carbon paper current collector
US10683419B2 (en) Redox-active supramolecular polymer binders derived from perylene bisimide nanowires enable high-rate lithium-sulfur batteries
JP2015035411A (ja) リチウム硫黄電池の正極及びその製造方法
Bhattacharyya Ion transport in liquid salt solutions with oxide dispersions:“Soggy Sand” electrolytes
US20190140317A1 (en) Gel polymer electrolytes comprising electrolyte additive
CN103201888A (zh) 包括纤维形状结构的电极组件
Fan et al. UV-Initiated Soft–Tough Multifunctional Gel Polymer Electrolyte Achieves Stable-Cycling Li-Metal Battery
Ding et al. Poly (1, 5-diaminoanthraquinone) as a high-capacity bipolar cathode for rechargeable magnesium batteries
ATE551738T1 (de) Elektrodenmaterial für sekundäre zellen mit nichtwässrigen lösungsmitteln, elektrode und sekundäre zelle
KR101687588B1 (ko) 폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자를 함유하는 바인더
KR101605589B1 (ko) 전기 화학 셀의 가요성 전극
Kannan et al. Review and Perspectives on Advanced Binder Designs Incorporating Multifunctionalities for Lithium–Sulfur Batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant