CN103683867B - 反激式开关电源电路及应用该电路的背光源驱动装置 - Google Patents

反激式开关电源电路及应用该电路的背光源驱动装置 Download PDF

Info

Publication number
CN103683867B
CN103683867B CN201310656759.0A CN201310656759A CN103683867B CN 103683867 B CN103683867 B CN 103683867B CN 201310656759 A CN201310656759 A CN 201310656759A CN 103683867 B CN103683867 B CN 103683867B
Authority
CN
China
Prior art keywords
switching transistor
inverse
type switch
switch power
excitation type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310656759.0A
Other languages
English (en)
Other versions
CN103683867A (zh
Inventor
王照
曹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL China Star Optoelectronics Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201310656759.0A priority Critical patent/CN103683867B/zh
Application filed by Shenzhen China Star Optoelectronics Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Technology Co Ltd
Priority to JP2016536836A priority patent/JP6580044B2/ja
Priority to US14/241,415 priority patent/US9160239B2/en
Priority to PCT/CN2014/070840 priority patent/WO2015081627A1/zh
Priority to KR1020167017286A priority patent/KR101847321B1/ko
Priority to GB1609794.1A priority patent/GB2535115B/en
Priority to RU2016121671A priority patent/RU2637773C9/ru
Publication of CN103683867A publication Critical patent/CN103683867A/zh
Application granted granted Critical
Publication of CN103683867B publication Critical patent/CN103683867B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明公开了一种反激式开关电源电路及应用该电路的背光源驱动装置,包括:变压器,其包括一初级绕组、一次级绕组和置于该初级绕组一侧的一辅助绕组;输出整流器,其从变压器的次级绕组连接至反激式开关电源电路的输出端;开关晶体管,其用于控制初级绕组上的电压;控制器,其用于提供脉冲宽度调制信号以驱动开关晶体管的栅极;钳位延迟电路,其用于将开关晶体管的栅极电位钳制为低电位,使得所述开关晶体管在其漏极电位阻尼振动的波谷处导通。本发明通过在反激式开关电源电路中设置了钳位延迟电路,并在变压器中增设了辅助绕组,使得MOS管其漏极电位阻尼振动的波谷处导通,降低MOS管的开关损耗。

Description

反激式开关电源电路及应用该电路的背光源驱动装置
技术领域
本发明涉及一种电源技术领域,尤其涉及一种反激式开关电源电路及应用该电路的背光源驱动装置。
背景技术
近年来,随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、集成化的方向发展,高效率的开关电源已经得到越来越广泛的应用。反激式电源电路以其电路简单、可以高效提供直流输出等许多优点、特别适合例如家用电器、电池充电器和很多其他设计小功率的开关电源。
反激式开关电源是指反激高频变压器隔离输入输出回路的开关电源。“反激(FLYBACK)”具体所指是当输入为高电平(开关管接通)时输出线路中串联的电感为放电状态,相反输入为高电平(开关管断开)时,输出线路中的电感为充电状态。图1显示为现有技术中应用在液晶显示器上的反激式开关电源电路的示意图,如图1所示,该开关电源电路主要包括:一电压输入端、一控制IC、一功率MOS管、一变压器、一整流二极管和一输出电容。
具体地,MOS管由控制IC来控制,通过控制IC产生的脉冲宽度调节信号来闭合或导通MOS管。在功率MOS管导通时,变压器的初级绕组电感电流开始上升,此时由于次级绕组的关系,整流二极管截止,变压器储存能量。在功率MOS管截止时,变压器的初级绕组的电感感应电压反向,此时整流二极管导通,变压器中的能量经由该整流二极管向负载供电。
然而,上述的反激式开关电源拓扑线路设计中,使用控制IC来直接控制MOS开关管的通断。由于变压器内部的寄生电容效应,在MOS管关断后,其漏极(D极)的电位不会立即稳定,而会按照阻尼振动趋于稳定(如图2所示)。由于在此过程中未考虑其阻尼振动效应,则会产生较高的MOS管的开关损耗。
因此,如何解决上述问题,以降低反激式开关电源中MOS管的开关损耗,乃业界所致力的课题之一。
发明内容
本发明所要解决的技术问题之一是需要提供一种反激式开关电源电路,该电路能够有效降低MOS管的开关损耗。另外,还提供了应用该电路的背光源驱动装置。
1)为了解决上述技术问题,本发明提供了一种反激式开关电源电路,包括:一变压器,其包括一初级绕组、一次级绕组和置于该初级绕组一侧的一辅助绕组;一输出整流器,其从所述变压器的次级绕组连接至所述反激式开关电源电路的输出端;一开关晶体管,其用于控制所述初级绕组上的电压,其中所述开关晶体管的漏极连接至所述初级绕组的一端;一控制器,其用于提供脉冲宽度调制信号以驱动所述开关晶体管的栅极,其中所述控制器包括连接所述开关晶体管的栅极的GATE端;一钳位延迟电路,其用于将所述开关晶体管的栅极电位钳制为低电位,使得所述开关晶体管在其漏极电位阻尼振动的波谷处导通,其中所述钳位延迟电路从所述辅助绕组连接至所述开关晶体管的栅极。
2)在本发明的第1)项的一个优选实施方式中,所述钳位延迟电路进一步包括:
一稳压电容,其根据所述辅助绕组所产生的电压进行充电,所述稳压电容与所述辅助绕组并联连接,并且所述稳压电容的一端与所述辅助绕组的第一端子一并连接至一接地参考;
一二极管,其从所述辅助绕组的第二端子连接至所述稳压电容的另一端;
一分压电路,其用于对所述稳压电容内部存储的电压进行分压,所述分压电路与所述稳压电容并联连接;
一三极管,其在导通期间用于将所述开关晶体管的栅极电位钳制为低电位,使得所述开关晶体管在其漏极电位阻尼振动的波谷处导通,其中所述三极管的基极连接至所述分压电路,所述三极管的集电极连接至所述开关晶体管的栅极。
3)在本发明的第1)项或第2)项中的一个优选实施方式中,所述分压电路由一第一分压电阻和一第二分压电阻串联连接组成,所述三极管的基极连接至所述第一分压电阻和第二分压电阻之间。
4)在本发明的第1)项-第3)项中任一项的一个优选实施方式中,在所述控制器输出低电位时,所述开关晶体管截止,进而所述辅助绕组向所述稳压电容充电并通过所述第一分压电阻和第二分压电阻分压来导通所述三极管,所述三极管将所述开关晶体管的栅极电位钳制为低电位,使得所述开关晶体管在其漏极电位阻尼振动的波谷处导通。
5)在本发明的第1)项-第4)项中任一项的一个优选实施方式中,在所述控制器输出高电位时,所述开关晶体管导通,所述钳位延迟电路不工作。
6)在本发明的第1)项-第5)项中任一项的一个优选实施方式中,还包括:一第一电阻,其从所述控制器的GATE端连接至所述开关晶体管的栅极。
7)在本发明的第1)项-第6)项中任一项的一个优选实施方式中,还包括:一第二电阻,其从所述开关晶体管的源极连接至一接地参考。
8)在本发明的第1)项-第7)项中任一项的一个优选实施方式中,还包括:一输出电容,其用于对输出电压进行滤波,所述输出电容一端与所述反激式开关电源电路的输出端连接,另一端连接至一接地参考。
9)在本发明的第1)项-第8)项中任一项的一个优选实施方式中,所述输出整流器为一整流二极管。
10)根据本发明的另一方面,还提供了一种背光源驱动装置,包括如上所述的反激式开关电源电路。
与现有技术相比,本发明的一个或多个实施例可以具有如下优点:
本发明通过在反激式开关电源电路中设置了钳位延迟电路,并在变压器中增设了辅助绕组,通过上述电路在MOS管从截止到再次导通时将MOS管的栅极电位钳制为低,控制MOS管在其漏极电位阻尼振动的波谷处导通,这样会使得MOS管导通时的电压累积减小,避免电压峰值,降低MOS管的开关损耗。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是一现有技术中反激式开关电源电路的示意图;
图2是反激式开关电源电路中MOS管漏极(D极)电位的阻尼振动示意图;
图3是根据本发明一实施例的反激式开关电源电路的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合附图对本发明作进一步地详细说明。
请参考图3,图3显示根据本发明一实施例的反激式电源开关电路,该反激式电源电路通过其内部的钳位延迟电路,能够降低开关晶体管的开关损耗,进而提升电路效率。
如图3所示,该反激式电源开关电路主要包括电压输入端Vin、变压器200、整流二极管D2、输出电容C2、电压输出端Vo、N沟道场效应晶体管(简称MOS管)Q1、控制IC100及钳位延迟电路300。
容易理解,图3示出了N沟道场效应晶体管构成的开关晶体管的一个示例,很明显,开关晶体管不限于上面的设备。
其中,变压器200包括一初级绕组、一次级绕组和置于该初级绕组一侧的一辅助绕组。容易理解的是,该辅助绕组的匝数可由实际变压器的需要来设计。根据同名端相位相同的原理,该辅助绕组与次级绕组一致,在MOS管Q1截止时开始输出。
输出二极管D2,其从变压器200的次级绕组连接至该反激式开关电源电路的电压输出端Vo。如图3所示,该输出二极管D2的阳极连接次级绕组的第二端子(3号端),该输出二极管D2的阴极连接该反激式开关电源电路的电压输出端Vo。
输出电容C2,其用于对输出电压进行滤波,该输出电容C2一端与反激式开关电源电路的输出端连接,另一端连接至一接地参考。
MOS管Q1,其用于控制该变压器200的初级绕组上的电压,其中该MOS管Q1的一漏极连接至初级绕组的第二端子(2号端)。该MOS管Q1的一源极通过一电阻R4连接至一接地参考。在脉冲宽度调制信号关闭时,一反激电压将被从次级绕组反射至初级绕组和辅助绕组。
控制IC100的VCC用于提供脉冲宽度调制信号以驱动MOS管Q1的栅极,其中控制IC100包括用于接收电压的VCC输入端、连接MOS管Q1的栅极的GATE端和连接接地参考的GND接地端。当控制IC100所接收的电压超过启动阈值电压时,该控制IC100就将产生一脉冲宽度调节信号,并从与MOS管Q1的一栅极连接GATE端发射出去。该脉冲宽度调节信号将驱动MOS管Q1的一栅极(G极),以用于脉冲宽度调节控制。
钳位延迟电路300用于将MOS管Q1的栅极电位钳制为低电位,使得MOS管Q1在其漏极电位阻尼振动的波谷处导通,其中钳位延迟电路300从辅助绕组连接至MOS管Q1的栅极。该钳位延迟电路300包括一三极管T1、一第一分压电阻R1、一第二分压电阻R2、一稳压电容C1和一二极管D1。
稳压电容C1根据辅助绕组所产生的电压进行充电,该稳压电容C1与变压器200的辅助绕组并联连接,并且该稳压电容C1的一端与辅助绕组的第一端子(6号端)一并连接至一接地参考。
二极管D1从变压器200的辅助绕组的第二端子(5号端)连接至稳压电容C1的另一端。如图所示,二极管D1的阳极连接至该变压器200的辅助绕组的第二端子,阴极连接该稳压电容C1的一端。第一分压电阻R1和第二分压电阻R2电阻串联连接组成了分压电路,该分压电路与稳压电容C1并联。该分压电路用于对稳压电容C1内部存储的电压进行分压,即利用第一分压电阻R1和第二分压电阻R2进行其内部存储的电压的分压。当然,上述分压电路仅为一优选示例,本领域技术人员可以根据实际情况来合理调整分压电阻的大小,从而达到最好的效果。
三极管T1在导通期间用于将MOS管Q1的栅极电位钳制为低电位,使得MOS管Q1在其漏极电位阻尼振动的波谷处导通。该三极管T1的基极连接至分压电路(第一分压电阻R1和第二分压电阻R2之间),并且该三极管T1的集电极连接至MOS管Q1的栅极。
另外,该反激式开关电源电路还包括一第一电阻R3,其从控制IC100的GATE端连接至MOS管Q1的栅极,起到限流作用,进而控制MOS管Q1的导通和截止的速度。一第二电阻R4,其从MOS管Q1的源极连接至一接地参考,该第二电阻R4在电路中也起到限流作用。
接着,说明该反激式电源开关电路的详细操作。参阅图3,首先,控制IC100检测其VCC输入端的电压是否超过启动阈值电压,若检测为是时,则该控制IC100将产生一脉冲宽度调制信号,并从与MOS管Q1的一栅极连接GATE端发射出去。
当控制IC100输出高电位至MOS管Q1的栅极时,MOS管Q1导通。此时,变压器200的初级绕组的1号端为高电位,且变压器600的辅助绕组6号端也为高电位端,则二极管D1截止,钳位延迟电路300不工作。
当控制IC100输出低电位至MOS管Q1的栅极时,MOS管Q1截止。MOS管Q1截止时,变压器200的初级绕组的1号端为低电位,辅助绕组5号端为高电位端,其电压波形同样类似图2所示为阻尼振动。此时二极管D2导通,钳位延迟电路300开始工作。
具体地,由于合理的设置第一分压电阻R1、第二分压电阻R2和稳压电容C1的大小,使得变压器200的辅助绕组向C1充电并通过第一分压电阻R1和第二分压电阻R2分压来导通三极管T1,进而使得MOS管Q1的栅极钳位为低电位,控制MOS管Q1在其漏极电位阻尼振动的波谷处延迟导通。
这主要考虑到,由于变压器200内部的寄生电容效应,MOS管Q1关断后,其漏极的电位不会立即稳定,而会按照阻尼振动趋于稳定,通过上述电路在MOS管从截止到再次导通时将MOS管的栅极电位钳制为低,控制MOS管在其漏极电位阻尼振动的波谷处导通,这样会使得MOS管导通时的电压累积减小,避免电压峰值,降低MOS管的开关损耗。这是因为,开关损耗近似等于ΔV*ΔI/4,在波谷处ΔV最小,从而可以降低开关损耗。
另外,还涉及一种背光源驱动装置,其包括上述的反激式开关电源电路。
综上,本发明通过在反激式开关电源电路中设置了钳位延迟电路,并在变压器中增设了辅助绕组,通过利用该钳位延迟电路能够降低开关晶体管的开关损耗,进而提升电路效率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人员在本发明所揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (9)

1.一种反激式开关电源电路,包括:
一变压器,其包括一初级绕组、一次级绕组和置于该初级绕组一侧的一辅助绕组;
一输出整流器,其从所述变压器的次级绕组连接至所述反激式开关电源电路的输出端;
一开关晶体管,其用于控制所述初级绕组上的电压,其中所述开关晶体管的漏极连接至所述初级绕组的一端;
一控制器,其用于提供脉冲宽度调制信号以驱动所述开关晶体管的栅极,其中所述控制器包括连接所述开关晶体管的栅极的GATE端;
一钳位延迟电路,其用于将所述开关晶体管的栅极电位钳制为低电位,使得所述开关晶体管在其漏极电位阻尼振动的波谷处导通,其中所述钳位延迟电路从所述辅助绕组连接至所述开关晶体管的栅极,所述钳位延迟电路进一步包括:
一稳压电容,其根据所述辅助绕组所产生的电压进行充电,所述稳压电容与所述辅助绕组并联连接,并且所述稳压电容的一端与所述辅助绕组的第一端子一并连接至一接地参考;
一二极管,其从所述辅助绕组的第二端子连接至所述稳压电容的另一端;
一分压电路,其用于对所述稳压电容内部存储的电压进行分压,所述分压电路与所述稳压电容并联连接;
一三极管,其在导通期间用于将所述开关晶体管的栅极电位钳制为低电位,使得所述开关晶体管在其漏极电位阻尼振动的波谷处导通,其中所述三极管的基极连接至所述分压电路,所述三极管的集电极连接至所述开关晶体管的栅极。
2.根据权利要求1所述的反激式开关电源电路,其特征在于,
所述分压电路由一第一分压电阻和一第二分压电阻串联连接组成,所述三极管的基极连接至所述第一分压电阻和第二分压电阻之间。
3.根据权利要求2所述的反激式开关电源电路,其特征在于,
在所述控制器输出低电位时,所述开关晶体管截止,进而所述辅助绕组向所述稳压电容充电并通过所述第一分压电阻和第二分压电阻分压来导通所述三极管,所述三极管将所述开关晶体管的栅极电位钳制为低电位,使得所述开关晶体管在其漏极电位阻尼振动的波谷处导通。
4.根据权利要求3所述的反激式开关电源电路,其特征在于,
在所述控制器输出高电位时,所述开关晶体管导通,所述钳位延迟电路不工作。
5.根据权利要求1所述的反激式开关电源电路,其特征在于,还包括:
一第一电阻,其从所述控制器的GATE端连接至所述开关晶体管的栅极。
6.根据权利要求5所述的反激式开关电源电路,其特征在于,还包括:
一第二电阻,其从所述开关晶体管的源极连接至一接地参考。
7.根据权利要求6所述的反激式开关电源电路,其特征在于,还包括:
一输出电容,其用于对输出电压进行滤波,所述输出电容一端与所述反激式开关电源电路的输出端连接,另一端连接至一接地参考。
8.根据权利要求7所述的反激式开关电源电路,其特征在于,所述输出整流器为一整流二极管。
9.一种背光源驱动装置,包括如权利要求1至8中任一项所述的反激式开关电源电路。
CN201310656759.0A 2013-12-06 2013-12-06 反激式开关电源电路及应用该电路的背光源驱动装置 Expired - Fee Related CN103683867B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201310656759.0A CN103683867B (zh) 2013-12-06 2013-12-06 反激式开关电源电路及应用该电路的背光源驱动装置
US14/241,415 US9160239B2 (en) 2013-12-06 2014-01-17 Flyback switching power supply circuit and backlight driving device using the same
PCT/CN2014/070840 WO2015081627A1 (zh) 2013-12-06 2014-01-17 反激式开关电源电路及应用该电路的背光源驱动装置
KR1020167017286A KR101847321B1 (ko) 2013-12-06 2014-01-17 플라이백 스위칭 전원회로 및 그 회로를 응용하는 백라이트 구동장치
JP2016536836A JP6580044B2 (ja) 2013-12-06 2014-01-17 フライバック型スイッチング電源回路及びそれを用いたバックライト駆動装置
GB1609794.1A GB2535115B (en) 2013-12-06 2014-01-17 Flyback switching power supply circuit and backlight driving device using the same
RU2016121671A RU2637773C9 (ru) 2013-12-06 2014-01-17 Схема обратноходового импульсного источника питания и драйвер подсветки, в котором она используется

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310656759.0A CN103683867B (zh) 2013-12-06 2013-12-06 反激式开关电源电路及应用该电路的背光源驱动装置

Publications (2)

Publication Number Publication Date
CN103683867A CN103683867A (zh) 2014-03-26
CN103683867B true CN103683867B (zh) 2016-03-30

Family

ID=50320457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310656759.0A Expired - Fee Related CN103683867B (zh) 2013-12-06 2013-12-06 反激式开关电源电路及应用该电路的背光源驱动装置

Country Status (6)

Country Link
JP (1) JP6580044B2 (zh)
KR (1) KR101847321B1 (zh)
CN (1) CN103683867B (zh)
GB (1) GB2535115B (zh)
RU (1) RU2637773C9 (zh)
WO (1) WO2015081627A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889025B (zh) * 2019-03-28 2020-09-04 深圳市鹏源电子有限公司 驱动电路、桥式电路及开关电源
CN110337159B (zh) * 2019-07-02 2024-03-05 厦门厦华科技有限公司 一种控制信号可重置的大尺寸电子白板背光驱动电路
CN111200364B (zh) * 2020-02-25 2021-02-26 浙江大学 一种基于有源箝位反激变换器的ac-dc转换装置
CN113589005B (zh) * 2021-07-27 2023-06-30 捷蒽迪电子科技(上海)有限公司 一种带有消隐时间的电压检测电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200956551Y (zh) * 2006-09-27 2007-10-03 尼克森微电子股份有限公司 供电系统的准谐振控制电路
CN101154113A (zh) * 2006-09-26 2008-04-02 尼克森微电子股份有限公司 电源供应器的准谐振控制电路及其控制方法
JP2008259288A (ja) * 2007-04-03 2008-10-23 Kawasaki Microelectronics Kk スイッチング電源装置
CN101414789A (zh) * 2007-10-17 2009-04-22 川崎微电子股份有限公司 开关型电源单元及电源单元中的开关方法
CN102082521A (zh) * 2010-10-29 2011-06-01 西安英洛华微电子有限公司 谐振波谷精确侦测电路
CN102185466A (zh) * 2011-05-24 2011-09-14 杭州矽力杰半导体技术有限公司 一种应用于反激式变换器的驱动电路、驱动方法以及应用其的准谐振软开关反激式变换器
CN202837384U (zh) * 2012-09-18 2013-03-27 张翌 一种自适应的反激式开关电源准谐振波谷检测电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2031531C1 (ru) * 1993-02-16 1995-03-20 Василий Арсеньевич Хабузов Однотактный обратноходовой преобразователь напряжения
DE69814073T2 (de) * 1998-09-23 2004-01-22 Stmicroelectronics S.R.L., Agrate Brianza Vollständig integrierte Einschaltregelschleife eines Hochspannungsleistungstransistors eines quasiresonanten Sperrwandlers
JP3351400B2 (ja) * 1999-01-18 2002-11-25 株式会社村田製作所 スイッチング電源装置
JP2000287442A (ja) * 1999-03-30 2000-10-13 Sony Corp 電源装置
KR20020009291A (ko) * 2000-07-25 2002-02-01 이형도 컨버터의 구동회로
JP3760379B2 (ja) * 2000-12-28 2006-03-29 株式会社村田製作所 スイッチング電源装置
JP5011621B2 (ja) * 2001-08-14 2012-08-29 サンケン電気株式会社 自励式dc−dcコンバータ
RU32331U1 (ru) * 2003-05-15 2003-09-10 Закрытое акционерное общество "Малое многопрофильное предприятие-ИРБИС" Обратноходовой преобразователь постоянного напряжения в постоянное
JP4029853B2 (ja) * 2004-03-23 2008-01-09 サンケン電気株式会社 スイッチング電源装置
US8755203B2 (en) 2008-12-30 2014-06-17 Dialog Semiconductor Inc. Valley-mode switching schemes for switching power converters
US8098502B2 (en) * 2009-06-10 2012-01-17 Infineon Technologies Ag System and method for emissions suppression in a switched-mode power supply
RU2396685C1 (ru) * 2009-07-24 2010-08-10 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Преобразователь напряжения с индуктивно связанными рекуперационными цепями
US8598808B2 (en) * 2010-08-02 2013-12-03 Microsemi Corporation Flyback with switching frequency responsive to load and input voltage
JP5822118B2 (ja) * 2011-09-21 2015-11-24 東芝ライテック株式会社 スイッチング電源および照明装置
US9124189B2 (en) 2013-02-01 2015-09-01 Infineon Technologies Austria Ag Converter with galvanic isolation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154113A (zh) * 2006-09-26 2008-04-02 尼克森微电子股份有限公司 电源供应器的准谐振控制电路及其控制方法
CN200956551Y (zh) * 2006-09-27 2007-10-03 尼克森微电子股份有限公司 供电系统的准谐振控制电路
JP2008259288A (ja) * 2007-04-03 2008-10-23 Kawasaki Microelectronics Kk スイッチング電源装置
CN101414789A (zh) * 2007-10-17 2009-04-22 川崎微电子股份有限公司 开关型电源单元及电源单元中的开关方法
CN102082521A (zh) * 2010-10-29 2011-06-01 西安英洛华微电子有限公司 谐振波谷精确侦测电路
CN102185466A (zh) * 2011-05-24 2011-09-14 杭州矽力杰半导体技术有限公司 一种应用于反激式变换器的驱动电路、驱动方法以及应用其的准谐振软开关反激式变换器
CN202837384U (zh) * 2012-09-18 2013-03-27 张翌 一种自适应的反激式开关电源准谐振波谷检测电路

Also Published As

Publication number Publication date
KR20160091985A (ko) 2016-08-03
WO2015081627A1 (zh) 2015-06-11
KR101847321B1 (ko) 2018-05-28
JP6580044B2 (ja) 2019-09-25
RU2016121671A (ru) 2017-12-06
RU2637773C2 (ru) 2017-12-07
GB201609794D0 (en) 2016-07-20
CN103683867A (zh) 2014-03-26
JP2016539617A (ja) 2016-12-15
GB2535115A (en) 2016-08-10
GB2535115A8 (en) 2017-08-09
GB2535115B (en) 2021-04-07
RU2637773C9 (ru) 2018-05-24

Similar Documents

Publication Publication Date Title
CN103887984A (zh) 隔离式变换器及应用其的开关电源
CN104333240A (zh) 一种谐振整流装置、谐振整流控制方法及装置
CN101123399A (zh) 开关电源装置
CN103683867B (zh) 反激式开关电源电路及应用该电路的背光源驱动装置
CN104185333A (zh) 恒流恒压电路及照明装置
CN204103532U (zh) 一种双向充电器
CN105432006A (zh) 开关元件驱动电源电路
CN103064376A (zh) 集中供电机架式设备功能模块热插拔控制系统
CN104507227A (zh) 无变压器的恒流电源电路
CN102497101B (zh) 一种自激式Buck电路
CN100530921C (zh) 具有省电模式的返驰式脉冲宽度调制装置
CN203014666U (zh) 快速启动栅极驱动装置及其控制模块
US9160239B2 (en) Flyback switching power supply circuit and backlight driving device using the same
CN203562950U (zh) 一种输出延时电路
CN202309182U (zh) 一种充电移相控制器
CN104505927A (zh) 反激式充电电路、反激式充电电路的控制方法及装置
CN105490548A (zh) 开关电源装置
CN101572491A (zh) 开关电源电路及其运作方法
CN205249075U (zh) 耐电磁辐射的晶体管自激逆变器
CN204597781U (zh) 一种开关电源电路
CN208939817U (zh) 一种高压启动电路及开关电源
CN203851016U (zh) 用于boost-pfc的延时软启动电路
CN102891624B (zh) 脉冲功率稳定输出装置
CN201230216Y (zh) 高频充电器
CN203733548U (zh) 电磁铁控制装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330