CN103677031B - Method and circuit for providing zero-temperature coefficient voltage and zero-temperature coefficient current - Google Patents
Method and circuit for providing zero-temperature coefficient voltage and zero-temperature coefficient current Download PDFInfo
- Publication number
- CN103677031B CN103677031B CN201310215287.5A CN201310215287A CN103677031B CN 103677031 B CN103677031 B CN 103677031B CN 201310215287 A CN201310215287 A CN 201310215287A CN 103677031 B CN103677031 B CN 103677031B
- Authority
- CN
- China
- Prior art keywords
- resistor
- temperature coefficient
- transistor
- voltage
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/30—Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Control Of Electrical Variables (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
本发明公开了一种提供零温度系数电压和电流的方法和电路,电路包括第一双极型晶体管、第二双极型晶体管、第一晶体管、第二晶体管、运算放大器、第一电阻、第二电阻、第三电阻、第四电阻;第一双极型晶体管的集电极和基极接地,发射极连接第二电阻的一端和运算放大器的反相输入端;第二双极型晶体管的集电极和基极接地,发射极连接第一电阻的一端,第一电阻的另一端连接第三电阻的一端和运算放大器的正相输入端;第一晶体管的漏极连接第二电阻的另一端、第三电阻的另一端、第四电阻的一端,第四电阻的另一端接地;第一晶体管的栅极和第二晶体管的栅极连接运算放大器的输出端;第一晶体管的源极和第二晶体管的源极连接电源。本发明能够同时提供零温度系数的电压和电流。
The invention discloses a method and a circuit for providing voltage and current with zero temperature coefficient. The circuit includes a first bipolar transistor, a second bipolar transistor, a first transistor, a second transistor, an operational amplifier, a first resistor, and a second transistor. Two resistors, a third resistor, and a fourth resistor; the collector and base of the first bipolar transistor are grounded, and the emitter is connected to one end of the second resistor and the inverting input of the operational amplifier; the collector of the second bipolar transistor The electrode and the base are grounded, the emitter is connected to one end of the first resistor, the other end of the first resistor is connected to one end of the third resistor and the non-inverting input end of the operational amplifier; the drain of the first transistor is connected to the other end of the second resistor, The other end of the third resistor, one end of the fourth resistor, and the other end of the fourth resistor are grounded; the gate of the first transistor and the gate of the second transistor are connected to the output terminal of the operational amplifier; the source of the first transistor and the second The source of the transistor is connected to the power supply. The invention can simultaneously provide voltage and current with zero temperature coefficient.
Description
技术领域technical field
本发明涉及集成电路设计领域,尤其涉及一种提供零温度系数电压和电流的方法及电路。The invention relates to the field of integrated circuit design, in particular to a method and circuit for providing voltage and current with zero temperature coefficient.
背景技术Background technique
带隙基准参考源电路广泛地应用于模拟电路中,带隙基准参考源电路可以提供一个与工艺、电压和温度无关的电压,该电压可用于温度检测电路、数据转换器、低压差线性稳压器等电路中。The bandgap reference source circuit is widely used in analog circuits. The bandgap reference source circuit can provide a voltage independent of process, voltage and temperature. This voltage can be used in temperature detection circuits, data converters, and low dropout linear voltage regulators. devices and other circuits.
在现有的技术实现中,主要采用具有正温度特性的两个不同电流密度的三极管得到的VBE电压差,并将该电压加到一个低温度系数电阻(其温度系数与VBE电压差的温度系数相比甚微)上,得到一个与温度成正比的电流,再将该电流送给一个相同类型的低温度系数电阻,得到一个正温度系数的电压,该电压与三极管具有负温度系数的VBE电压相加,得到一个零温度系数电压。In the existing technical implementation, the VBE voltage difference obtained by two transistors with different current densities with positive temperature characteristics is mainly used, and the voltage is added to a low temperature coefficient resistor (the temperature coefficient of which is the same as the temperature coefficient of the VBE voltage difference In comparison, a current proportional to the temperature is obtained, and then the current is sent to a low temperature coefficient resistor of the same type to obtain a voltage with a positive temperature coefficient, which is the same as the VBE voltage with a negative temperature coefficient of the triode Added together, a zero temperature coefficient voltage is obtained.
在深亚微米工艺下,芯片的集成度越来越高,功耗也越来越大,使得芯片的工作温度变化比较大,使得电路中的工作电流也随温度变化而变化,目前的技术仅能提供零温度系数的电压,无法同时得到零温度系数的电流。Under the deep sub-micron process, the integration level of the chip is getting higher and higher, and the power consumption is also increasing, which makes the operating temperature of the chip change greatly, so that the operating current in the circuit also changes with the temperature change. The current technology only A voltage with zero temperature coefficient can be provided, but a current with zero temperature coefficient cannot be obtained at the same time.
发明内容Contents of the invention
为了解决现有技术中存在的上述缺陷,本发明提出一种提供零温度系数电压和电流的方法及电路,能够同时提供零温度系数电压和零温度系数电路。In order to solve the above defects in the prior art, the present invention proposes a method and circuit for providing zero temperature coefficient voltage and current, which can simultaneously provide zero temperature coefficient voltage and zero temperature coefficient circuit.
本发明的一个方面,提供一种带隙基准参考源电路,其特征在于,包括第一双极型晶体管、第二双极型晶体管、第一晶体管、第二晶体管、运算放大器、第一电阻、第二电阻、第三电阻、第四电阻;其中,One aspect of the present invention provides a bandgap reference source circuit, characterized in that it includes a first bipolar transistor, a second bipolar transistor, a first transistor, a second transistor, an operational amplifier, a first resistor, The second resistor, the third resistor, and the fourth resistor; wherein,
所述第一双极型晶体管的集电极和基极接地,发射极连接所述第二电阻的一端和所述运算放大器的反相输入端;The collector and the base of the first bipolar transistor are grounded, and the emitter is connected to one end of the second resistor and the inverting input end of the operational amplifier;
所述第二双极型晶体管的集电极和基极接地,发射极连接所述第一电阻的一端,所述第一电阻的另一端连接所述第三电阻的一端和所述运算放大器的正相输入端;The collector and base of the second bipolar transistor are grounded, the emitter is connected to one end of the first resistor, and the other end of the first resistor is connected to one end of the third resistor and the positive terminal of the operational amplifier. phase input;
所述第一晶体管的漏极连接所述第二电阻的另一端、所述第三电阻的另一端、所述第四电阻的一端,所述第四电阻的另一端接地;The drain of the first transistor is connected to the other end of the second resistor, the other end of the third resistor, and one end of the fourth resistor, and the other end of the fourth resistor is grounded;
所述第一晶体管的栅极和所述第二晶体管的栅极连接所述运算放大器的输出端;所述第一晶体管的源极和所述第二晶体管的源极连接电源;所述第二晶体管的漏端为零温度系数电流输出端;The gate of the first transistor and the gate of the second transistor are connected to the output terminal of the operational amplifier; the source of the first transistor and the source of the second transistor are connected to a power supply; the second The drain terminal of the transistor is the zero temperature coefficient current output terminal;
所述第一电阻、第二电阻、第三电阻为正温度系数的电阻或负温度系数的电阻,所述第四电阻为正温度系数的电阻,且所述第四电阻的正温度系数大于所述第一电阻、第二电阻、第三电阻的温度系数的绝对值。The first resistor, the second resistor, and the third resistor are resistors with a positive temperature coefficient or a resistor with a negative temperature coefficient, the fourth resistor is a resistor with a positive temperature coefficient, and the positive temperature coefficient of the fourth resistor is greater than the Describe the absolute values of the temperature coefficients of the first resistor, the second resistor, and the third resistor.
作为上述技术方案的优选,所述第二电阻与第三电阻的阻值相等。As a preference of the above technical solution, the resistance values of the second resistor and the third resistor are equal.
作为上述技术方案的优选,所述第四电阻由第五电阻和第六电阻串联替代。As a preference of the above technical solution, the fourth resistor is replaced by a fifth resistor and a sixth resistor connected in series.
作为上述技术方案的优选,还包括第七电阻,所述第七电阻连接在所述第一晶体管和第二电阻、第三电阻之间。As a preference of the above technical solution, a seventh resistor is further included, and the seventh resistor is connected between the first transistor, the second resistor, and the third resistor.
作为上述技术方案的优选,所述第一晶体管、第二晶体管为MOS场效应管或双极性晶体管。As a preference of the above technical solution, the first transistor and the second transistor are MOS field effect transistors or bipolar transistors.
本发明还提出一种提供零温度系数电压和电流,包括提供前述的带隙基准参考源电路,还包括以下步骤:The present invention also proposes a method for providing zero temperature coefficient voltage and current, including providing the aforementioned bandgap reference source circuit, and further comprising the following steps:
设置误差放大器的正相输入端和反相输入端具有相等的电压;Set the non-inverting and inverting inputs of the error amplifier to have equal voltages;
调节第一电阻、第二电阻和第三电阻,使第二电阻上的正温度系数的电压与第一双极型晶体管的负温度系数的电压相加,得到零温度系数的第一电压;adjusting the first resistor, the second resistor and the third resistor so that the voltage of the positive temperature coefficient on the second resistor is added to the voltage of the negative temperature coefficient of the first bipolar transistor to obtain the first voltage of zero temperature coefficient;
调节第四电阻,使经过第四电阻的负温度系数的电流与第一双极型晶体管和第二双极型晶体管的正温度系数的电流相加,得到零温度系数的电流。The fourth resistor is adjusted so that the current with a negative temperature coefficient passing through the fourth resistor is added to the current with a positive temperature coefficient of the first bipolar transistor and the second bipolar transistor to obtain a current with a zero temperature coefficient.
作为上述技术方案的优选,当所述第四电阻由第五电阻和第六电阻串联替代时,所述方法还包括:As a preference of the above technical solution, when the fourth resistor is replaced by a fifth resistor and a sixth resistor in series, the method further includes:
调节所述第五电阻、第六电阻的相对大小,得到范围在0V和第一电压之间的零温度系数的第二电压。The relative sizes of the fifth resistor and the sixth resistor are adjusted to obtain a second voltage with zero temperature coefficient ranging between 0V and the first voltage.
本发明通过采用正温度系数电阻R4,得到一个负温度系数的电流,该电流与PTAT电流相加,得到一个零温度系数电流;利用产生的正温度系数电流,通过适当设置电阻R1、R2、R3的阻值,可以得到零温度系数电压VBG;并且VBG不受电阻R4的影响;在实际制备中,会使得器件偏离设计值,可以通过微调R1、R2、R3,得到零温度系数电压;通过微调R4的大小,得到零温度系数电流;利用电阻R4A、R4B的分压可以得到小于1V的带隙基准电压;通过调整R4A、R4B的比例,可实现多幅值大小的基准电压输出,给系统提供了更好的灵活性。The present invention obtains a current with a negative temperature coefficient by using the positive temperature coefficient resistor R4, and the current is added to the PTAT current to obtain a current with a zero temperature coefficient; using the generated positive temperature coefficient current, by properly setting the resistors R1, R2, and R3 The zero temperature coefficient voltage VBG can be obtained; and VBG is not affected by the resistance R4; in actual preparation, the device will deviate from the design value, and the zero temperature coefficient voltage can be obtained by fine-tuning R1, R2, and R3; by fine-tuning The size of R4 can get zero temperature coefficient current; the bandgap reference voltage less than 1V can be obtained by dividing the voltage of resistors R4A and R4B; by adjusting the ratio of R4A and R4B, the reference voltage output of multiple amplitudes can be realized, and the better flexibility.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, and are used together with the embodiments of the present invention to explain the present invention, and do not constitute a limitation to the present invention. In the attached picture:
图1是本发明实施例提出的带隙基准参考源电路的结构图;1 is a structural diagram of a bandgap reference source circuit proposed by an embodiment of the present invention;
图2是本发明实施例提出的另一种带隙基准参考源电路的结构图;FIG. 2 is a structural diagram of another bandgap reference source circuit proposed by an embodiment of the present invention;
图3是本发明实施例提出的又一种带隙基准参考源电路的结构图;3 is a structural diagram of another bandgap reference source circuit proposed by an embodiment of the present invention;
图4是本发明实施例中提供零温度系数电压和电流的方法的流程图。FIG. 4 is a flowchart of a method for providing zero temperature coefficient voltage and current in an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
如图1所示为本发明实施例提出的带隙基准参考源电路,包括:As shown in Figure 1, the bandgap reference source circuit proposed by the embodiment of the present invention includes:
第一双极型晶体管Q1、第二双极型晶体管Q2、第一晶体管M1、第二晶体管M2、运算放大器A、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4;其中:A first bipolar transistor Q1, a second bipolar transistor Q2, a first transistor M1, a second transistor M2, an operational amplifier A, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4; in:
第一双极型晶体管Q1的集电极和基极接地,发射极连接第二电阻R2的一端和运算放大器A的反相输入端VN;The collector and base of the first bipolar transistor Q1 are grounded, and the emitter is connected to one end of the second resistor R2 and the inverting input terminal VN of the operational amplifier A;
第二双极型晶体管Q2的集电极和基极接地,发射极连接第一电阻R1的一端,第一电阻R1的另一端连接第三电阻R3的一端和运算放大器A的正相输入端VP;The collector and the base of the second bipolar transistor Q2 are grounded, the emitter is connected to one end of the first resistor R1, and the other end of the first resistor R1 is connected to one end of the third resistor R3 and the non-inverting input terminal VP of the operational amplifier A;
第一晶体管M1的漏极连接第二电阻R2的另一端、第三电阻R3的另一端、第四电阻R4的一端,第四电阻R4的另一端接地;The drain of the first transistor M1 is connected to the other end of the second resistor R2, the other end of the third resistor R3, and one end of the fourth resistor R4, and the other end of the fourth resistor R4 is grounded;
第一晶体管M1的栅极和第二晶体管M2的栅极连接运算放大器A的输出端;第一晶体管M1的源极和第二晶体管M2的源极连接电源VDD;第二晶体管M2的漏端为零温度系数电流输出端;The gate of the first transistor M1 and the gate of the second transistor M2 are connected to the output terminal of the operational amplifier A; the source of the first transistor M1 and the source of the second transistor M2 are connected to the power supply VDD; the drain of the second transistor M2 is Zero temperature coefficient current output;
其中,第一电阻R1、第二电阻R2、第三电阻R3为正温度系数的电阻或负温度系数的电阻,第四电阻R4为正温度系数的电阻,且第四电阻R4的正温度系数大于第一电阻R1、第二电阻R2、第三电阻R3的温度系数的绝对值。Wherein, the first resistor R1, the second resistor R2, and the third resistor R3 are resistors with a positive temperature coefficient or a resistor with a negative temperature coefficient, and the fourth resistor R4 is a resistor with a positive temperature coefficient, and the positive temperature coefficient of the fourth resistor R4 is greater than The absolute values of the temperature coefficients of the first resistor R1, the second resistor R2, and the third resistor R3.
以下,详细说明本发明实施例提出的带隙基准参考源电路的原理:In the following, the principle of the bandgap reference source circuit proposed in the embodiment of the present invention will be described in detail:
首先做出如下假设:First make the following assumptions:
1、误差放大器A的增益足够大,并且输入阻抗无穷大,使得VP、VN点的电压相等;1. The gain of the error amplifier A is large enough, and the input impedance is infinite, so that the voltages of the VP and VN points are equal;
2、忽略电路中的失配,如电阻间的失配、晶体管间的失配,双极型晶体管间的失配。2. Ignore mismatches in the circuit, such as mismatches between resistors, mismatches between transistors, and mismatches between bipolar transistors.
双极型晶体管的集电极电流与其发射极-基极电压之间的关系为:The relationship between the collector current of a bipolar transistor and its emitter-base voltage is:
其中,Is为双极型晶体管的饱和电流,VT为热电压,VT=KT/q;K为波尔兹曼常数,T为绝对温度,q为电子电荷,VEB为双极型晶体管的发射极-基极电压。Among them, I s is the saturation current of the bipolar transistor, V T is the thermal voltage, V T =KT/q; K is the Boltzmann constant, T is the absolute temperature, q is the electronic charge, and V EB is the bipolar The emitter-base voltage of a transistor.
双极型晶体管中的电流为:The current in a bipolar transistor is:
其中,IC=IB×βF,IB为双极型晶体管的基极电流,βF为直流放大系数。Wherein, I C =I B ×β F , I B is the base current of the bipolar transistor, and β F is the DC amplification factor.
所以,双极型晶体管的发射极-基极电压为:Therefore, the emitter-base voltage of a bipolar transistor is:
在图1中,电阻R2、R3大小相等,误差放大器A的正负输入端电压也相等,所以电阻R2、R3中的电流相等;因此第一双极型晶体管Q1、第二双极型Q2中的电流IQ1、IQ2相等,二者的发射极-基极电压之差为In Figure 1, resistors R2 and R3 are equal in size, and the voltages of the positive and negative input terminals of error amplifier A are also equal, so the currents in resistors R2 and R3 are equal; therefore, in the first bipolar transistor Q1 and the second bipolar transistor Q2 The currents I Q1 and I Q2 are equal, and the difference between the emitter-base voltage of the two is
在式(4)中,假定第一双极型晶体管Q1、第二双极型晶体管Q2的发射极面积之比为1:N,因此二者的饱和电流之比:In formula (4), it is assumed that the ratio of the emitter areas of the first bipolar transistor Q1 and the second bipolar transistor Q2 is 1:N, so the ratio of the saturation current of the two is:
Is1:Is2=1:N (5)I s1 :I s2 =1:N (5)
因此,第一双极型晶体管Q1、第二双极型晶体管Q2的发射极-基极电压之差为:Therefore, the difference between the emitter-base voltages of the first bipolar transistor Q1 and the second bipolar transistor Q2 is:
ΔVEB=VT·lnN (6)ΔV EB =V T ·lnN (6)
从图1中看到,第一双极型晶体管Q1、第二双极型晶体管Q2中的电流等于电阻R1中电流:It can be seen from Figure 1 that the current in the first bipolar transistor Q1 and the second bipolar transistor Q2 is equal to the current in the resistor R1:
由此可见,第一双极型晶体管Q1电流IQ1、第二双极型晶体管Q2电流IQ2为正温度系数的电流。It can be seen that the current I Q1 of the first bipolar transistor Q1 and the current I Q2 of the second bipolar transistor Q2 are currents with positive temperature coefficients.
输出电压VBG为:The output voltage VBG is:
其中,VEB1为第一双极型晶体管Q1的负温度系数的电压,产生正比于温度的正温度系数的电压,通过适当设置电阻R1、R2、R3的阻值,可以得到零温度系数电压VBG,并且VBG不受电阻R4的影响。where V EB1 is the voltage with a negative temperature coefficient of the first bipolar transistor Q1, A voltage with a positive temperature coefficient proportional to the temperature is generated. By properly setting the resistance values of the resistors R1, R2, and R3, a zero temperature coefficient voltage VBG can be obtained, and VBG is not affected by the resistor R4.
因晶体管M1与M2尺寸相等,二者电流也相等,大小为第一双极型晶体管Q1电流IQ1、第二双极型晶体管Q2电流IQ2和电阻R4中电流IR4之和:Because the transistors M1 and M2 are equal in size, their currents are also equal, which is the sum of the current I Q1 of the first bipolar transistor Q1, the current I Q2 of the second bipolar transistor Q2, and the current I R4 in the resistor R4:
IM1=IM2=IQ1+IQ2+IR4 (9)IM1=IM2=I Q1 +I Q2 +I R4 (9)
其中,第一双极型晶体管Q1电流IQ1、第二双极型晶体管Q2电流IQ2为正温度系数的电流,电阻R4中电流IR4为负温度系数的电流,通过适当选择R4的大小,可以得到零温度系数电流,将晶体管M1中的电流镜像给晶体管M2,因此,可采用晶体管M2向外提供零温度系数的电流,同时不影响零温度系数电压VBG。Wherein, the current I Q1 of the first bipolar transistor Q1 and the current I Q2 of the second bipolar transistor Q2 are currents with a positive temperature coefficient, and the current I R4 in the resistor R4 is a current with a negative temperature coefficient. By properly selecting the size of R4, The zero temperature coefficient current can be obtained, and the current in the transistor M1 is mirrored to the transistor M2. Therefore, the transistor M2 can be used to provide a zero temperature coefficient current without affecting the zero temperature coefficient voltage VBG.
如图2所示的实施例中,将上述第四电阻R4替换为两个串联的电阻R4A和R4B,由此,可以获取电阻R4B上的电压VBGLV:In the embodiment shown in FIG. 2, the above-mentioned fourth resistor R4 is replaced by two series connected resistors R4A and R4B, thus, the voltage VBGLV on the resistor R4B can be obtained:
电压VBGLV也是一个零温度系数的电压,通过调整R4A、R4B的相对大小,可以调整VBGLV的大小,使其在0V和VBG之间变化。The voltage VBGLV is also a voltage with zero temperature coefficient. By adjusting the relative size of R4A and R4B, the size of VBGLV can be adjusted to change between 0V and VBG.
如图3所示的实施例中,对带隙基准参考源电路进行了进一步的改进,具体地,该带隙基准参考源电路包括:In the embodiment shown in Figure 3, the bandgap reference source circuit is further improved, specifically, the bandgap reference source circuit includes:
第一双极型晶体管Q1、第二双极型晶体管Q2、第一晶体管M1、第二晶体管M2、运算放大器A、第一电阻R1、第二电阻R2、第三电阻R3、第五电阻R4A、第六电阻R4B、第七电阻R23;其中:The first bipolar transistor Q1, the second bipolar transistor Q2, the first transistor M1, the second transistor M2, the operational amplifier A, the first resistor R1, the second resistor R2, the third resistor R3, the fifth resistor R4A, The sixth resistor R4B, the seventh resistor R23; wherein:
第一双极型晶体管Q1的集电极和基极接地,发射极连接第二电阻R2的一端和运算放大器A的反相输入端VN;第二电阻R2的另一端连接第七电阻R23的一端;The collector and base of the first bipolar transistor Q1 are grounded, and the emitter is connected to one end of the second resistor R2 and the inverting input terminal VN of the operational amplifier A; the other end of the second resistor R2 is connected to one end of the seventh resistor R23;
第二双极型晶体管Q2的集电极和基极接地,发射极连接第一电阻R1的一端,第一电阻R1的另一端连接第三电阻R3的一端和运算放大器A的正相输入端VP;第三电阻R3的另一端连接第七电阻R23的一端;The collector and the base of the second bipolar transistor Q2 are grounded, the emitter is connected to one end of the first resistor R1, and the other end of the first resistor R1 is connected to one end of the third resistor R3 and the non-inverting input terminal VP of the operational amplifier A; The other end of the third resistor R3 is connected to one end of the seventh resistor R23;
第一晶体管M1的漏极连接第七电阻R23的另一端、第四电阻R4A的一端,第五电阻R4A的另一端连接第六电阻R4B的一端,第六电阻R4B的另一端接地;The drain of the first transistor M1 is connected to the other end of the seventh resistor R23 and one end of the fourth resistor R4A, the other end of the fifth resistor R4A is connected to one end of the sixth resistor R4B, and the other end of the sixth resistor R4B is grounded;
第一晶体管M1的栅极和第二晶体管M2的栅极连接运算放大器A的输出端;第一晶体管M1的源极和第二晶体管M2的源极连接电源VDD;第二晶体管M2的漏端为零温度系数电流输出端;The gate of the first transistor M1 and the gate of the second transistor M2 are connected to the output terminal of the operational amplifier A; the source of the first transistor M1 and the source of the second transistor M2 are connected to the power supply VDD; the drain of the second transistor M2 is Zero temperature coefficient current output;
其中,第一电阻R1、第二电阻R2、第三电阻R3为正温度系数的电阻或负温度系数的电阻,第四电阻R4为正温度系数的电阻,且第四电阻R4的正温度系数大于第一电阻R1、第二电阻R2、第三电阻R3的温度系数的绝对值。Wherein, the first resistor R1, the second resistor R2, and the third resistor R3 are resistors with a positive temperature coefficient or a resistor with a negative temperature coefficient, and the fourth resistor R4 is a resistor with a positive temperature coefficient, and the positive temperature coefficient of the fourth resistor R4 is greater than The absolute values of the temperature coefficients of the first resistor R1, the second resistor R2, and the third resistor R3.
添加第七电阻R23后,可以减小总的电阻大小,降低芯片面积,因为在实现同样压降时,R23中流过的电流为电阻R2、R3中电流之和,所以,这样可以使电阻的总阻值减小。After adding the seventh resistor R23, the total resistance size can be reduced and the chip area can be reduced, because when the same voltage drop is realized, the current flowing through R23 is the sum of the currents in resistors R2 and R3, so this can make the total resistance The resistance value decreases.
如图4所示,本发明实施例提出的提供零温度系数电压和电流的方法,包括提供上述带隙基准参考源电路,还包括以下步骤:As shown in Figure 4, the method for providing zero temperature coefficient voltage and current proposed by the embodiment of the present invention includes providing the above-mentioned bandgap reference source circuit, and also includes the following steps:
设置误差放大器的正相输入端和反相输入端具有相等的电压;Set the non-inverting and inverting inputs of the error amplifier to have equal voltages;
调节第一电阻、第二电阻和第三电阻,使第二电阻上的正温度系数的电压与第一双极型晶体管的负温度系数的电压相加,得到零温度系数的第一电压;adjusting the first resistor, the second resistor and the third resistor so that the voltage of the positive temperature coefficient on the second resistor is added to the voltage of the negative temperature coefficient of the first bipolar transistor to obtain the first voltage of zero temperature coefficient;
调节第四电阻,使经过第四电阻的负温度系数的电流与第一双极型晶体管和第二双极型晶体管的正温度系数的电流相加,得到零温度系数的电流。The fourth resistor is adjusted so that the current with a negative temperature coefficient passing through the fourth resistor is added to the current with a positive temperature coefficient of the first bipolar transistor and the second bipolar transistor to obtain a current with a zero temperature coefficient.
优选的,当所述第四电阻由第五电阻和第六电阻串联替代时,所述方法还包括:Preferably, when the fourth resistor is replaced by a fifth resistor and a sixth resistor in series, the method further includes:
调节所述第五电阻、第六电阻的相对大小,得到范围在0V和第一电压之间的零温度系数的第二电压。The relative sizes of the fifth resistor and the sixth resistor are adjusted to obtain a second voltage with zero temperature coefficient ranging between 0V and the first voltage.
本发明通过采用正温度系数电阻R4,得到一个负温度系数的电流,该电流与PTAT电流相加,得到一个零温度系数电流;利用产生的正温度系数电流,通过适当设置电阻R1、R2、R3的阻值,可以得到零温度系数电压VBG;并且VBG不受电阻R4的影响;在实际制备中,会使得器件偏离设计值,可以通过微调R1、R2、R3,得到零温度系数电压;通过微调R4的大小,得到零温度系数电流;利用电阻R4A、R4B的分压可以得到小于1V的带隙基准电压;通过调整R4A、R4B的比例,可实现多幅值大小的基准电压输出,给系统提供了更好的灵活性。The present invention obtains a current with a negative temperature coefficient by using a positive temperature coefficient resistor R4, and this current is added to the PTAT current to obtain a current with a zero temperature coefficient; using the generated positive temperature coefficient current, by properly setting the resistors R1, R2, and R3 The zero temperature coefficient voltage VBG can be obtained; and VBG is not affected by the resistance R4; in actual preparation, the device will deviate from the design value, and the zero temperature coefficient voltage can be obtained by fine-tuning R1, R2, and R3; by fine-tuning The size of R4 can get zero temperature coefficient current; the bandgap reference voltage less than 1V can be obtained by dividing the voltage of resistors R4A and R4B; by adjusting the ratio of R4A and R4B, the reference voltage output of multiple amplitudes can be realized, and the better flexibility.
本领域内的技术人员应明白,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It should be understood by those skilled in the art that various changes and modifications can be made to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310215287.5A CN103677031B (en) | 2013-05-31 | 2013-05-31 | Method and circuit for providing zero-temperature coefficient voltage and zero-temperature coefficient current |
PCT/CN2013/086515 WO2014190670A1 (en) | 2013-05-31 | 2013-11-04 | Method and circuit for providing zero-temperature coefficient voltage and current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310215287.5A CN103677031B (en) | 2013-05-31 | 2013-05-31 | Method and circuit for providing zero-temperature coefficient voltage and zero-temperature coefficient current |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103677031A CN103677031A (en) | 2014-03-26 |
CN103677031B true CN103677031B (en) | 2015-01-28 |
Family
ID=50314905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310215287.5A Active CN103677031B (en) | 2013-05-31 | 2013-05-31 | Method and circuit for providing zero-temperature coefficient voltage and zero-temperature coefficient current |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103677031B (en) |
WO (1) | WO2014190670A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108469868B (en) * | 2018-06-07 | 2024-08-13 | 博为科技有限公司 | Temperature self-adaptive current source and optical module |
CN110825155B (en) * | 2019-12-06 | 2021-02-26 | 思瑞浦微电子科技(苏州)股份有限公司 | Zero temperature coefficient reference voltage and current source generating circuit |
CN111751693B (en) * | 2020-03-02 | 2022-10-14 | 上海料聚微电子有限公司 | Method and circuit for detecting current amplification factor of bipolar transistor |
CN111338415A (en) * | 2020-03-12 | 2020-06-26 | 珠海格力电器股份有限公司 | Temperature-independent reference voltage source design method, reference voltage source and air conditioner |
CN112506262A (en) * | 2020-12-29 | 2021-03-16 | 上海华力微电子有限公司 | High-utilization-rate band-gap reference circuit |
CN112667016A (en) * | 2020-12-29 | 2021-04-16 | 上海华力微电子有限公司 | Band-gap reference circuit system for high-precision correction of voltage temperature coefficient |
CN113778162B (en) * | 2021-10-27 | 2022-08-09 | 北京士模微电子有限责任公司 | Bandgap reference voltage generating circuit, integrated circuit, and electronic device |
CN114095011A (en) * | 2021-11-04 | 2022-02-25 | 上海川土微电子有限公司 | An analog front-end circuit with optocoupler characteristics |
CN114237338B (en) * | 2021-11-11 | 2025-04-22 | 福建星云电子股份有限公司 | A high-precision low-temperature drift voltage reference source |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5811993A (en) * | 1996-10-04 | 1998-09-22 | International Business Machines Corporation | Supply voltage independent bandgap based reference generator circuit for SOI/bulk CMOS technologies |
JP2003258105A (en) * | 2002-02-27 | 2003-09-12 | Ricoh Co Ltd | Reference voltage generating circuit, method of manufacturing the same, and power supply device using the same |
TWI228347B (en) * | 2004-04-23 | 2005-02-21 | Faraday Tech Corp | Bandgap reference circuit |
JP4469657B2 (en) * | 2004-05-28 | 2010-05-26 | 株式会社東芝 | Semiconductor memory device |
JP2006031246A (en) * | 2004-07-14 | 2006-02-02 | Seiko Epson Corp | Reference current generator |
JP2006262348A (en) * | 2005-03-18 | 2006-09-28 | Fujitsu Ltd | Semiconductor circuit |
US7230473B2 (en) * | 2005-03-21 | 2007-06-12 | Texas Instruments Incorporated | Precise and process-invariant bandgap reference circuit and method |
CN100489726C (en) * | 2006-03-24 | 2009-05-20 | 智原科技股份有限公司 | Bandgap reference circuit with low supply voltage and method for supplying bandgap reference current |
US20080157746A1 (en) * | 2006-12-29 | 2008-07-03 | Mediatek Inc. | Bandgap Reference Circuits |
US8149047B2 (en) * | 2008-03-20 | 2012-04-03 | Mediatek Inc. | Bandgap reference circuit with low operating voltage |
CN102419609B (en) * | 2010-09-27 | 2015-07-08 | 联咏科技股份有限公司 | Reference voltage and reference current generating circuit |
CN102141818B (en) * | 2011-02-18 | 2013-08-14 | 电子科技大学 | Self-adaptive temperature bandgap reference circuit |
-
2013
- 2013-05-31 CN CN201310215287.5A patent/CN103677031B/en active Active
- 2013-11-04 WO PCT/CN2013/086515 patent/WO2014190670A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN103677031A (en) | 2014-03-26 |
WO2014190670A1 (en) | 2014-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103677031B (en) | Method and circuit for providing zero-temperature coefficient voltage and zero-temperature coefficient current | |
CN101382812B (en) | Reference voltage circuit | |
CN100489726C (en) | Bandgap reference circuit with low supply voltage and method for supplying bandgap reference current | |
CN101807088B (en) | Bandgap reference circuit with output insensitive to offset voltage | |
CN102622031B (en) | Low-voltage high-precision band-gap reference voltage source | |
CN103353782B (en) | Low supply voltage bandgap reference circuit and method | |
CN103631297B (en) | Low pressure exports band-gap reference circuit | |
CN105022441B (en) | A Temperature-Independent Current Reference Source for Integrated Circuits | |
CN104199509B (en) | A kind of temperature-compensation circuit for band gap reference | |
CN107390771B (en) | The Fiducial reference source circuit with gap of various temperature characteristic reference electric current is generated simultaneously | |
CN104166423B (en) | A kind of reference source with compensation in full temperature range characteristic | |
CN103197716A (en) | Band-gap reference voltage circuit for reducing offset voltage influence | |
CN103399612B (en) | Resistance-less bandgap reference source | |
CN103529889A (en) | Low-noise CMOS integration reference voltage generation circuit | |
CN103412610A (en) | Low power consumption non-resistor full CMOS voltage reference circuit | |
CN105955384B (en) | Non-band-gap reference voltage source | |
CN103901937A (en) | Band-gap reference voltage source | |
CN103197722A (en) | Low-static-power current-mode band-gap reference voltage circuit | |
CN101149628B (en) | A reference voltage source circuit | |
CN204808098U (en) | Band gap reference circuit of low pressure low -power consumption | |
CN105320198A (en) | Low-power-consumption high-PSRR band-gap reference source | |
CN101320279B (en) | current generator | |
CN101276227A (en) | Reference current circuit | |
CN107608440A (en) | A kind of Fiducial reference source circuit with gap | |
CN103472878B (en) | Reference current source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |