CN103666483B - 液晶介质和液晶显示器 - Google Patents

液晶介质和液晶显示器 Download PDF

Info

Publication number
CN103666483B
CN103666483B CN201310437090.6A CN201310437090A CN103666483B CN 103666483 B CN103666483 B CN 103666483B CN 201310437090 A CN201310437090 A CN 201310437090A CN 103666483 B CN103666483 B CN 103666483B
Authority
CN
China
Prior art keywords
compound
independently
group
another
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310437090.6A
Other languages
English (en)
Other versions
CN103666483A (zh
Inventor
M·维特克
田中纪彦
M·菲舍尔
M·布雷默
E·杜马兹
M·里利弛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN103666483A publication Critical patent/CN103666483A/zh
Application granted granted Critical
Publication of CN103666483B publication Critical patent/CN103666483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • C09K19/3469Pyrimidine with a specific end-group other than alkyl, alkoxy or -C*-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • C09K19/0275Blue phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明涉及显示蓝相的介晶基质,其包含一种、两种或更多种式I‑A所示化合物,该化合物优选通过聚合物稳定化,

Description

液晶介质和液晶显示器
技术领域
本发明涉及化合物,包含这些化合物的介质,以及包含作为光调制介质的这些介质的电光显示器。优选地,本发明的化合物为介晶化合物,并且它们被优选用于液晶介质。特别地,根据本发明的电光显示器是在这样的温度下工作的显示器,在所述温度下介晶调制介质处于光学各向同性相,优选为蓝相。
背景技术
DE10217273A中描述了当在显示器中工作时,处于各向同性相的电光显示器和介晶光调制介质。WO2004/046805中描述了当在显示器中工作时,处于光学各向同性蓝相的介晶光调制介质和电光显示器。
例如,在EP1006109A1中提及了
例如,在WO2008/128623A1中,下式所示化合物
被建议用于IPS显示器的液晶介质。
EP2302015A1显示了
以及
在简单向列相主体混合物中的用途和以下化合物在正介电液晶混合物中的用途,
所述混合物包含下式所示手性化合物,
其表现出蓝相,并通过下式所述反应性介晶的光聚合来稳定化
除了别的化合物外,WO2010/058681A1提及下式所示表现出向列相的化合物,
还提及了除了其它例如以下化合物之外还包含这些化合物的光学各向同性液晶介质。
US7,070,838描述了包含2-二-或三氟甲基-1,4-苯环的可聚合化合物及其在可聚合混合物、液晶聚合物和具有胆甾醇相的液晶显示器和光学薄膜中的用途。其中还公开了具有以下结构的式1a-2-19具体化合物。
然而,没有公开该化合物在用于液晶显示器中的性质。此外,US7,070,838中没有记载这些化合物用于蓝相稳定化的应用或在PSA显示器中的应用,而根据US7,070,838,这些应用也并非显而易见的。
JP2005-015473A公开了包含不饱和间隔基团(亚炔基或亚烯基)的可聚合化合物。其中还公开了式1-13-77至1-13-84、1-13-134、1-13-135、1-56-9、1-56-10、1-56-23、1-56-24所示的包含经CF2O桥连接的苯环的具体化合物,以及其用于制备光学各向异性膜和铁电液晶介质的用途。例如,其中还公开了具有以下结构的具体化合物。
然而,JP2005-015473A没有描述这样的化合物用于蓝相的稳定化的应用或在PSA显示器中的应用,这些应用根据JP2005-015473也是非显而易见的。
US2009/0268143和US2010/0078593的申请文件请求保护包含具有负介电各向异性的环系统的二氟氧亚甲基桥联的可聚合化合物,该化合物作为用于各向异性膜的液晶混合物的组分。
然而,未公开这些化合物的在用于液晶显示器中的性质。此外,没有描述这样的化合物用于蓝相稳定化应用或在PSA显示器中的应用,这些应用根据这些申请文件也是非显而易见的。
与熟知的且广泛使用的采用向列相液晶的显示器,像例如以扭曲向列(TN)、超扭曲向列(STN)、具有各种变型的电控双折射(ECB)模式以及面内切换(IPS)模式工作的液晶显示器(LCD)相比,这些参考文献中描述的介晶介质和显示器提供一些显著的优点。在这些优点中,最突出的是它们更快速的转换时间和明显更宽的光学视角。
然而,与使用处于另一液晶相,如例如处于表面稳定型铁电液晶显示器(SSF LCD)中的近晶相的介晶介质的显示器相比,DE10217273.0和WO2004/046805的显示器更易于制造。例如,它们不需要特别薄的液晶盒间隙,此外电光效应对液晶盒间隙的微小变化不很敏感。
然而,在这些提及的专利申请中描述的液晶介质仍要求对于某些应用而言不够低的工作电压。而且,这些介质的工作电压随温度变化,并且通常观察到在某一温度下,电压随温度升高急剧升高。这限制了在蓝相中的液晶介质对于显示器应用的适用性。这些专利申请中描述的液晶介质的另一缺点是它们平庸的可靠性,这对于要求很高的应用是不够的。例如,这种平庸的可靠性可以以电压保持率(VHR)参数来表示,在上述液晶介质中,其可能低于90%。
已经报导了一些化合物和组合物具有介于胆甾醇相和各项同性相之间的蓝相,该蓝相通常可以通过光学显微镜观察到。被观察到蓝相的这些化合物和组合物一般为显示出高手性的单个液晶化合物或混合物。然而,观察到的蓝相一般仅在很小的温度范围内延伸,该温度范围通常小于1摄氏度宽,和/或蓝相存在于相当不便利的温度下。
然而,为了运行WO2004/046805的新型快速转换显示模式,使用的光调制介质不得不在包括环境温度的宽温度范围内处于蓝相。因此,需要具有尽可能宽且方便设定的蓝相的光调制介质。因此,对于具有宽相范围的蓝相的调制介质的需求很强烈,该调制介质可以通过适当的介晶化合物自身的混合物,或者优选通过将具有适当的介晶性质的主体混合物与单一掺杂剂或掺杂剂混合物混合来得到,所述掺杂剂或掺杂剂混合物在宽温度范围内稳定蓝相。
总之,需要可以在液晶显示器中工作的液晶介质,其在介质处于蓝相的温度下工作,提供以下技术改进:
-降低的工作电压,
-降低的工作电压对温度的依赖性以及
-改进的可靠性,例如VHR。
发明内容
令人惊奇地,现在已经发现了表现出蓝相并包含一种、两种或更多种式I-A所示的化合物的介晶介质,优选地,式I-A所示的化合物的总浓度为1%或更高至30%或更低,优选至25%或更低,
其中,
R1为直链或支链、优选具有1至20个C原子、未取代的,或被F、C1或CN,优选为F单取代或多取代的烷基,并且其中一个或多个CH2基团在每种情况下彼此独立地任选被-O-、-S-、-NR01-、-SiR01R02-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-、-CY01=CY02-或-C≡C-以使得O和/或S原子不直接彼此连接的方式替代;优选地,R1为具有1至9个C原子、优选具有2至5个C原子的正烷基或正烷氧基,具有2至9个C原子、优选具有2至5个C原子的烯基、烯氧基或烷氧烷基,或者优选具有最多9个C原子的卤代烷基、卤代烯基或卤代烷氧基;优选地,优选具有最多9个C原子的单氟代、二氟代或低氟代烷基、烯基或烷氧基;最优选地,R1为具有最多9个C原子的正烷基、正烷氧基、烯基、烯氧基或烷氧烷基;
L11和L12彼此独立地为H或F;优选地,一个为F,另一个为H或F;最优选地,两个均为F;
Y01和Y02彼此独立地为F、C1或CN;和替代选择地,它们之一可以为H,和;
R01和R02彼此独立地为H或具有1至12个C原子的烷基;
其中还包括了手性化合物,该介质使得介质具有可接受的高清亮点和/或具有针对温度和/或UV负载,特别是后者,相当高的电压保持率的稳定性。
同时,得到的介质的特征在于非常高的Δε值,很高的乘积值(ΔεΔn),还有有利的低粘度和良好的低温稳定性。
在本发明的优选实施方案中,介晶介质包含浓度为2%或更高,优选为3%或更高,最优选为5%或更高至20%或更低,优选至16%或更低,最优选至14%或更低的式I-A所示化合物。
在该实施方案中,优选地,介晶介质包含总浓度为5%或更高,优选为7%或更高至20%或更低,优选至15%或更低的组分A。
优选地,式I-A所示化合物选自式I-A-1和I-A-2,优选选自I-A-2所示化合物,
其中,R1具有上述式I-A下给出的定义。
在本发明另一个优选的实施方案中,介晶介质包含一种或多种式I-E所示化合物,
L01至L03彼此独立地为H或F;优选地,L01为F和/或L02为F;
R0为直链或支链、未取代的或被F、C1或CN,优选为F单取代或多取代的烷基,并且其中一个或多个CH2基团在每种情况下彼此独立地任选地被-O-、-S-、-NR01-、-SiR01R02-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-、-CY01=CY02-或-C≡C-以使得O和/或S原子不直接彼此连接的方式替代。
Y01和Y02彼此独立地为F、C1或CN,并且供选择地,它们之一可以为H;
R01和R02彼此独立地为H或具有1至12个C碳原子的烷基;
n为0或1。
在该优选的实施方案中,优选地,介晶介质包含一种或多种式I-E-1所示化合物,优选地,其浓度为2%至15%;
和/或一种或多种式I-E-2所示化合物,优选地,其浓度为4%至20%,
其中,R0具有上述式I-E下给出的定义,并且优选地为正烷基,最优选地为乙基、正丙基、正丁基、正戊基或正己基或正庚基,最优选为乙基或正丙基。
在本发明的优选实施方案中,介晶介质包含一种或多种式I-T所示化合物,
其中,
R1具有上述式I-A下给出的定义;和
L1为H或F,优选为F。
在本发明优选的实施方案中,介晶介质包含一种或多种选自式I-T-1和I-T-2所示的化合物的式I-T所示的化合物,
其中,
R1具有上述式I-T下给出的定义,并且优选为正烷基,最优选为乙基、正丙基、正丁基、正戊基或正己基。
在本发明另一个优选的实施方案中,介晶介质包含一种或多种式I-N所示的化合物,
其中,
R1、L1和n具有上述式I-A、I-E和I-T下给出的定义。
在本发明的另一个优选的实施方案中,介晶介质包含一种或多种选自式I-N-1和I-N-2所示化合物的式I-N所示化合物,
其中,
R1具有上述式I-N下给出的定义,优选为正烷基,最优选为乙基、正丙基、正丁基、正戊基或正己基。
还已经发现除了式I-A所示化合物和任选的式I-T、I-N和/或I-E所示化合物,或它们各自的优选的子式所示的化合物之外,包含一种或多种式II所示化合物的介晶介质,
其中,
m为0或1,
L21至L23彼此独立地为H或F;优选地,L21和L22均为F和/或L23为F;
R2为直链或支链、优选具有1至20个C原子、未取代的或被F,C1或CN,优选为F单取代或多取代的烷基,其中一个或多个CH2基团在每种情况下彼此独立地任选地被-O-、-S-、-NR01-、-SiR01R02-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-、-CY01=CY02-或-C≡C-以使得O和/或S原子不直接彼此连接的方式替代;优选地,R2为具有1至9个C原子、优选具有2至5个C原子的正烷基或正烷氧基,具有2至9个C原子、优选具有2至5个C原子的烯基、烯氧基或烷氧烷基,或者优选具有最多9个C原子的卤代烷基、卤代烯基或卤代烷氧基;优选地,优选具有最多9个C原子的单氟代、二氟代或低氟代烷基、烯基或烷氧基;最优选地,R2为具有优选最多9个C原子的正烷基、正烷氧基、烯基、烯氧基或烷氧烷基;
Y01和Y02彼此独立地为F、C1或CN,并且供选择地,它们之一可以为H;
R01和R02彼此独立地为H或具有1至12个C原子的烷基;
其中还包括手性化合物,所述介晶介质使得介质具有可接受的高清亮点和/或具有针对温度和/或UV负载,特别是后者,的相当高的电压保持率的稳定性。
在本发明优选的实施方案中,根据本发明的介质还包含一种或多种式III所示化合物,
其中,
R3具有上述式I-A中针对R1给出的定义。
在本发明优选的实施方案中,介晶介质包含一种或多种式III所示化合物,优选为一种或多种其中R3具有上述式III下给出的定义,更优选为正烷基,更优选为乙基、正丙基、正丁基、正戊基或正己基,最优选为正丁基的化合物。
优选地,根据本发明的介质还包含一种或多种选自式IV和V所示的化合物的化合物,
其中,
R4和R5彼此独立地为直链或支链、优选具有1至20个C原子、未取代的或被F、C1或CN,优选为F单取代或多取代的烷基,并且其中一个或多个CH2基团在每种情况下彼此独立地任选地被-O-、-S-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-或-C≡C-以使得O和/或S原子不直接彼此连接的方式替代;优选地,R4和R5为具有1至9个C原子、优选为2至5个C原子的正烷基或正烷氧基,具有2至9个C原子、优选为2至5个C原子的烯基、烯氧基或烷氧烷基,最优选地,R4或R5为具有优选最多9个C原子的正烷基、正烷氧基、烯基、烯氧基或烷氧烷基;
L5为H或F,优选为F,
n和m彼此独立地为0或1,优选地,m为1。
在本发明优选的实施方案中,介晶介质包含一种或多种式II所示化合物,优选地,式II所示化合物选自其子式II-1至II-8,优选为式II-1至II-4,最优选为式II-3所示的化合物,
其中,R2具有上述式II下给出的定义,优选为正丁基或正戊基。
在本发明优选的实施方案中,介晶介质包含一种或多种式IV所示化合物,优选地,式IV所示化合物选自其子式IV-1至IV-3,优选为式IV-3示的化合物,
其中,R4具有上述式IV下给出的定义。
在本发明优选的实施方案中,介晶介质包含一种或多种式V所示化合物,优选地,式V所示化合物选自其子式V-1和V-2所示的化合物,优选为式V-1所示的一种或多种化合物和式V-2所示的一种或多种化合物,
其中,R5和L5具有上述式V下给出的定义。
在本申请中,烷基或烷氧基,即末端CH2基团被-O-替代的烷基可以是直链或支链的。优选地,其为直链的,具有1、2、3、4、5、6、7或8个碳原子,相应地优选为甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基或辛氧基,还有例如壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、壬氧基、癸氧基、十一烷氧基、十二烷氧基、十三烷氧基或十四烷氧基。
氧代烷基,即其中一个非末端CH2基团被-O-替代的烷基,其优选为例如直链2-氧代丙基(=甲氧甲基),2-(=乙氧甲基)或3-氧代丁基(2-甲氧乙基),2-、3-或4-氧代戊基,2-、3-、4-或5-氧代己基,2-、3-、4-、5-或6-氧代庚基,2-、3-、4-、5-、6-或7-氧代辛基,2-、3-、4-、5-、6-、7-或8-氧代壬基或2-、3-、4-、5-、6-、7-、8-或9-氧代癸基。
烯基,即其中一个或多个CH2基团被-CH=CH-替代的烷基,其可以直链或支链的。优选地,烯基为具有2至10个C的直链的,相应地优选为乙烯基,丙-1-烯基或丙-2-烯基,丁-1-、2-或丁-3-烯基,戊-1-、2-、3-或戊-4-烯基,己-1-、2-、3-、4-或己-5-烯基,庚-1-、2-、3-、4-、5-或庚-6-烯基,辛-1-、2-、3-、4-、5-、6-或辛-7-烯基,壬-1-、2-、3-、4-、5-、6-、7-或壬-8-烯基,癸-1-、2-、3-、4-、5-、6-、7-、8-或癸-9-烯基。
特别优选的烯基为C2-C7-1E-烯基,C4-C7-3E-烯基,C5-C7-4-烯基,C6-C7-5-烯基和C7-6-烯基,特别是C2-C7-1E-烯基、C4-C7-3E-烯基和C5-C7-4-烯基。特别优选的烯基的例子为乙烯基、1E-丙烯基、1E-丁烯基、1E-戊烯基、1E-己烯基、1E-庚烯基、3-丁烯基、3E-戊烯基、3E-己烯基、3E-庚烯基、4-戊烯基、4Z-己烯基、4E-己烯基、4Z-庚烯基、5-己烯基、6-庚烯基等。具有最多5个C原子的基团通常是优选的。
在其中一个CH2被-O-替代而一个CH2被-CO-替代的烷基基团中,这些基团优选为相邻的。相应地,这些基团一起形成了羰氧基基团-CO-O-或氧羰基基团-O-CO-。优选地,这样的烷基基团是直链的并具有2至6个C原子。
相应地,其优选为乙酰氧基、丙酰氧基、丁酰氧基、戊酰氧基、己酰氧基、乙酰氧基甲基、丙酰氧基甲基、丁酰氧基甲基、戊酰氧基甲基、2-乙酰氧基乙基、2-丙酰氧基乙基、2-丁酰氧基乙基、3-乙酰氧基丙基、3-丙酰氧基丙基、4-乙酰氧基丁基、甲氧羰基、乙氧羰基、丙氧羰基、丁氧羰基、戊氧羰基、甲氧羰基甲基、乙氧羰基甲基、丙氧羰基甲基、丁氧羰基甲基、2-(甲氧羰基)乙基、2-(乙氧羰基)乙基、2-(丙氧羰基)乙基、3-(甲氧羰基)丙基、3-(乙氧羰基)丙基、4-(甲氧羰基)-丁基。
其中两个或更多个CH2基团被-O-和/或-COO-替代的烷基可以是直链或支链的。其优选为直链的并具有3至12个C原子。相应地,其优选为双羧基甲基、2,2-双羧基乙基、3,3-双羧基丙基、4,4-双羧基丁基、5,5-双羧基戊基、6,6-双羧基己基、7,7-双羧基庚基、8,8-双羧基辛基、9,9-双羧基壬基、10,10-双羧基癸基、二-(甲氧羰基)-甲基、2,2-双-(甲氧羰基)-乙基、3,3-双-(甲氧羰基)-丙基、4,4-双-(甲氧羰基)-丁基、5,5-双-(甲氧羰基)-戊基、6,6-双-(甲氧羰基)-己基、7,7-双-(甲氧羰基)-庚基、8,8-双-(甲氧羰基)-辛基、双-(乙氧羰基)-甲基、2,2-双-(乙氧羰基)-乙基、3,3-双-(乙氧羰基)-丙基、4,4-双-(乙氧羰基)-丁基、5,5-双-(乙氧羰基)-己基。
被CN或CF3单取代的烷基或烯基基团优选为直链的。CN或CF3取代可以在任何希望的位置发生。
至少被卤素单取代的烷基或烯基基团优选为直链的。卤素优选为F或C1,在多取代的情况下优选为F。得到的基团还包括全氟代基团。在单取代的情况下,F或C1取代基可以在任何希望的位置,但优选在ω-位。特别优选的具有末端F取代基的直链基团的例子为氟甲基、2-氟乙基、3-氟丙基、4-氟丁基、5-氟戊基、6-氟己基和7-氟庚基。然而,其他的F位置不排除在外。
卤素是指F、C1、Br和I,优选为F或C1,最优选为F。
R1至R5以及R0中的每一个可以是极性或非极性基团。在极性基团的情况下,优选地,其选自CN、SF5、卤素、OCH3、SCN、COR5、COOR5或具有1至4个C原子的单氟代、低氟代或多氟代烷基或烷氧基基团。R5为任选氟取代的具有1至4个、优选为1至3个C原子的烷基。特别优选的极性基团选自F、C1、CN、OCH3、COCH3、COC2H5、COOCH3、COOC2H5、CF3、CHF2、CH2F、OCF3、OCHF2、OCH2F、C2F5和OC2F5,特别是F、C1、CN、CF3、OCHF2和OCF3。在非极性基团的情况下,其优选为具有最多15个C原子的烷基或具有2至15个C原子的烷氧基。
R1至R5以及R0中的每一个可以是非手性的或手性基团。在手性基团的情况下,其优选为式I*所示的:
其中,
Q1为具有1至9个C原子的亚烷基或亚烷氧基或单键;
Q2为具有1至10个C原子的烷基或烷氧基,其可以是未取代的,被F、C1、Br或CN单取代或多取代;一个或多个不邻近的CH2基团也可以在每种情况下彼此独立地被-C≡C-、-O-、-S-、-NH-、-N(CH3)-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-或-CO-S-以使得氧原子不彼此直接连接的方式替代;
Q3为F,C1,Br,CN或如针对Q2所定义的烷基或烷氧基基团,但不同于Q2
在式I*中的Q1为亚烷氧基的情况下,优选地,氧原子与手性C原子相邻。
优选的式I*所示的手性基团为2-烷基、2-烷氧基、2-甲基烷基、2-甲基烷氧基、2-氟烷基、2-氟烷氧基、2-(2-乙炔)-烷基、2-(2-乙炔)-烷氧基、1,1,1-三氟-2-烷基和1,1,1-三氟-2-烷氧基。
特别优选的手性基团I*例如为2-丁基(=1-甲基丙基)、2-甲基丁基、2-甲基戊基、3-甲基戊基、2-乙基己基、2-丙基戊基,特别是例如2-甲基丁基、2-甲基丁氧基、2-甲基戊氧基、3-甲基戊氧基、2-乙基己氧基、1-甲基己氧基、2-辛氧基、2-氧代-3-甲基丁基、3-氧代-4-甲基戊基、4-甲基己基、2-己基、2-辛基、2-壬基、2-癸基、2-十二烷基、6-甲氧辛氧基、6-甲基辛氧基、6-甲基辛酰氧基、5-甲基庚基氧羰基、2-甲基丁酰氧基、3-甲基戊酰氧基、4-甲基己酰氧基、2-氯丙酰氧基、2-氯-3-甲基丁酰氧基、2-氯-4-甲基戊酰氧基、2-氯-3-甲基戊酰氧基、2-甲基-3-氧代戊基、2-甲基-3-氧代己基、1-甲氧丙基-2-氧基、1-乙氧丙基-2-氧基、1-丙氧丙基-2-氧基、1-丁氧丙基-2-氧基、2-氟辛氧基、2-氟癸氧基、1,1,1-三氟-2-辛氧基、1,1,1-三氟-2-辛基、2-氟甲基辛氧基。非常优选的是2-己基、2-辛基、2-辛氧基、1,1,1-三氟-2-己基、1,1,1-三氟-2-辛基和1,1,1-三氟-2-辛氧基。
此外,包含非手性支链烷基基团的化合物有时很重要,例如归因于结晶趋势的下降。这类支链基团通常不包含超过一个的支链。优选的非手性支链基团为异丙基、异丁基(=甲基丙基)、异戊基(=3-甲基丁基),异丙氧基、2-甲基丙氧基和3-甲基丁氧基。
优选地,根据本发明的对应地液晶介质包含一种或多种反应性化合物或者可聚合的化合物,每种对应地包含一种、两种或更多种反应性基团或者可聚合的基团。优选地,通过形成具有矩阵或网络形式的聚合物使介晶材料稳定为蓝相。
针对在显示器应用中的用途,普通材料凭借自身表现出蓝相(BP)的温度范围一般不够宽。这样的材料通常具有蓝相,该蓝相仅在某些温度,例如约3至4°的小温度范围内延伸。因此,为了使这样的材料适合于实际应用如在显示器中的应用,需要额外的延伸蓝相温度范围的稳定化。
为了通过形成聚合物稳定蓝相,方便地将配制的蓝相主体混合物与适合的手性掺杂剂(一种或多种适合的手性化合物)和一种或多种反应性化合物(优选为反应性介晶化合物(RM))混合。将得到的混合物填充到液晶盒或显示面板中。然后将液晶盒/面板维持在某一温度下,在该温度下混合物处于蓝相,例如将其加热或冷却直至在某温度下可以观察到蓝相。在整个聚合反应过程期间保持该温度。聚合反应过程通常通过普通中压汞蒸气灯的UV照射来控制。标准条件是例如在380nm波长下采用3mW/cm2180秒。为了避免对液晶材料的损害,还可以使用适合的光过滤器。
下文简要说明了得到的聚合物稳定化的蓝相(BP)的稳定性标准。
确保出色的聚合物稳定化质量对于PS-BP在显示器中的应用很关键。聚合物稳定化的质量通过几个标准判定。光学检验确保良好的聚合。在测试盒/面板中观察到的任何缺陷和/或浑浊都是非最佳聚合物稳定化的指示。在不同负载/应力条件下的电光检验确保PS-BP的长期稳定性。通常的显示参数是所谓的记忆效应(ME)。记忆效应被定义为开启的对比度和关闭的对比度的比值,它是在已经执行了一次或多次开关循环后剩余的透射率的标准化测量。该记忆效应值为1.0表明出色的聚合物稳定化。该记忆效应值超过1.1表明蓝相稳定化不够。
本发明还涉及包含一种或多种选自式I-A和任选的式I-E、I-T、I-N、II、III、IV、V所示的化合物的化合物,一种或多种手性掺杂剂和一种或多种式P所示化合物的液晶介质,以及通过一种或多种式P所示化合物的单独聚合,或与一种或多种另外的来自各自混合物的可聚合化合物一起聚合获得的聚合物稳定化系统,和这样的稳定化的系统在具有蓝相的电光显示器中的用途。
Pa-(Spa)s1-(A1-Z1)n1-A2-Q-A3-(Z4-A4)n2-(Spb)s2-Pb P
其中,各个基团具有以下定义:
Pa、Pb每个彼此独立地为可聚合基团;
Spa、Spb每个彼此独立地表示间隔基团;
s1、s2每个彼此独立地表示0或1;
n1、n2每个彼此独立地表示0或1,优选为0;
Q表示-CF2O-、-OCF2-、-CH2O-、-OCH2-、-(CO)O-、-O(CO)-、-(CH2)4-、-CH2CH2-、-CF2-CF2-、-CF2-CH2-、-CH2-CF2-、-CH=CH-、-CF=CF-、-CF=CH-、-(CH2)3O-、-O(CH2)3-、-CH=CF-、-C≡C-、-O-、-CH2-、-(CH2)3-、-CF2-、优选为-CF2O-;
Z1、Z4表示单键、-CF2O-、-OCF2-、-CH2O-、-OCH2-、-(CO)O-、-O(CO)-、-(CH2)4-、-CH2CH2-、-CF2-CF2-、-CF2-CH2-、-CH2-CF2-、-CH=CH-、-CF=CF-、-CF=CH-、-(CH2)3O-、-O(CH2)3-、-CH--CF-、-C≡C-、-O-、-CH2-、-(CH2)3-、-CF2-,其中Z1和Q或Z4和Q不同时表示选自-CF2O-和-OCF2-的基团。
A1、A2、A3、A4每个彼此独立地表示选自以下基团的二价基团:
a)反式-1,4-亚环己基,1,4-亚环己烯基和1,4’-二环亚己基,其中,此外,一个或多个非相邻的CH2基团可以被-O-和/或-S-替代;其中,此外,一个或多个H原子可以被F替代;
b)1,4-亚苯基和1,3-亚苯基,其中,此外,一个或两个CH基团可以被N替代;其中,此外,一个或多个H原子可以被L替代;
c)四氢吡喃-2,5-二基、1,3-二氧六环-2,5-二基、四氢呋喃-2,5-二基、环丁烷-1,3-二基、哌啶-1,4-二基、噻吩-2,5-二基和硒酚-2,5-二基,其中每一个还可以被L单或多取代;
d)饱和的、部分不饱和的或全不饱和的、任选取代的具有5至20个成环C原子的多环基团,此外,所述成环C原子中的一个或多个可以被杂原子替代,优选选自双环[1.1.1]戊烷-1,3-二基,双环[2.2.2]辛烷-1,4-二基,螺[3.3]庚烷-2,6-二基;
其中,此外,这些基团中的一个或多个H原子可以被L替代,和/或一个或多个双键可以被单键替代,和/或一个或多个CH基团可以被N替代;
L在每种情形下相同或不同,表示F、C1、CN、SCN、SF5,或直链或支链的、在每种情况下任选被氟代的具有1至12个C的烷基、烷氧基、烷基羰基、烷氧羰基、烷基羰氧基或烷氧羰基氧基;
R03、R04每个彼此独立地表示H、F或具有1至12个C原子的直链或支链烷基,此外,烷基中的一个或多个H原子可以被F替代;
M表示-O-、-S-、-CH2-、-CHY1-或-CY1Y2-;和
Y1和Y2每个彼此独立地具有上文显示的针对R0的定义中之一的定义,或表示C1或CN,和Y1和Y2之一供选择地表示-OCF3,优选为H、F、C1、CN或CF3
根据本发明优选使用的式P所示化合物选自以下式:
其中,在每种情形下,L相同或不同,具有上文和下文显示的定义之一,r表示0、1、2、3或4;s表示0、1、2或3,n表示1和24之间、优选1和12之间、非常特别优选2和8之间的整数,其中如果未表明基团处在单键或双键的末端,那么它为末端CH3或CH2基团。
在式P1至P24中,优选表示选自下式的基团:
特别优选为
基团A2-Q-A3优选表示下式表示的基团,
其中所述环的至少一个被至少一个基团L=F取代。在这里,在每种情况下,r独立地优选为0、1或2。
式P及其子式所示的化合物中的Pa和Pb优选表示丙烯酸酯基或甲基丙烯酸酯基,还有氟代丙烯酸酯基。式I及其子式所示的化合物中的Spa和Spb优选表示选自-(CH2)p1-、-(CH2)p1-O-、-(CH2)p1-O-CO-和-(CH2)p1-O-CO-O-以及其镜像的取代基,其中,p1表示1至12,优选1至6,特别优选1、2或3的整数,其中这些基团与Pa或Pb以使得O原子不直接相邻的方式连接。
在式P所示的化合物中,特别优选这样的化合物,其中,
-基团Pa和Pb选自乙烯氧基、丙烯酸酯基、甲基丙烯酸酯基、氟代丙烯酸酯基、氯代丙烯酸酯基、氧杂环丁烷基和环氧基,特别优选丙烯酸酯基或甲基丙烯酸酯基;
-基团Spa和Spb选自-(CH2)p1-、-(CH2)p1-O-、-(CH2)p1-O-CO-和-(CH2)p1-O-CO-O-以及其镜像,其中p1表示1至12,优选为1至6,特别优选为1、2或3的整数,其中这些基团以使得氧原子不直接相邻的方式连接至Pa或Pb;根据本发明优选的实施方案使用的式P所示化合物为恰好包含两个环的那些(n1=n2=0),所述环优选为6元环。特别优选的是选自下式所示化合物的化合物:
其中,Pa、Pb、Spa、Spb、s1和s2如上述式P所定义的,并且优选地,Spa/b为亚烷基-(CH2)n-,其中n优选为3、4、5、6或7,而Pa/b优选为甲基丙烯酸酯基或丙烯酸酯基。特别优选的是使用选自式Pa、Pb、Pc、Pd、Pe、Pf、Pg、Ph和Pi所示的化合物,特别是式Pa所示的化合物。
在式P中,基团“A2-Q-A3”优选为下式所示的基团,
其中,优选地,两个亚苯基环中的至少一个被至少一个不同于H的L取代,其中针对每个环r是独立的,且优选地,针对每个环r是0、1或2。
对于式P及其各个子式所示的化合物,优选地,Pa和Pb彼此独立地为丙烯酸酯基或甲基丙烯酸酯基,但还有氟代丙烯酸酯基;Spa和Spb彼此独立地为-(CH2)p1-、-(CH2)p1-O-、-O-(CH2)p1-、-(CH2)p1-O-CO-、-CO-O-(CH2)p1-、-(CH2)p1-O-CO-O-或-(CH2)p1-O-CO-O-,其中p1为1至12,优选为1至6,特别优选为1、2或3的整数,其中这些基团与Pa或Pb以使得没有0原子直接彼此相连的方式连接。
特别优选的是使用式P所示化合物,其中,
-Pa和Pb为乙烯氧基、丙烯酸酯基、甲基丙烯酸酯基、氟代丙烯酸酯基、氯代丙烯酸酯基、氧杂环丁烷基或环氧基,特别优选丙烯酸酯基或甲基丙烯酸酯基;
-Spa和Spb为-(CH2)p1-、-(CH2)p1-O-、-O-(CH2)p1-、-(CH2)p1-O-CO-、-CO-O-(CH2)p1-、-(CH2)p1-O-CO-O-或-(CH2)p1-O-CO-O-,其中p1为1至12,优选为1至6,特别优选为1、2或3的整数,其中这些基团与Pa或Pb以使得没有O原子直接彼此相连的方式连接。
为了生产根据本发明的聚合物稳定化的显示器,如果一种或多种化合物包含两个或更多个可聚合基团,则在施用电压通过在液晶显示器基板之间的液晶介质中的原位聚合,将可聚合的化合物聚合或交联。聚合反应可以一步进行。优选地,在材料,即包含手性化合物和聚合物前体的介晶混合物处于蓝相的温度下进行聚合。
适合的和优选的聚合方法为例如热聚合或光聚合,优选光聚合,特别是UV光聚合。这里还可以任选加入一种或多种引发剂。适合的聚合条件和适合的引发剂类型和量是本领域技术人员已知的,并且记载在文献中。例如,可商购的光引发剂 (Ciba AG)适合用于自由基聚合反应。如果使用引发剂,则其比例优选为0.001至5重量%,特别优选为0.001至1重量%。
根据本发明的可聚合化合物还适合于没有引发剂的聚合,这伴随着相当大的优点,例如较低的原料成本以及特别是液晶介质较少被可能的残余量的引发剂或其降解产物污染。因此,聚合也可以不加入引发剂而进行。因此,在优选的实施方案中,液晶介质不包含聚合引发剂。
可聚合组分或液晶介质还可以包含一种或多种稳定剂,以避免不期望的RM的自发聚合,例如在储存或运输期间。适合的稳定剂类型和量是本领域技术人员已知的并且记载在文献中。例如,系列(Ciba AG),例如1076的商购稳定剂是特别适合的。如果使用稳定剂,那么基于RM或可聚合组分的总量,它们的比例优选为10至10,000ppm,特别优选50至2,000ppm,最优选为0.2%或约0.2%。
根据本发明优选使用的式P所示可聚合的化合物可以单独地聚合,但是也可以聚合包含两种或更多种根据本发明的可聚合化合物的混合物,或包含一种或多种根据本发明的可聚合化合物和一种或多种其它优选为介晶或液晶的可聚合化合物(共聚单体)的混合物。在这些混合物发生聚合反应的情况下,形成共聚物。根据本发明的两种或更多种化合物的混合物,或包含根据本发明的一种或多种化合物和一种或多种另外的可聚合化合物的混合物是优选使用的。本发明还涉及上下文提及的可聚合混合物。可聚合化合物和共聚单体为介晶或非介晶的,优选为介晶的或液晶。
用在聚合物前体中适合并优选的共聚单体选自例如下式所示化合物,所述聚合物前体用于根据本发明的聚合物稳定化的显示器,
其中,参数具有如下定义:
P1和P2每个彼此独立地为可聚合基团,优选具有上下文针对Pa给出的定义之一,特别优选为丙烯酸酯基、甲基丙烯酸酯基、氟代丙烯酸酯基、氧杂环丁烷基、乙烯氧基或环氧基;
Sp1和Sp2每个彼此独立地为单键或间隔基团,优选具有上下文针对Spa给出的定义之一,特别优选为-(CH2)p1-、-(CH2)p1-O-、-(CH2)p1-CO-O-或-(CH2)p1-O-CO-O-,其中为p1为1至12的整数,其中最后提及的基团经O原子与邻近的环相连;
并且其中,还供选择地,P1-Sp1-和P2-Sp2-的一个或多个可以是Raa,条件是存在于化合物中的P1-Sp1-和P2-Sp2-的至少一个不是Raa
Raa为H、F、C1、CN、或具有1至25个C原子的直链或支链烷基,其中一个或多个不邻近的-CH2-基团可以彼此独立地被-C(R0)=C(R00)-、-C≡C-、-N(R0)-、-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-以使得O或S原子都不彼此直接相连的方式替代,其中一个或多个H原子还可以被F、C1、CN或P1-Sp1-替代,特别优选直链或支链、任选单或多氟代的具有1至12个C原子的烷基、烷氧基、烯基、炔基、烷基羰基、烷氧羰基或烷羰基氧基,其中烯基和炔基具有至少两个C原子并且支链基团具有至少三个C原子;
R0、R00每个在各种情形下彼此独立地为H或具有1至12个C原子的烷基;
Ry和Rz每个彼此独立地为H、F、CH3或CF3
Z1为-O-、-CO-、-C(RyRz)-或-CF2CF2-;
Z2和Z3每个彼此独立地为-CO-O-、-O-CO-、-CH2O-、-OCH2-、-CF2O-、-OCF2-或-(CH2)n-,其中n为2、3或4;
L在各种情形下彼此独立地为F、C1、CN、SCN、SF5,或直链或支链的、任选单或多氟代的具有1至12个碳原子的烷基、烷氧基、烯基、炔基、烷基羰基、烷氧羰基,烷基羰基氧基或烷氧羰基氧基,优选为F;
L′和L″每个彼此独立地为H、F或C1;
r为0、1、2、3或4;
s为0、1、2或3;
t为0、1或2;和
x为0或1。
适合和优选用在根据本申请的显示器中在介晶介质处于蓝相的温度下可工作和/或进行工作的共聚单体,例如选自单反应性化合物,该化合物以1至9重量%,特别优选为4至7重量%浓度范围存在于聚合物稳定化系统的前体中。优选的单反应性化合物为式M1至M29所示化合物,其中P1-Sp1-和P2-Sp2-的一个或多个为Raa,使得这样化合物仅具有单一反应性基团。
特别优选的单反应性化合物为下式所示化合物,
其中,P1、Sp1和Raa各自具有上文给出的定义。
在所述这些化合物中下式所示化合物,
是特别优选的,
其中,
n为整数,优选为偶数,其范围为1至16,优选为2至8;
m为范围在1至15,优选为2至7的整数。
对于上下文所描述的这样的液晶介质、液晶显示器、方法或用途特别优选的是这些,即其中液晶介质或存在于液晶介质中的可聚合的或聚合的组分包含一种或多种下式所示化合物:
其中,Pa、Pb、Spa、Spb、s1、s2和L具有上下文显示的定义,r表示0、1、2、3或4,Z2和Z3每个彼此独立地表示-CF2-O-或-O-CF2-,优选地,Z2为-CF2-O-且Z3为-O-CF2-,或反之依然,且最优选地Z2为-CF2-0-和Z3为-O-CF2-。
式I化合物可通过专业人员已知的常规方法得到。例如,起始原料可以是以下类型的商购可得到的或通过公开方法可获得的化合物。
优选地,根据本发明的液晶介质包含组分A,该组分A包含式I-A、I-E、I-T和I-N所示化合物,优选主要由以及最优选完全由式I-A、I-E、I-T和I-N所示化合物组成。
在涉及组合物的上下文中,本申请中的包含意味着所涉及的实体,例如介质或组分包含优选总浓度为10%或更高,最优选为20%或更高的被讨论的化合物。
在本申请上下文中,主要由...组成意味着所涉及的实体包含80%或更多,优选为90%或更多,最优选为95%或更多的被讨论的化合物。
在本申请上下文中,完全由...组成意味着所涉及的实体包含98%或更多,优选为99%或更多,最优选为100.0%的被讨论的化合物。
根据本申请的介质中包含的根据本发明的化合物的浓度优选为在0.5%或更高至70%或更低,更优选在1%或更高至60%或更低,最优选在5%或更高至50%或更低的范围内。
在优选的实施方案中,根据本发明的介晶调制介质包含:
-一种或多种式I-A所示化合物,优选地,其基于重量的总浓度为1%至30%,更优选地其基于重量的浓度为2%至25%,和/或
-一种或多种式I-T所示化合物,优选地,其基于重量的总浓度为50%至70%,更优选地其基于重量的浓度为55%至65%,以及
-优选地,每种单一化合物的浓度为3%至17%,更优选地,存在的每种单一化合物基于重量的浓度为5%至15%,和/或
-一种或多种式I-N所示化合物,优选地,其基于重量的总浓度为10%至45%,更优选地,其基于重量的浓度为15%至40%,以及
-优选地,每种单一化合物的浓度为1%至17%,更优选地,存在的每种单一化合物基于重量的浓度为3%至15%,和/或
-一种或多种式I-E所示化合物,优选地,其基于重量的总浓度为3%至30%,更优选地,其基于重量的浓度为5%至25%,以及最优选地,
-在浓度为1%至15%的情形下,更优选地,存在的每种单一化合物基于重量的浓度为3%至11%,和/或
-任选地,优选必须地,一种或多种选自式IV和V的化合物,如果存在,基于重量,优选的浓度为1%至15%,和/或
-一种或多种HTP≥20μm-1的手性化合物,优选地,基于重量,其浓度为1%至20%,和/或
-任选地,优选必须地,包含反应性化合物,优选包含反应性介晶的聚合物前体,其在聚合时能够并且优选确实地稳定蓝相的相范围和/或降低电光效应的温度依赖性,优选地,其浓度范围为5%或更高至15%或更低,优选为7%或更高至12%或更低,最优选8%或更高至11%或更低。
在本申请中,除非另外清楚地阐明,
-主体混合物的成分浓度是基于总主体混合物给出的,即排除手性掺杂剂和聚合物前体,
-手性掺杂剂的浓度是基于包含手性掺杂剂但排除聚合物前体的总主体混合物给出的,
-聚合物前体及其成分的浓度是基于总混合物,即由主体混合物、手性掺杂剂和聚合物前体组成的总混合物给出的。
优选地,本发明的混合物包含一种或多种总浓度范围为2%或更高至30%或更低,优选为3%或更高至20%或更低,且最优选为5%或更高至14%或更低的式I-A的化合物。
优选地,本发明的混合物包含一种或多种选自式I-T和I-N,以及任选的式I-E所示化合物的化合物,优选地,其总浓度范围为10%或更高至80%或更低,优选为20%或更高至70%或更低,最优选为35%或更高至55%或更低。
特别地,本发明的混合物优选包含一种或多种总浓度范围为10%或更高至70%或更低,优选为30%或更高至60%或更低,最优选为35%或更高至55%或更低的式I-T所示化合物。
特别地,本发明的混合物优选包含一种或多种总浓度范围为3%或更高至30%或更低,优选为5%或更高至25%或更低,最优选为5%或更高至20%或更低的式I-N所示化合物。
如果本发明的混合物包含一种或多种式I-E-1所示化合物,则这些化合物优选的总浓度范围为1%或更高至35%或更低,优选为3%或更高至30%或更低,最优选为4%或更高至25%或更低。
如果本发明的混合物包含一种或多种式I-E-2所示化合物,则这些化合物优选的总浓度范围为1%或更高至35%或更低,优选为3%或更高至30%或更低,最优选为4%或更高至25%或更低。
如果本发明的混合物包含一种或多种式V的化合物,则这些化合物优选的总浓度范围为1%或更高至15%或更低,优选为2%或更高至10%或更低,最优选为5%或更高至8%或更低。
适合的手性化合物为螺旋扭曲力的绝对值为20μm-1或更高,优选为40μm-1或更高,最优选为60μm-1或更高的手性化合物。在液晶介质MLC-6260中20℃下测定HTP。
优选地,根据本发明的介晶介质包含一种或多种具有介晶结构并优选自身表现出一种或多种介晶相,特别是至少一种胆甾醇相的手性化合物。除了其它的,优选的被包含在介晶介质中的手性化合物为熟知的手性掺杂剂,像胆甾醇壬酸酯(CN),R/S-1011、R/S-2011、R/S-3011、R/S-4011、R/S-5011、CB-15(Merck KGaA,Darmstadt,德国)。优选的是具有一个或多个手性基团和一个或多个介晶基团,或具有一个或多个与手性基团一起形成液晶基团的芳香环或脂环基团的手性掺杂剂。更优选的是DE3425503、DE3534777、DE3534778、DE3534779、DE3534780、DE4342280、EP01038941和DE19541820中公开的手性基团和介晶手性化合物,这些公开的内容通过引用的方式结合到本申请中。特别优选的是,EP01111954.2中公开的手性联萘衍生物,WO02/34739中公开的手性联萘酚衍生物,WO02/06265中公开的手性TADDOL衍生物,以及WO02/06196和WO02/06195中公开的具有至少一个氟代连接基和一个末端手性基团或一个中心手性基团的手性掺杂剂。
本发明的介晶介质具有特征温度,优选为清亮点,其范围在约+30℃至约90℃,特别是高达约70℃或者甚至80℃。
优选地,本发明的化合物包含一种或多种(两种、三种、四种或更多种)各自的范围为1-25重量%,优选为2-20重量%的手性化合物。特别优选的是,包含总计3-15重量%的一种或多种手性化合物的混合物。
下文显示优选的实施方案:
-介质包含一种、两种、三种、四种或更多种式I-T,优选为式I-T-1和/或I-T-2所示的化合物,和/或
-介质包含一种、两种、三种、四种或更多种式I-N,优选为式I-N-1和/或I-N-2所示的化合物,和/或
-介质包含一种、两种、三种、四种或更多种式I-E,优选为式I-E-1所示的化合物,和/或
-介质包含一种、两种或更多种式II,优选为式II-3所示的化合物,和/或
-介质包含一种或多种式III所示的化合物,和/或
-介质包含一种、两种或更多种式IV,优选为式IV-2所示的化合物,和/或
-介质包含一种、两种、三种或更多种式V所示的化合物,和/或
-介质包含一种、两种、三种或更多种手性化合物,优选其螺旋扭转力为20μm-1或更高,和/或
-介质包含一种、两种或更多种反应性化合物,优选为一种、两种或更多种反应性介晶化合物,优选为式P所示化合物,优选为其子式所示的一种或多种化合物,和/或一种或多种选自式M1至M29,优选为M16-A和/或M17-A,更优选为M17-A’的反应性介晶化合物。
已经发现甚至相对小比例的式I-A所示化合物与常规的液晶材料混合,但特别是与一种或多种式II和III所示化合物混合,导致工作电压降低且工作温度范围更宽。特别优选除了一种或多种式I-A所示化合物还包含一种或多种式III所示化合物,特别是其中R3为正丁基的式III所示化合物的混合物。
式I-A、I-T、I-N,I-E和II至V所示化合物为无色的、稳定的且容易彼此混溶以及容易与其它液晶材料混溶。
式I-A、I-T、I-N、I-E和II至V所示化合物的最佳混合比例实质上取决于期望的性质、对式I-A、I-T、I-N和/或I-E和II至V所示组分的选择以及对可能存在的任何其它组分的选择。能够根据各种情况在上文给出的范围内容易地确定适宜的混合比例。
只要化合物的总量为85%或更多时,在多数情况下,各个式I-A、I-T、I-N、I-E和II至V分别表示的化合物在根据本发明的混合物中的总量并不关键。
因此,出于优化各种性质的目的,混合物还可以包含一种或多种其它组分。然而,式I-A和任选的式I-T和/或I-N和/或任选的I-E所示化合物的总浓度越高,在工作电压和工作温度范围方面观察到的效果一般越突出。
可以优选用在根据本发明的介质中的式I-A、I-T、I-N、I-E和式II至V所示各种化合物或者是已知的,或者可以与已知化合物类似地制备。
根据本发明的MLC显示器由起偏器、电极基板和表面处理的电极构造,与该类显示器的传统结构相对应。这里采用的术语“传统构造”含义广泛,还涵盖了所有的MLC显示器的衍生品和变型,特别包括基于多Si TFT或MIM的矩阵显示器元件,但特别优选的是仅在基底之一上具有电极,即所谓的如用在IPS显示器中的叉指电极的优选在确定的结构之一中的显示器。
然而,根据本发明的显示器与基于扭转向列盒的传统显示器之间的显著区别在于液晶盒的液晶参数的选择。
根据本发明的介质按照自身的传统方式来制备。一般来说,将组分相互溶解,在升高的温度下进行更有利。通过适当的添加剂,根据本发明的液晶相可以被改性成它们可以用在至今已经公开的所有类型的液晶显示元件中。这类添加剂是本领域技术人员已知的,并详细记载在文献中(H.Ke1ker and R.Hatz,Handbook of Liquid Crystals,Ver1agChemie,Weinheim,1980)。例如,可以添加多色染料用于制备彩色的宾主型系统,或可以加入物质以改变介电各向异性、粘度和/或向列相的配向。此外,可以加入稳定剂和抗氧化剂。
根据本发明的混合物适合于TN、STN、ECB和IPS应用以及各向同性转换模式(ISM)应用。因此,它们在电光器件中的应用和在包含具有至少一种根据本发明的化合物的液晶介质的电光器件是本发明的主题。
本发明的混合物很适合以光学各向同性状态工作的器件。惊奇地发现本发明的混合物很适合各自的应用。
以光学各向同性状态工作或可工作的电光器件最近已经成为视频、电视和多媒体应用的关注点。这是因为利用基于液晶物理性质的电光效应的传统液晶显示器表现出相当长的转换时间,这是所述应用所不希望的。而且,大多数传统显示器显示出明显的对比度的视角依赖性,因此要采取必要的措施来弥补这种不希望的性质。
就利用各项同性状态下的电光效应的器件而言,例如德国专利申请DE10217273A1公开了在工作温度下用于调制的介晶控制介质处于各向同性相的光控(光调制)元件。这些光调制元件具有很短的转换时间和良好的对比度视角依赖性。然而,对于某些应用,所述元件的驱动或工作电压经常不适当地高。
德国专利申请DE10241301A1描述了使驱动电压显著降低的电极的特定结构。然而,这些电极使得光控元件的生产过程更为复杂。
而且,例如DE10217273A1和DE10241301中公开的光控元件显示出明显的温度依赖性。处于光学各向同性状态的控制介质中可以通过电场诱导电光效应,该电光效应在接近于控制介质清亮点的温度下最显著。在该范围内,光控元件具有其特征电压的最低值,因此需要最低的工作电压。随着温度升高,特征电压和因此的工作电压显著升高。温度依赖性的一般值处在约每摄氏度几伏直达每摄氏度约十或更多伏的范围内。DE10241301描述了用于在各向同性状态下可工作或工作的器件的电极的各种结构,而DE10217273A1公开了用在各向同性状态下可工作或工作的光控元件的不同组成的各向同性介质。在高于清亮点1摄氏度的温度下,这些光控元件中的阈值电压的相对温度依赖性处在约50%/摄氏度的范围内。温度依赖性随温度升高降低,使得其在高于清亮点5摄氏度的温度下为约10%/摄氏度。然而,对于利用所述光控元件的显示器的许多实际应用而言,电光效应的温度依赖性太高。相反地,对于实际应用,希望工作电压在至少某些摄氏度范围,优选为约5摄氏度或更高,甚至更优选为约10摄氏度或更高,特别是约20摄氏度或更高的温度范围内不依赖于工作温度。
现在已经发现,本发明的混合物很适合作为如上文和DE10217273A1、DE10241301A1和DE10253606A1中所述的光控元件中的控制介质,并且拓宽了所述电光元件的工作电压工作的温度范围。在这种情况下,光学各向同性状态或蓝相几乎完全或完全不依赖于工作电压。
如果如WO2004/046805A1中所述,介质控制介质表现出至少一种所谓“蓝相”,那么该效应也更明显。具有非常高的手性扭曲的液晶可以具有一个或多个光学各向同性相。如果它们具有各自的胆甾醇螺距,那么这些相在具有足够大的盒间隙的盒中可能出现浅蓝色。因此,那些相也被称为“蓝相”(Gray and Goodby,″Smectic Liquid Crystals,Textures and Structures″,Leonhard Hill,USA,Canada(1984))。例如,H.S.Kitzerow,″The Effect of E1ectric Fields on Blue Phases″,Mol.Cryst.Liq.Cryst.(1991),第202卷,第51-83页中描述了电场对存在于蓝相中的液晶的影响,以及到目前为止鉴定的三类可以在无场液晶中观察到的蓝相,即BP I、BP II和BP III。值得注意的是,如果表现出蓝相(一种或多种)的液晶被施以电场,可能出现不同于蓝相I、II和III的其它蓝相或其它相。
本发明的混合物可以用在电光光控元件中,所述元件包括
-一个或多个,特别是两个基板;
-电极组件;
-一个或多个用于偏振光的元件;和
-所述控制介质;
从而,当其处于非驱动状态时,所述光控元件在控制介质处于光各相同性相的温度下工作(或是可工作的)。
本发明的控制介质具有特征温度,其优选为清亮点,其范围在约-30℃至约90℃,特别是高达约70℃至80℃。
优选地,光控元件的工作温度高于控制介质的特征温度,所述温度通常为控制介质向蓝相转变的转变温度;一般地,工作温度在高于所述特征温度约0.1°至约50°,优选为约0.1°至约10°的范围内。特别优选的是工作温度处在从控制介质向蓝相转变的转变温度直至作为清亮点的控制介质向各向同性相转变的转变温度的范围内。然而,光控元件还可以在控制介质处在各向同性相的温度下工作。
出于本发明的目的,术语“特征温度”如下定义:
-如果作为温度的函数的特征电压具有最小值,那么该最小值下的温度被指定为特征温度。
-如果作为温度的函数的特征电压没有最小值,且如果控制介质具有一个或多个蓝相,那么向蓝相的转变温度被指定为特征温度;如果有超过一个的蓝相,那么向蓝相的最低转变温度被指定为特征温度。
-如果作为温度的函数的特征电压没有最小值,且如果控制介质没有蓝相,那么向各相同性相的转变温度被指定为特征温度。
在本发明的上下文中,只要未在说明书或权利要求书中的别处以不同的方式限定,术语“烷基”是指具有1至15个碳原子的直链和支链烃基(脂肪族)。烃基可以是未取代的或被一个或多个独立地选自F、C1、Br、I或CN的取代基取代。
电介质还可以包含本领域技术人员已知的和文献中描述的其它添加剂。例如,可以加入0至5%的多色染料、抗氧化剂或稳定剂。
C表示液晶相,S表示近晶相,SC表示近晶C相,N表示向列相,I表示各向同性相,BP表示蓝相。
VX表示对于X%透射率的电压。因此,例如,V10表示对于10%透射率的电压,V100表示用于100%透射率的电压(视角垂直于板平面)。ton(或τon)表示在对应于V100或者Vmax值的工作电压下的开启时间,toff(或τoff)表示在对应于V100或者Vmax值的工作电压下的关闭时间。ton为相对透射率从10%变化至90%的时间,而toff为相对透射率从90%变化至10%的时间。正如电光特性那样,采用来自德国Autronic Melchers的测量仪DMS确定响应时间。
Δn表示光学各向异性。Δε表示介电各向异性(△ε=ε||,其中,ε||表示平行于分子纵轴的介电常数,ε表示垂直于分子纵轴的介电常数)。除非另外明确地规定,在20℃下、在TN液晶盒中以第一最小透射率(即在0.5μm的d.Δn值下)测定电光数据。除非另外明确地规定,在20℃下测定光学数据。
任选地,为了调节物理性质,根据本发明的光调制介质可以包含另外的液晶化合物。这样的化合物是专业人员已知的。它们在根据本发明的介质中的浓度优选为0%至30%,更优选为0%至20%,最优选为5%至15%。
优选地,本发明的介质具有一定范围的蓝相,或者在出现超过一个蓝相的情形中,具有组合范围的蓝相,所述蓝相的宽度为20°或更大,优选为40°或更大,更优选为50°或更大,最优选为60°或更大。
在优选的实施方案中,该相的范围为至少从10℃至30℃,最优选为至少从10℃至40℃,最优选为至少从0℃至50℃,其中“至少”意味着相优选延伸至下限以下的温度,同时其延伸至上限以上的温度。
在另一优选的实施方案中,该相的范围为至少从20℃至40℃,最优选为至少从30℃至80℃,且最优选为至少从30℃至90℃。该实施方案特别适合于具有强背光、分散能量并因此使显示器发热的显示器。
优选地,本发明的介质具有150或更高,更优选200或更高,甚至更优选300或更高,最优选400或更高的介电各向异性。特别地,本发明介质的介电各向异性值优选为700或更低,更优选为550或更低,最优选为500或更低。
在本申请中,术语“正介电化合物”描述Δε>1.5的化合物,中性介电化合物为-1.5≤Δε≤1.5的化合物,而负介电化合物为Δε<-1.5的化合物。同样适用于组分。在1kHz和20℃下确定Δε。根据向列主体混合物中各种化合物10%的溶液的结果来确定化合物的介电各向异性。这些测试混合物的电容都是在具有垂面取向和沿面取向的盒中确定的。两种类型盒的盒间隙为约20μm。施用的电压为频率1kHz、均方根值一般为0.5V至1.0V的矩形波,然而选择的电压总是低于各测试混合物的电容阈值。
对于正介电化合物将混合物ZLI-4792,中性介电和负介电化合物ZLI-3086(均来自德国Merck KGaA),分别被用作主体混合物。在加入目标化合物时由主体混合物的各个数值的变化来确定化合物的介电常数,并推测到目标化合物的浓度为100%。
同样地,在20℃的测试温度下测定具有向列相的组分,所有其它的像化合物一样处理。
如果没有另外明确地规定,本申请中的术语“阈值电压”是指光学阈值,并针对10%的相对对比度(V10)给出;术语“饱和电压”是指光学饱和,并针对90%的相对对比度(V90)给出。如果明确地提及,仅使用电容阈值电压(V0,也叫Freedericksz阈值VFr)。
如果没有另外明确地规定,本申请给出的参数范围均包括极限值。
贯穿该申请,如果没有另外明确地规定,所有的浓度以质量百分比给出并涉及各个完整的混合物,所有的温度以摄氏度(Celsius)给出,所有的温度差别以摄氏度给出。如果没有另外明确地规定,所有的物理性质根据“Merck Liquid Crystals,PhysicalProperties of Liquid Crystals″,Status Nov.1997,Merck KGaA,Germany”已经确定或确定,并针对20℃的温度给出。在589.3nm的波长下确定光学各向异性(Δn)。在1kHz频率下确定介电各向异性(Δε)。已经采用在德国Merck KGaA制备的测试盒确定阈值电压以及其它电光性质。用于确定Δε的测试盒具有22μm的盒间隙。电极为面积1.13cm2的具有保护环的圆形ITO电极。取向层为对于垂面定向(ε)的卵磷脂和对于沿面定向(ε||)获自JapanSynthetic Rubber的聚酰亚胺AL-1054。以频率响应分析仪Solatron1260采用电压为0.3或0.1Vrms的正弦波确定电容。电光测量中使用的光为白光。使用的组件为日本Otsuka的商购仪器。已经通过垂直观察确定特征电压。已经分别针对10%、50%和90%的相对对比度,确定了阈值电压(V10)、中灰电压(mid-grey voltage,V50)和饱和电压(V90)。
介晶调制材料已经被填充到在Merck KGaA的各个设备制备的电光测试盒中。测试盒在基板一侧上具有叉指电极。电极宽度为10μm,邻近电极之间的距离为10μm,盒间隙也为10μm。已经在交叉偏振镜之间对该测试盒进行评价。
在低温下,填充的盒显示出手性向列混合物的典型织构,不施加电压的情况下交叉的起偏器之间具有光透射率。在加热时,在第一温度(T1)下,混合物转变为光学各向同性,交叉起偏器之间变暗。这表明在该温度下手性向列相向蓝相的转变。达到第二温度(T2)时,盒在施用电压的情况下显示出电光效应,所述电压一般为几十伏特,该范围的某一电压导致最大光透射率。一般地,在较高温度下,可见的电光效应所需的电压急剧增加,表明在该第二温度(T2)下蓝相向各向同性相转变。
混合物可以最有利地以蓝相进行电光应用的温度范围(ΔT(BP))已经被确定为T1至T2的范围。该温度范围(ΔT(BP))是本申请实施例中给出的温度范围。电光显示器也可以在超出该范围的温度下,即在高于T2的温度下工作,虽然只是在明显升高的工作电压下。
根据本发明的液晶介质还可以包含常规浓度的进一步的添加剂和手性掺杂剂。基于总混合物,这些另外的成分的总浓度范围为0%至10%,优选为0.1%至6%。使用的各个化合物的浓度范围均优选为0.1至3%。这些和类似的添加剂的浓度未被考虑进本申请中液晶介质的液晶组分和化合物的浓度值和范围内。
根据本发明的的液晶介质由若干种化合物,优选为3至30,更优选为5至20,最优选为6至14种化合物组成。这些化合物以常规方式混合。一般来说,以较小量使用的所需量的化合物溶解在以较大量使用的化合物中。如果温度高于以较大量使用的化合物的清亮点,那么特别容易观察到溶解过程完成。然而,还可能通过其它常规方式,例如使用所谓的预混物或使用所谓“多瓶体系(multi-bott1e-system)”制备介质,所述预混物可以是例如化合物的均一或低共熔混合物,所述多瓶体系的成分准备使用混合物本身。
通过加入适当的添加剂,根据本发明的液晶介质可以被改性使之能够用于所有已知类型的液晶显示器,所述液晶显示器以原样使用液晶介质,如TN-、TN-AMD、ECB-、VAN-AMD(垂直排列的向列相有源矩阵显示器),特别是在复合系统中,如PDLC-(聚合物分散的液晶)、NCAP-(向列型曲线排列的聚合物)和PN-(聚合物网络)LCD,特别是在HPDLC(全息PDLC)中。
贯穿本申请,液晶的熔点:T(K,N),T(K,S)或T(K,I);从一种近晶相(SX)向另一种近晶相(SY)的转变温度:T(SX,SY);从近晶相(S)向向列相(N)的转变温度:T(S,N);清亮点:T(N,I);和玻璃化转变温度:如适用的话,Tg以及任何其它温度均以摄氏度(即Celsius)给出。
式P及其子式所示化合物可以以与本领域技术人员已知的,以及有机化学权威著作,如Houben-Weyl,Methoden der organischen Chemie[Methods of OrganicChemistry],Thieme-Ver1ag,Stuttgart中记载的方法类似的方法来制备。
特别适合的和优选的式P及其子式所示化合物的制备方法通过举例的方式显示在以下方案中,并优选包括一个或几个下文所述的步骤。
本领域技术人员将能够以合适的方式修改合成方法,并由此获得根据本发明的其它化合物。例如,通过酚衍生物,例如化合物12与二噻烷盐13反应,获得特别优选的包含直接与环连接的烷氧基间隔基团或丙烯酸酯基的化合物。这里最初形成的化合物14被转化为化合物15。羟基基团随后可以以适合的方式被官能化,例如使用甲基丙烯酸通过酯化而官能化(参考方案1)。
在特别优选的实施方案中,根据本发明使用的式P所示化合物可以根据以下方案制备,在该式P所示化合物中,环通过-CF2-O-基团连接,反应基团经亚烷基间隔基团与环连接。
方案1:具有通过C-C单键连接的间隔基团的式P所示化合物的示例性合成
在本发明且特别是在以下实施例中,通过缩写,也称作首字母缩略词的方式显示介晶化合物的结构。在这些首字母缩略词中,使用下表A至C将化学式缩写如下。所有的基团CnH2n+1,CmH2m+1和C1H21+1或CnH2n-1,CmH2m-1和C1H21-1表示直链烷基或烯基,优选为1E-烯基,每个分别具有n、m和1个C原子。表A列出了用于化合物核心结构的环要素的代码,而表B显示了连接基团。表C给出了代表左手或右手端基团的代码的含义。首字母缩略词由具有任选连接基团的环要素的代码,接着的第一连字符,代表左手端基团的代码,第二连字符代表右手端基团的代码组成。表D显示了举例说明的化合物的结构和它们各自的缩写。
表A:环要素
表B:连接基团
表C:末端基团
与另一个和/或其它的一起使用
其中,n和m都表示整数,三个点“...”为该表其它缩写占据的位置。
下表显示了举例说明的结构以及它们各自的缩写。将这些都显示出来是为了举例说明缩写规则的含义。而且,它们代表优选使用的化合物。
表D:举例说明的结构
其中,优选地,n(还有m和1)彼此独立地表示1至7,优选为2至6的整数。
下表表E显示了用于说明的能够被用作根据本发明的介晶介质中的稳定剂的化合物。
表E
在本发明优选的实施方案中,介晶介质包含一种或多种选自来自表E的化合物的化合物。
下表表F显示了可以被优选用作根据本发明的介晶介质中的手性掺杂剂的说明性化合物。
表F
在本发明的优选实施方案中,介晶介质包含一种或多种选自来自表F的化合物的化合物。
根据本发明的介晶介质优选包含两种或更多种,优选为四种或更多种选自来自上表的化合物的化合物。
优选地,根据本发明的液晶介质包含
-七种或更多种、优选为八种或更多种化合物,优选为具有三种或更多种、优选四种或更多种不同式的选自来自表D的化合物的化合物。
实施例
以下实施例举例说明本发明并不以任何方式对其限制。
然而,物理性质使本领域技术人员清楚什么性质可以实现,它们可以在什么范围内变化。特别地,对于本领域技术人员而言,优选可以实现的各种性质的组合由此被充分定义。
制备和考察具有下表中所显示的组成和性质的液晶混合物。
所谓的“HTP”表示液晶介质中光学活性或手性物质的螺旋扭转力(以μm-1计)。除非另外指出,在商购的向列相液晶主体混合物MLD-6260(Merck KGaA)中,在20℃下测定HTP。
合成实施例1:6-(4-{[4-(6-丙烯酰氧己基)苯氧基]-二氟甲基}-3,5-二氟苯基) 己基丙烯酸酯
1.1:5-溴-2-[(4-溴苯氧基)二氟甲基]-1,3-二氟苯
首先将92.0g(0.200mol)的2-(4-溴-2,6-二氟苯基)-5,6-二氢-4H-1,3-二噻烯(dithiyn)-1-基三氟甲磺酸盐加入到600ml二氯甲烷中,在-70℃下加入52.0g(0.300mol)4-溴苯酚在200ml二氯甲烷和45ml三乙胺中的溶液。当加入完成,在-70℃下再搅拌混合物1小时,加入160ml(1.00mol)三乙胺三氢氟化物,且随后滴加51.0ml(0.996mol)溴在200ml二氯甲烷中的溶液。1小时后,除去冷却,温热至-10℃后,整批加到310ml的32%的氢氧化钠在21冰水中的溶液中。分离出有机相并用水洗。将水相用二氯甲烷萃取,并将合并的有机相经硫酸钠干燥。真空除去溶剂,将残留物采用己烷通过硅胶过滤,得到黄色油状5-溴-2-[(4-溴苯氧基)-二氟甲基]-1,3-二氟苯。
19F-NMR(CDCl3,235MHz)
δ=-63.1ppm(t,J=26.7Hz,2F,-CF2O-),-112(dt,J=9.7Hz,J=26.7Hz,2F,Ar-F)。
1.2:6-(4-{二氟[4-(6-羟基己-1-炔基)苯氧基]甲基}-3,5-二氟苯基)己-5-炔- 1-醇
首先,将10.7g(25.8mmol)5-溴-2-[(4-溴苯氧基)二氟甲基]-1,3-二氟苯和8.00g(81.5mmol)己-5-炔-1-醇加入到11.3ml三乙胺和500ml甲苯中,加入1.50g(2mmol)双(三苯基膦)氯化钯(II)和0.700g(3.68mmol)碘化铜(I),且在回流下加热混合物过夜。随后整批加到水中,采用2N盐酸中和并用甲苯萃取三次。将合并的有机相经硫酸钠干燥,真空除去溶剂,然后先用甲苯,再用甲苯/乙酸乙酯(4:1)在硅胶上对残留物进行色谱层析,得到无色固体6-(4-{二氟[4-(6-羟基己-1-炔基)苯氧基]甲基}-3,5-二氟苯基)己-5-炔-1-醇。
1.3:6-(4-{二氟[4-(6-羟基己基)苯氧基]甲基}-3,5-二氟苯基己烷-1-醇
在THF中,在钯/活性炭催化剂上将6-(4-{二氟[4-(6-羟基己-1-炔基)苯氧基]甲基}-3,5-二氟苯基)-己-5-炔-1-醇氢化完全。过滤掉催化剂,真空除去溶剂,采用甲苯/乙酸乙酯(1:2)在硅胶上对粗产物进行色谱层析,得到无色固体6-(4-{二氟[4-(6-羟基己基)-苯氧基]甲基}-3,5-二氟苯基)己烷-1-醇。
19F-NMR(CDCl3,235MHz)
δ=-60.8ppm(t,J=26.3Hz,2F,-CF2O-),-112(dt,J=10.0Hz,J=26.3Hz,2F,Ar-F)。
1.4:6-(4-{[4-(6-丙烯酰氧己基)苯氧基]二氟甲基}-3,5-二氟苯基)己基丙烯酸
首先,将17.0g(37.2mmol)6-(4-{二氟[4-(6-羟基己基)苯氧基]甲基}-3,5-二氟苯基)己烷-1-醇,8.05g(112mmol)丙烯酸和0.5g DMAP加入到300ml二氯甲烷中,并在冰冷却下滴加17.3g(112mmol)EDC在75ml二氯甲烷中的溶液。1小时后,除去冷却,并整批留下在室温下搅拌过夜。真空除去绝大多数溶剂,并采用二氯甲烷在硅胶上对残余物进行色谱层析,得到无色油状6-(4-{[4-(6-丙烯酰氧己基)苯氧基]-二氟甲基}-3,5-二氟苯基)己基丙烯酸酯。
相行为:Tg-71℃K13I。
1H-NMR(CDCl3,250MHz)
δ=1.25-1.48ppm(m,8H,CH2),1.50-1.74ppm(m,8H,CH2),2.60(m,4H,2-Ar-CH2-),4.13(t,J=6.7Hz,2H,-CH2O-),4.15(t,J=6.7Hz,2H,-CH2O-),5.81(dt,J=10.4Hz,J=1.8Hz,2H,2CHH=CH-COO-),6.11(mc,2H,2CH2=CH-COO-),6.39(2CHH=CH-COO-),6.78(d,J=10.0Hz,2H,Ar-H),7.15(mc,4H,Ar-H)。
19F-NMR(CDCl3,235MHz)
δ=-60.9ppm(t,J=26.4Hz,2F,-CF2O-),-112.0(dt,J=26.4,J=10.0Hz,2F,Ar-F)。
类似地,获得以下反应性化合物。
相行为:待确定。
相行为:Tg-66℃I。
相行为:Tg-69℃I。
相行为:待确定。
相行为:待确定。
相行为:待确定。
相行为:待确定。
相行为:C128℃I。
相行为:Tg-59℃N-28.5℃I。
实施例1
制备以下液晶混合物M-1并考察其一般的物理性质。下表中给出了组成和性质。
附注:t.b.d.:待确定
将3.8%的手性试剂R-5011溶解于非手性液晶混合物中并且考察得到的混合物在IPS型盒中的电光响应。将混合物填充到在一个基板侧上具有叉指电极的电光测试盒中。电极宽度为10μm,相邻电极之间的距离为10μm,盒间隙也为10μm。将该测试液晶盒在交叉偏振光镜之间进行电光评价。
分别将适宜浓度的
a)手性掺杂剂R-5011(Merck KGaA,德国),
b)式RM-C所示的反应性介晶,
c)可选择的两种式RM-1
和RM-2
所示的反应性介晶化合物之一加到目标混合物,此处为混合物M-1中。将得到的混合物加入到测试盒中,并加热至适宜的温度,在该温度下混合物处于蓝相。然后将其暴露于UV下。
聚合前混合物的特征如下文所示。然后通过辐照一次(180s)在蓝相中将反应性成分聚合,然后再表征得到的介质。
聚合的详细说明
在样品聚合前,在测试盒中确定介质的相性质,所述测试盒的厚度为约10微米,面积为2x2.5cm2。在75℃的温度下通过毛细作用进行填充。在偏振显微镜下,以温度变化为1℃/分的加热步骤进行测定。
通过UV灯(Dymax,Bluewave200,365nm干涉滤波器)辐照180秒进行介质的聚合,所述UV灯具有约3.0mW/cm2的有效功率。聚合直接在电光测试盒中进行。
首先,聚合在介质处在蓝相I(BP-I)的温度下进行。聚合以多个分步骤进行,其逐渐使聚合反应完成。在聚合反应期间,蓝相的温度范围一般发生变化。因此,每个分步骤之间的温度进行适用性变化使得介质仍处在蓝相。实际上,这可以通过每次约5s或更长的辐照操作之后,在偏振显微镜下观察样品来进行。如果样品变深色,这表明向各向同性相的转化。用于下一分步骤的温度相应地降低。
获得最大稳定化的完整辐照时间在所示辐照功率下一般为180s。可以根据最优化的辐照/温度程序进行进一步聚合。
供选择地,还可以在单一的辐照步骤中进行聚合,特别是如果宽蓝相在聚合前已经存在。
电光表征
在上述聚合和蓝相稳定化之后,确定蓝相的相宽度。随后在该范围内,如果希望的话还在该范围之外的各温度下进行电光表征。
使用的测试盒安装在盒表面上具有叉指电极的一侧。盒间隙、电极分开距离和电极宽度一般均为10微米。该统一尺寸在下文被称为间隙宽度。电极覆盖的面积为约0.4cm2。测试盒不具有配向层。
为了电光表征,盒设置在交叉偏振滤镜之间,其中电极的纵向方向与偏振滤镜的轴成45°角。使用与盒平面成直角的DMS301(Autronic-Melchers,德国),或借助于偏振显微镜上的高灵敏度相机的方式进行测量。在无电压状态下,所述设定获得基本上黑暗的图像(定义为0%透射率)。
首先,在测试盒上测定特征性工作电压,然后是响应时间。以如下文所述的具有交替的信号(频率100Hz)和可变幅度的矩形电压的形式向盒电极施加工作电压。
当工作电压升高时测定透射率。获得透射率的最大值,限定工作电压V100的特征量。同样地,在10%的最大透射率下确定特征电压V10。在蓝相范围内的不同温度下测定这些值。
在蓝相的温度范围的上限极值和下限极值下观察到相对高的特征性工作电压V100。在最小工作电压的区域内,V100通常仅随温度升高轻微升高。该温度范围由T1和T2限定,被称为可用的平坦温度范围(FR)。该“平坦范围”(FR)的宽度为(T2T1),已知称为平坦范围宽度(WFR)。通过V100/温度图中平坦曲线部分FR的正切和相邻的陡曲线部分的交叉点确定T1和T2的精确值。
在测量的第二部分中,确定开启和关闭(τon,τoff)的响应时间(τ)。通过在选定的温度下以V100的水平施加电压后,实现90%的强度的时间来限定响应时间τon。在电压降至0V后,从V100下的最大强度下降90%的时间来限定响应时间τoff。还在蓝相范围内的不同温度下确定响应时间。
作为进一步的表征,在FR内的温度下测定工作电压在0V和V100之间连续升高和下降时的透射率。已知两曲线间的差别为滞后。例如,0.5·V100下透射率的差别和在50%透射率下电压的差别为特征性滞后值,分别已知称为ΔT50和ΔV50
作为进一步的特征性数量,可以测定通过转换循环前后无电压状态下的透射率。该透射率被称作“记忆效应”。在理想状态下,记忆效应的值为1.0。高于1的值意味着盒已被开启和关闭后,某记忆效应以过高的残留传输的形式存在。还在蓝相的工作范围(FR)内确定该数值。
聚合物前体的一般浓度如下:
下表中总结了结果。
在蓝相温度范围的下端在约30-50℃的温度下,在单一的辐照步骤中聚合可聚合混合物。在宽温度范围内,聚合物稳定化的液晶介质表现出蓝相。
与来自现有技术的常规介质相比,使用根据本发明的单体(1)制备的聚合物稳定化的介质M-1在开启和关闭时显示出滞后(ΔV50)减少和良好的对比度。特别地,在根据本发明的介质M-1中,开启的对比度和关闭的对比度贴近在一起,这意味着蓝相稳定化得非常好。
从这可以看出根据本发明的单体特别适合用于蓝相的稳定化,特别是在含有高浓度手性掺杂剂的介质的情况下。
对比实施例1-1和1-2
制备以下液晶混合物(C-1)并考察其一般的物理性质。下表给出了组成和性质。
按上文实施例1中的详细描述处理和考察该混合物。
下表中汇编了结果。
对比实施例2
制备以下液晶混合物(C-2)并考察其一般物理性质。下表给出了组成和性质。
实施例2
制备以下液晶混合物(M-2)并考察其一般物理性质。下表给出了组成和性质。
附注:t.b.d.:待确定
聚合物前体的一般浓度如下:
附注:t.b.d.:待确定
下表总结了结果。
混合物 M-2-1 M-2-2
主体 M-2 M-2
反应性介晶 RM-2 RM-2
测量值(20℃)
聚合前的转变点 t.b.d. t.b.d.
聚合温度/℃ t.b.d. t.b.d.
V10(20℃)/V t.b.d. t.b.d.
V50(20℃)/V t.b.d. t.b.d.
V90(20℃)/V t.b.d. t.b.d.
V100(20℃)/V t.b.d. t.b.d.
△V50(20℃)/V t.b.d. t.b.d.
对比度(20℃),开启 t.b.d. t.b.d.
对比度(20℃),关闭 t.b.d. t.b.d.
记忆效应(20℃) t.b.d. t.b.d.
τon(20℃)/ms t.b.d. t.b.d.
τoff(20℃)/ms t.b.d. t.b.d.
附注:t.b.d.:待确定
实施例3
制备以下液晶混合物M-3并考察其一般物理性质。下表给出了组成和性质。
附注:t.b.d.:待确定
聚合物前体的一般浓度如下:
下表中总结了结果。
混合物 M-3-1 M-3-2 M-3-3 M-3-4
主体 M-3 M-3 M-3 M-3
反应性介晶 RM-2 RM-2 RM-2 RM-2
聚合前的转变点/℃ 36.0 35.3 36.0 37.2
聚合温度/℃ 36.5 35.8 36.5 37.7
V10(30℃)/V 25.0 21.1 18.2 19.8
V50(30℃)/V 42.5 36.6 31.5 34.1
V90(30℃)/V 54.8 47.5 41.2 44.1
V100(30℃)/V 63.0 55.0 47.0 51.0
△V50(30℃)/V 0.9 1.6 t.b.d. 2.0
记忆效应(30℃) 0.99 0.99 1.16 1.02
τon(30℃)/ms 0.9 0.95 1.82 1.22
τoff(30℃)/ms 0.89 1.43 2.03 1.67
附注:t.b.d.:待确定
实施例4
制备以下液晶混合物M-4并考察其一般物理性质。下表给出了组成和性质。
附注:t.b.d.:待确定
聚合物前体的一般浓度如下:
下表中总结了结果。
混合物 M-4-1 M-4-2 M-4-3
主体 M-4 M-4 M-4
反应性介晶 RM-2 RM-2 RM-2
聚合前的转变点/℃ 35.4 35.0 37.2
聚合温度/℃ 35.9 35.5 37.7
V10(30℃)/V 1 7.4 22.1 19.3
V50(30℃)/V 27.4 34.4 30.1
V90(30℃)/V 34.9 43.2 38.2
V100(30℃)/V 39.8 49.2 4 3.3
ΔV50(30℃)/V 2.3 1.4 1.6
记忆效应(30℃) 1.08 1.01 1.02 1.00
τon(30℃)/ms 1.61 1.49 1.91
τoff(30℃)/ms 2.42 1.21 1.66
附注:t.b.d.:待确定
混合物 M-4-4 M-4-5 M-4-6
主体 M-4 M-4 M-4
反应性介晶 RM-2 RM-2 RM-2
聚合前的转变点/℃ 36.7 40.0 40.0
聚合温度/℃ 37.2 40.5 40.5
V10(30℃)/V 19.5 13.4 8.6
V50(30℃)/V 30.4 25.7 t.b.d.
V90(30℃)/V 38.2 34.0 23.5
V100(30℃)/V 43.5 38.9 28.3
ΔV50(30℃)/V 1.9 2.4 t.b.d.
记忆效应(30℃) 1.02 2.35 9.1
τ00(30℃)/ms 1.97 4.04 67
τoff(30℃)/ms 1.72 3.39 468
附注:t.b.d.:待确定
混合物 M-4-7
主体 M-4
反应性介晶 RM-2
聚合前的转变点/℃ 34.9
聚合温度/℃ 35.4
V10(30℃)/V 12.9
V50(30℃)/V 22.6
V90(30℃)/V 30.1
V100(30℃)/V 35.1
△V50(30℃)/V 4.7
记忆效应(30℃) 3.8
τon(30℃)/ms t.b.d.
τoff(30℃)/ms t.b.d.
附注:t.b.d.:待确定
实施例5
制备以下液晶混合物M-5并考察其一般物理性质。下表给出了组成和性质。
附注:t.b.d.:待确定
向该混合物(M-5)加入4.2%的R-5011、7.5%的RM-C、3.5%的RM-2和0.2%的。将得到的混合物(M-5-1)引入到盒中,将聚合物前体聚合,并如上所述考察得到的复合物。供选择地,将4.2%的R-5011、7.0%的RM-C、5.0%的RM-2和0.2%的或4.2%的R-5O11、7.0%的RM-C、3.0%的RM-2和0.2%的分别加入M-5中。如针对M-5-1所述,考察得到的混合物M-5-2和M-5-3。结果显示在下表中。
附注:t.b.d.:待确定
对比实施例5
制备以下示例性对比的液晶混合物CM-5并考察其一般物理性质。下表中给出了组成和性质。
附注:t.b.d.:待确定
该对比的混合物(CM-5)也经过掺杂并通过加入4.2%的R一5011、7.5%的RM-C,3.5%的RM-2和O.2%的(得到混合物CM-5-1)进行聚合物稳定化,并且按照实施例5所述进行考察。上表中显示了结果用于对比。
与对比实施例相比,彳艮明显实施例的混合物关闭时的工作电压和响应时间同时都显著改善,所述工作电压和响应时间在绝大多是情况下对于器件的性能都是最重要的。
实施例6
制备以下液晶混合物M-6并考察其一般物理性质。下表中给出了组成和性质。
附注:t.b.d.为待确定
按照上述实施例5的描述处理和考察混合物。它得到相当好的结果。
实施例7
制备以下液晶混合物M-7并考察其一般物理性质。下表中给出了组成和性质。
附注:t.b.d.为待确定
按照上述实施例5的描述处理和考察混合物。它得到相当好的结果。

Claims (14)

1.显示蓝相的介晶介质,其包含一种、两种或更多种式I-A所示化合物
其中,
R1为具有1至9个C原子的直链或支链的、未取代的或被F、Cl或CN单取代或多取代的烷基,并且其中一个或多个CH2基团在每种情况下彼此独立地任选被-O-、-S-、-NR01-、-SiR01R02-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-、-CY01=CY02-或-C≡C-以使得O和/或S原子彼此不直接连接的方式替代;
L11和L12彼此独立地为H或F;
Y01和Y02彼此独立地为F、Cl或CN,并且供选择地,它们之一可以为H;和
R01和R02彼此独立地为H或具有1至12个C原子的烷基;
所述介晶介质进一步包含一种或多种选自式I-T和I-N所示的化合物
其中,
R1为具有1至9个C原子的直链或支链的、未取代的或被F、Cl或CN单取代或多取代的烷基,并且其中一个或多个CH2基团在每种情况下彼此独立地任选被-O-、-S-、-NR01-、-SiR01R02-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-、-CY01=CY02-或-C≡C-以使得O和/或S原子彼此不直接连接的方式替代;
n在每次出现时独立地为0或1;和
L1在每次出现时彼此独立地为H或F。
2.根据权利要求1所述的介晶介质,其特征在于,其包含一种或多种手性掺杂剂。
3.根据权利要求1和2中的任一项所述的介晶介质,其特征在于,其包含一种或多种式I-E所示的化合物,
其中,
R0具有权利要求1中针对R1给出的定义;
n在每次出现时独立地为0或1;和
L01至L03在每次出现时彼此独立地为H或F。
4.根据权利要求1和2中任一项所述的介晶介质,其特征在于,其包含一种或多种式II所示化合物,
其中,
L21至L23彼此独立地为H或F;
R2为直链或支链的、未取代的或被F、Cl或CN单取代或多取代的烷基,并且其中一个或多个CH2基团在每种情况下彼此独立地任选被-O-、-S-、-NR01-、-SiR01R02-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-、-CY01=CY02-或-C≡C-以使得O和/或S原子彼此不直接连接的方式替代;
Y01和Y02彼此独立地为F,Cl或CN,并且供选择地,它们之一可以为H;
R01和R02彼此独立地为H或具有1至12个C原子的烷基。
5.根据权利要求1和2中任一项所述的介质,其特征在于,其包含一种或多种式III所示化合物,
其中,R3具有权利要求1中针对R1给出的定义。
6.根据权利要求1和2中任一项所述的介质,其特征在于,其包含一种或多种选自式IV和V所示化合物的化合物,
其中,
R4和R5彼此独立地为直链或支链的、具有1至20个C原子的、未取代的或被F、Cl或CN单取代或多取代的烷基,并且其中一个或多个CH2基团在每种情况下彼此独立地任选被-O-、-S-、-CO-、-COO-、-OCO-、-OCO-O-、-S-CO-、-CO-S-或-C≡C-以使得O和/或S原子彼此不直接连接的方式来替代;
L5为H或F;
n和m彼此独立地为0或1。
7.根据权利要求1和2中任一项所述的介质,其特征在于,其包含可聚合的组分,该组分包含一种或多种可聚合的化合物。
8.根据权利要求1和2中任一项所述的介质,其特征在于,其包含一种或多种式M1所示的化合物,
其中,参数具有如下定义:
P1和P2每个彼此独立地为可聚合基团;
Sp1和Sp2每个彼此独立地为单键或间隔基团;并且其中还供选择地,P1-Sp1-和P2-Sp2-的一个或多个可以是Raa,条件是化合物中存在的P1-Sp1-和P2-Sp2-中的至少一个不是Raa
Raa为H、F、Cl、CN或具有1至25个C原子的直链或支链烷基,其中一个或多个不邻近的-CH2-基团彼此独立地可以被-C(R0)=C(R00)-、-C≡C-、-N(R0)-、-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-以使得O-和S-原子彼此都不直接连接的方式替代,其中一个或多个H原子还可以被F、Cl、CN或P1-Sp1-替代;
R0、R00每个在每次出现时彼此独立地为H或具有1至12个C原子的烷基;
L在每次出现时彼此独立地为F、Cl、CN、SCN、SF5或直链或支链的、任选单或多氟代的具有1至12个C原子的烷基、烷氧基、烯基、炔基、烷基羰基、烷氧羰基、烷基羰基氧基或烷氧羰基氧基;
r为0、1、2、3或4。
9.根据权利要求1和2中任一项所述的介质,其特征在于,其包含一种或多种式M2所示化合物,
其中,参数具有权利要求8中给出的各自的定义。
10.介晶介质的稳定化方法,其特征在于,使根据权利要求7至9中任一项所述的介质的可聚合成分进行聚合。
11.通过根据权利要求7至9中任一项所述的介质的可聚合成分进行聚合而稳定化的介晶介质。
12.光调制元件,其特征在于,其包含根据权利要求1至9和11中任一项所述的介质。
13.电光显示器,其特征在于,其包含根据权利要求1至9和11中任一项所述的介质。
14.根据权利要求1至9和11中任一项所述的介质在光调制元件中的用途。
CN201310437090.6A 2012-09-18 2013-09-17 液晶介质和液晶显示器 Active CN103666483B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12006552.9 2012-09-18
EP12006552 2012-09-18

Publications (2)

Publication Number Publication Date
CN103666483A CN103666483A (zh) 2014-03-26
CN103666483B true CN103666483B (zh) 2017-07-28

Family

ID=47018696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310437090.6A Active CN103666483B (zh) 2012-09-18 2013-09-17 液晶介质和液晶显示器

Country Status (6)

Country Link
US (1) US9120969B2 (zh)
EP (1) EP2708587B1 (zh)
JP (1) JP6313002B2 (zh)
KR (1) KR20140036975A (zh)
CN (1) CN103666483B (zh)
TW (1) TWI595080B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797686B (zh) * 2012-11-27 2017-06-09 默克专利股份有限公司 透镜元件
JP6788577B2 (ja) * 2014-05-09 2020-11-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体およびそれを含む高周波数素子
CN104610976B (zh) * 2014-12-31 2017-01-25 石家庄诚志永华显示材料有限公司 液晶化合物及包含该化合物的液晶混合物
JP6913084B2 (ja) 2015-10-06 2021-08-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung キラル化合物
EP3214154B1 (en) * 2016-03-01 2019-06-26 Merck Patent GmbH Liquid-crystal media and light modulation element
US20210261864A1 (en) * 2016-08-04 2021-08-26 Jnc Corporation Material for liquid-crystal device, and liquid-crystal device
JP6942457B2 (ja) * 2016-10-25 2021-09-29 Jnc株式会社 液晶媒体、光素子および液晶化合物
JP2023551934A (ja) * 2020-12-02 2023-12-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体および電気光学的デバイス
WO2023232754A1 (en) * 2022-05-31 2023-12-07 Merck Patent Gmbh Ferroelectric nematic liquid crystalline medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4410606A1 (de) * 1993-04-03 1994-10-06 Merck Patent Gmbh Cyanopyrimidin-Derivate und flüssigkristallines Medium
US5454975A (en) * 1993-04-03 1995-10-03 Merck Patent Gesellschaft Mit Beschrankter Haftung Cyanophenylpyri (MI)dine derivatives and liquid-crystalline medium
EP0735015A2 (en) * 1995-03-31 1996-10-02 Chisso Corporation A liquid crystal compound having (a) deuterium atom (s) and a liquid crystal composition comprising the said compound
DE10004636A1 (de) * 1999-02-16 2000-08-17 Merck Patent Gmbh Flüssigkristallines Medium
DE10010726A1 (de) * 2000-03-04 2001-09-06 Merck Patent Gmbh TN- und STN-Flüssigkristallanzeigen
TW200408865A (en) * 2002-09-04 2004-06-01 Merck Patent Gmbh Electro-optical light modulation element, display and medium
CN102031121A (zh) * 2009-09-29 2011-04-27 奇美电子股份有限公司 液晶组合物和使用其的液晶显示器装置
CN102597862A (zh) * 2009-08-28 2012-07-18 国立大学法人九州大学 液晶显示元件以及该元件使用的基板

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3534777A1 (de) 1985-09-30 1987-04-02 Hoechst Ag Fluessigkristall-phase mit eine temperaturkompensation bewirkenden dotierstoffen
DE3534780A1 (de) 1985-09-30 1987-04-02 Hoechst Ag Chirale phenolester mesogener carbonsaeuren, ein verfahren zu deren herstellung und ihre verwendung als dotierstoff in fluessigkristall-phasen
DE3534778A1 (de) 1985-09-30 1987-04-02 Hoechst Ag Chirale ester mesogener carbonsaeuren, ein verfahren zu deren herstellung und ihre verwendung als dotierstoff in fluessigkristall-phasen
DE4342280A1 (de) 1993-12-11 1995-06-14 Basf Ag Polymerisierbare chirale Verbindungen und deren Verwendung
DE19541820A1 (de) 1995-11-09 1997-05-15 Consortium Elektrochem Ind Chirale Dianhydrohexit-Derivate enthaltende flüssigkristalline Organosiloxane
JPH1129557A (ja) 1997-07-08 1999-02-02 Chisso Corp ピリミジン誘導体、これを含む液晶組成物およびこれを用いた液晶表示素子
DE19913604A1 (de) 1999-03-25 2000-09-28 Basf Ag Chirale Verbindungen und deren Verwendung als chirale Dotierstoffe zur Herstellung von cholesterisch-flüssigkristallinen Zusammensetzungen
DE10111139A1 (de) * 2000-04-07 2001-10-11 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
DE10111142A1 (de) * 2000-04-07 2001-10-11 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
US7041345B2 (en) 2000-07-13 2006-05-09 Merck Patent Gmbh Chiral compounds III
ATE384036T1 (de) 2000-07-13 2008-02-15 Merck Patent Gmbh Chirale verbindungen i
CN1206197C (zh) 2000-07-13 2005-06-15 默克专利股份有限公司 手性化合物ii
ATE269856T1 (de) 2000-10-20 2004-07-15 Merck Patent Gmbh Chirale binaphtol-verbindungen
DE10217273A1 (de) 2001-05-16 2002-12-05 Merck Patent Gmbh Elektrooptisches Lichtsteuerelement, Anzeige und Medium
JP5841301B2 (ja) 2002-11-15 2016-01-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 電気光学的光変調素子、電気光学的ディスプレイおよび変調媒体
DE10253606A1 (de) 2002-11-15 2004-05-27 Merck Patent Gmbh Elektrooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium
JP4747257B2 (ja) 2003-06-03 2011-08-17 Jnc株式会社 不飽和結合を有する重合性液晶性化合物およびその重合体
US7070838B2 (en) 2003-06-23 2006-07-04 Chisso Petrochemical Corporation Liquid crystalline compound, liquid crystal composition and their polymers
US7563492B2 (en) * 2005-11-16 2009-07-21 Chisso Corporation Liquid crystal composition and liquid crystal display device
DE102008016053A1 (de) 2007-04-24 2008-10-30 Merck Patent Gmbh Flüssigkristallines Medium und Flüssigkristallanzeige
JP2009265317A (ja) 2008-04-24 2009-11-12 Fujifilm Corp 垂直配向膜及びvaモード液晶セル
EP2302015B1 (en) 2008-05-15 2016-10-05 JNC Corporation Optically isotropic liquid crystalline medium, and optical element
JP2010083947A (ja) 2008-09-30 2010-04-15 Fujifilm Corp 液晶組成物及び位相差膜
JP5477296B2 (ja) 2008-11-19 2014-04-23 Jnc株式会社 光学的に等方性の液晶媒体及び光素子
DE102011122559A1 (de) * 2011-01-25 2012-07-26 Merck Patent Gmbh Flüssigkristalline Verbindungen und flüssigkristalline Medien

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4410606A1 (de) * 1993-04-03 1994-10-06 Merck Patent Gmbh Cyanopyrimidin-Derivate und flüssigkristallines Medium
US5454975A (en) * 1993-04-03 1995-10-03 Merck Patent Gesellschaft Mit Beschrankter Haftung Cyanophenylpyri (MI)dine derivatives and liquid-crystalline medium
EP0735015A2 (en) * 1995-03-31 1996-10-02 Chisso Corporation A liquid crystal compound having (a) deuterium atom (s) and a liquid crystal composition comprising the said compound
DE10004636A1 (de) * 1999-02-16 2000-08-17 Merck Patent Gmbh Flüssigkristallines Medium
DE10010726A1 (de) * 2000-03-04 2001-09-06 Merck Patent Gmbh TN- und STN-Flüssigkristallanzeigen
TW200408865A (en) * 2002-09-04 2004-06-01 Merck Patent Gmbh Electro-optical light modulation element, display and medium
CN102597862A (zh) * 2009-08-28 2012-07-18 国立大学法人九州大学 液晶显示元件以及该元件使用的基板
CN102031121A (zh) * 2009-09-29 2011-04-27 奇美电子股份有限公司 液晶组合物和使用其的液晶显示器装置

Also Published As

Publication number Publication date
KR20140036975A (ko) 2014-03-26
JP6313002B2 (ja) 2018-04-18
CN103666483A (zh) 2014-03-26
US20140077130A1 (en) 2014-03-20
US9120969B2 (en) 2015-09-01
TWI595080B (zh) 2017-08-11
TW201418426A (zh) 2014-05-16
JP2014058671A (ja) 2014-04-03
EP2708587B1 (en) 2015-07-15
EP2708587A1 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
CN103666483B (zh) 液晶介质和液晶显示器
CN104685025B (zh) 液晶介质和液晶显示器
CN103781877B (zh) 液晶介质和液晶显示器
CN103562347B (zh) 液晶介质和液晶显示器
CN104254586B (zh) 液晶介质和液晶显示器
CN105849230B (zh) 液晶介质和液晶显示器
CN102977897B (zh) 液晶介质和液晶显示器
CN101080480B (zh) 液晶体系和液晶显示器
TWI628268B (zh) 液晶介質
CN104194801B (zh) 液晶介质
CN103562346B (zh) 可聚合的化合物和其在液晶介质和显示器中的用途
CN104797686B (zh) 透镜元件
CN102007197A (zh) 光学等向性的液晶媒体及光学元件
CN104781370B (zh) 液晶介质
CN102388013A (zh) 氯苯衍生物、光学等向性液晶媒体及光元件
CN105121596A (zh) 介晶化合物、液晶介质和液晶显示器
CN106433691A (zh) 液晶介质
CN103717707B (zh) 液晶介质和液晶显示器
KR20130121823A (ko) 광학적으로 등방성인 액정 매체 및 광소자
CN106661452A (zh) 可聚合介晶化合物、液晶介质和液晶显示器
CN107922839A (zh) 液晶介质及液晶显示器
WO2018153803A1 (en) Liquid-crystalline medium and liquid-crystal display comprising the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant