CN103639895A - 一种基于传热反问题的磨削温度测量方法 - Google Patents

一种基于传热反问题的磨削温度测量方法 Download PDF

Info

Publication number
CN103639895A
CN103639895A CN201310572522.4A CN201310572522A CN103639895A CN 103639895 A CN103639895 A CN 103639895A CN 201310572522 A CN201310572522 A CN 201310572522A CN 103639895 A CN103639895 A CN 103639895A
Authority
CN
China
Prior art keywords
grinding
temperature
thin film
skin
test specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310572522.4A
Other languages
English (en)
Other versions
CN103639895B (zh
Inventor
金滩
易军
李平
尚振涛
吴耀
谢桂芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haijie Sea (hunan) Engineering Technology Research Co Ltd
Hunan University
Original Assignee
Haijie Sea (hunan) Engineering Technology Research Co Ltd
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haijie Sea (hunan) Engineering Technology Research Co Ltd, Hunan University filed Critical Haijie Sea (hunan) Engineering Technology Research Co Ltd
Priority to CN201310572522.4A priority Critical patent/CN103639895B/zh
Publication of CN103639895A publication Critical patent/CN103639895A/zh
Application granted granted Critical
Publication of CN103639895B publication Critical patent/CN103639895B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/06Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using melting, freezing, or softening

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

本发明涉及一种基于传热反问题的磨削温度测量方法,该方法将熔点较低且熔点稳定的薄膜镶如两块工件之间,工件在磨削过程中产生的磨削热使得镶入工件之间的易熔薄膜熔化,通过测量薄膜熔化的深度以及薄膜的熔点得到表面以下一定深度的温度,再通过求解热传导反问题计算出磨削表面温度。与传统的热电偶测量磨削温度的方法相比,该方法操作简单,即省去了热电偶繁琐的制作过程,又无需复杂的信号采集和信号处理设备;与磨削温度解析计算和有限元分析相比,无需考虑磨削热的热源模型、热分配比、对流换热系数等难以准确确定的参数。

Description

一种基于传热反问题的磨削温度测量方法
技术领域
本发明涉及一种基于传热反问题的磨削温度测量方法,属于温度传感器领域,具体是涉及各种类型材料及各种磨削方式的工件磨削温度测量方法。
背景技术
磨削去除单位体积的材料需要非常高能量输入,而且几乎所有的能源消耗都转换为砂轮和被磨工件接触区的热量,使磨削区的温度升高。磨削温度对工件表面质量、尺寸精度、形状精度以及砂轮的磨削性能都会产生影响,因此快速准确地测量磨削温度是合理设计加工工艺参数并避免磨削烧伤的前提。
目前比较常用的测量磨削温度的方法有:热电偶方法、红外辐射测温方法、金属微结构和微硬度变化方法等。可磨式夹丝热电偶可以测量磨削区域的平均温度,但是其制作比较麻烦,而且一个热电偶只能用一次,夹丝的厚度和绝缘层厚度的变化都会改变热电偶的特性;顶置式热电偶能够重复使用且热电偶特性稳定,但是需要在工件背面开盲孔,盲孔的存在将影响工件内部温度的分布;红外辐射测温方法为非接触式测温方法,但是容易受到外界环境的干扰特别是磨削液的干扰。通过解析计算和有限元分析的方法计算磨削温度也是获得工件温度分布一种手段,但无论是解析计算还是有限元分析所建立的模型都存在多方面的假设,计算的精度也参差不齐。
发明内容
本发明提出一种磨削温度测量的新方法,只需对工件横截面进行抛光,然后将两块工件拼接到一起,工件之间镶入极薄的易熔薄膜,通过传热反问题即可得到磨削表面温度。此法操作简单易行对工件破坏极小,极薄的薄膜和稳定的低熔点使其对温度反应灵敏,且薄膜对工件温度分布的影响极小,经分析由于薄膜的加入,工件磨削温度与无薄膜时相比其误差小于5%,利用传热反问题求解表面磨削温度,无需建立相应的热模型。
概括来说,该方法将熔点较低且熔点稳定的薄膜镶如两块工件之间,工件在磨削过程中产生的磨削热使得镶入工件之间的易熔薄膜熔化,通过测量薄膜熔化的深度以及薄膜的熔点得到表面以下一定深度的温度,再通过求解热传导反问题计算出磨削表面温度,具体而言,本发明所采取的磨削温度测量方法包括:测温试件的制作、试件检测、磨削表面温度推导三个步骤完成,其中所述测温试件的制作步骤包括将两块磨削工件及易熔测温薄膜组成测温试件,将薄膜置于两块磨削工件之间,所述磨削工件由精密虎钳夹紧,同时为保证两个磨削工件完全贴合,两个磨削工件相对的接触面用46#刚玉砂轮磨平、在流水下分别用320#和600#砂纸抛光,所述易熔测温薄膜厚度为0.02mm,整平后将其裁剪成与工件横截面一致的矩形;
所述试件检测步骤包括:测温试件在磨削过程中受到磨削温度的作用,会造成两磨削工件之间的易熔测温薄膜熔化,将磨削完的磨削工件从精密虎钳上取出,并分开两磨削工件,可见易熔测温薄膜熔化了一层,熔化的薄膜颜色与未熔化薄膜的颜色有很大差异,在磨削工件横截面上形成一条明显的界线,将横截面在显微镜下放大后界线更明显,且利用显微镜的测距功能得到熔化层的深度,从而得到距离磨削表面一定深度处的温度;
所述磨削表面温度推导步骤是利用下述公式进行计算得出:
θ ( x p , t ) = Σ n = 0 N b n ( 4 t ) n Γ ( n + 1 ) erfc ( x p 2 t ) 2 n - - - ( 2 - 1 ) θ ( x , t ) = Σ n = 0 N b n ( 4 t ) n Γ ( n + 1 ) erfc ( x 2 t ) 2 n - - - ( 2 - 2 )
t=aτ/L0 2  (2-3)
x=X/L0  (2-4)
xp=Xp/L0  (2-5)
式中τ为时间;a为热扩散率;L0为工件厚度;t为无量纲时间;x为无量纲坐标;г(n+1)为伽马函数;
Figure BDA0000414629250000023
为高斯误差补余函数的2n重积分;θ(xp,t)为距离磨削表面距离为xp处的磨削温度;θ(x,t)为距离磨削表面距离为x处的磨削温度;由于距离磨削表面xp处的磨削温度即θ(xp,t)由试验得到,通过公式(2-1)可计算得到bn,再通过bn和公式(2-2)可计算出磨削表面下任意一点的磨削温度,令x=0,代入公式(2-2)即可推导出磨削表面的温度。
本发明相比现有技术具有如下优点:
1.现有的可磨夹式热电偶传感器需要自己制作夹丝和绝缘层;顶置式热电偶传感器需要制作焊点;光纤传感器制作困难购买成本也很高,而本发明所用的传感器结构简单、制作方便(传感器即为一层易熔薄膜),市场上不同厚度不同熔点的易熔薄膜很多,购买快捷方便;
2.现有的可磨夹式热电偶方法需要在工件侧面开浅槽;顶置式热电偶测量方法需要在工件背面打盲孔;光纤红外测温方法也需要在工件背面打盲孔。而本发明所用的磨削温度测量方法无需对工件进行特殊处理,只是为了方便磨削热的传递,对两接触面进行了抛光,对磨削工件没有任何损伤;
3.现有的不论是热电偶测温方法还是光纤红外测温方法都需要配套复杂的信号放大、信号处理、数据采集系统,而本发明所用的磨削温度测量方法无需复杂的数据采集系统,只需配套一台放大倍数为50-200倍的显微镜即可。
附图说明
现在将描述如本发明的优选但非限制性的实施例,本发明的这些和其他特征、方面和优点在参考附图阅读如下详细描述时将变得显而易见,其中:
图1是薄膜测温结构及原理图;
图2是ψ2n(s)的变化曲线图;
图3是验证薄膜测温的试件结构图;
图4是超景深三维电子显微镜观察下薄膜测温试件的横截面图;
图5是利用传热反问题求解得到试验1和试验2磨削表面温度图。
具体实施方式
下面结合附图对本发明的实施例做详细的说明,以下给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。以下的说明本质上仅仅是示例性的而并不是为了限制本公开、应用或用途。应当理解的是,在全部附图中,对应的附图标记表示相同或对应的部件和特征。
本发明所提出的磨削温度测量方法包括:测温试件、试件检测和磨削表面温度推导三个步骤完成。
(一)测温试件的制作
如图1所示测温试件由两块磨削工件及易熔测温薄膜组成,薄膜置于两块磨削工件之间,所述磨削工件由精密虎钳夹紧。为保证两个磨削工件完全贴合,两个磨削工件相对的接触面用46#刚玉砂轮磨平、在流水下分别用320#和600#砂纸抛光。所述易熔测温薄膜厚度为0.02mm,熔点在230℃以下,整平后将其裁剪成与工件横截面一致的矩形。符合要求的薄膜材料如:锡箔(熔点230℃)、铋锡合金(熔点60℃-160℃)。
(二)试件检测
测温试件在磨削过程中受到磨削温度的作用,会造成两磨削工件之间的易熔测温薄膜熔化,将磨削完的磨削工件从精密虎钳上取出,并分开两磨削工件,可得到如图1中右图所示结果,易熔测温薄膜熔化了一层,熔化的薄膜颜色与未熔化薄膜的颜色有很大差异,在磨削工件横截面上形成一条明显的界线,将横截面在显微镜下放大后界线更明显,且利用显微镜的测距功能,能够得到熔化层的深度。由于易熔测温薄膜的熔点稳定,因此可以认为界线处的最高温度为薄膜的熔点。由此得到距离磨削表面一定深度处的温度。为了得到磨削表面的磨削温度,还需要根据测量得到的易熔薄膜的熔化深度和薄膜的熔点,利用传热反问题进行推导。
(三)磨削表面温度推导
通过观察易熔测温薄膜的熔化厚度只能得到磨削表面下一定深度处的最高温度,对于湿磨条件,假设温度在该处作用的时间为工作台走过一个接触弧长经历的时间,而温度的变化假设符合正弦函数。
根据传热学的理论,一个半无限大体初始温度均匀为T0,在任意时刻,x=0的一侧温度突然升高到Tw,则物体内部某一点的温度随时间的变化可由式(3-1)~(3-4)分析得到。
&PartialD; T &PartialD; &tau; = a &PartialD; 2 T &PartialD; X 2 , 0 < X < L 0 , &tau; > 0 - - - ( 3 - 1 )
T(X,0)=T0 0≤X≤L0   (3-2)
T(L0,τ)=T0 τ≥0   (3-3)
T(XP,τ)=TP(τ) τ≥0   (3-4)
式中:a为热扩散率;T0为工件初始温度;L0为工件厚度;TP(τ)为XP位置的温度随时间的变化规律。
为了数学上处理方便,对式(3-1)-(3-4)进行无量纲变换,得式(3-5)-(3-8)
&PartialD; &theta; &PartialD; t = &PartialD; 2 &theta; &PartialD; x 2 , 0 < x < &infin; , t > 0 - - - ( 3 - 5 )
θ(x,0)=0 0<x<∞   (3-6)
θ(l,t)=0 t≥0   (3-7)
θ(xp,t)=f(t) t≥0   (3-8)
式中t为无量纲时间,t=aτ/L0 2;x为无量纲坐标,x=X/L0,xp=Xp/L0;θ为过余温度,θ=T(X,τ)-T0
如果假定磨削表面的过余温度θ(0,t)=TW(τ)-T0,用如下的无穷级数表示:
&theta; ( 0 , t ) = &Sigma; n = 0 &infin; b n t n - - - ( 3 - 9 )
其中bn(n=0,1,2,3…)为待定系数,假设已经由式(3-5)-(3-8)求出,那么下面的定解问题与式(3-5)-(3-8)的定解问题有相同的解。
&PartialD; &theta; &PartialD; t = &PartialD; 2 &theta; &PartialD; x 2 , 0 < < &infin; , t > 0 - - - ( 3 - 10 )
θ(x,0)=0 0<x<∞   (3-11)
θ(l,t)=0 t≥0   (3-12)
&theta; ( 0 , t ) = &Sigma; n = 0 &infin; b n t n , t &GreaterEqual; 0 - - - ( 3 - 13 )
对上式采用拉普拉斯变换法求解,得到磨削表面下某处过余温度的通解形式为:
Figure BDA0000414629250000054
式中:г(n+1)——伽马函数;
Figure BDA0000414629250000055
——高斯误差补余函数的2n重积分。
当x=xp时,由上式得
&theta; ( x p , t ) = &Sigma; n = 0 &infin; b n ( 4 t ) n &Gamma; ( n + 1 ) erfc ( x p 2 t ) 2 n - - - ( 3 - 15 )
引入另外一个函数ψ2n(s),令:
ψ2n(s)=22nΓ(n+1)erfc(s)2n   (3-16)
所以:
&theta; ( x p , t ) = &Sigma; n = 0 &infin; b n t n &psi; 2 n ( x p 2 t ) = f ( t ) - - - ( 3 - 17 )
Figure BDA0000414629250000058
进行计算发现,ψ2n(s)随重数增加很快收敛于零,对较大的n(特别是当s较大时),ψ2n(s)对温度的影响可以忽略,如图2,所以式(3-17)可写成如下形式:
&theta; ( x p , t ) = &Sigma; n = 0 N b n t n &psi; 2 n ( x p 2 t ) = f ( t ) - - - ( 3 - 18 )
由于xp=Xp/L0处的温度θ(xp,t)由实验测得,通过式(3-18)各bn(n=0,1,2…N)的值就可以确定,将bn及x=0代入式(3-19)即得磨削表面过余温度。
Figure BDA0000414629250000062
以上过程即为求解传热反问题。
实施例
本实例提供了基于传热反问题的磨削温度测量方法在实际磨削试验中的应用。
试验工件为20CrMnTi,其热性能参数如表1所示:
表1工件热性能参数
密度(kg/m3 导热系数(W/(m·℃)) 比热容(J/kg·℃)
7680 33.27 462
为了验证本发明所述方法的可行性,专门设计了如图3所示的试验工件,此试件包含两种测温方式,夹丝式人工热电偶测温和易熔薄膜测温。试验时,利用夹丝式人工热电偶直接测出的磨削区温度,以此验证基于传热反问题的磨削温度测量方法的可行性。试验用到的易熔薄膜为锡箔,平均厚度为0.02mm,其熔点为230℃;夹丝式可磨人工热电偶为K型热电偶,热电偶两级材料分别为镍铬和镍硅。
磨削后用无水乙醇清洗工件,并小心分开两工件,利用超景深三维电子显微镜观察工件横截面,得到如下图4所示结果。图4(a)为显微镜放大50倍得到的工件横截面形貌,利用显微镜的测距功能,可以测出锡箔熔化厚度为0.668mm;图4(b)为显微镜放大200倍得到的工件横截面形貌,放大的区域为图4(a)中用线条框出来的区域,图中颜色较深的部分为工件、颜色较浅的部分为未熔化的锡箔,从图中可以很明显的看出锡箔熔化的界线;为了进一步展示试件横截面的形貌,利用超景深三维电子显微镜的景深功能,对试件的横截面做了三维扫描,结果如图4(c)所示,图中隆起的部分为未熔化的锡箔,左边低洼平整的部分为工件。
磨削参数及磨削结果如表2所示:
表2磨削参数及结果
Figure BDA0000414629250000071
从上表可以看出,由可磨夹丝式热电偶测量的三次磨削温度都比较一致,可见由热电偶得到的温度比较可靠。磨削参数为砂轮线速度35m/s、工作台速度0.1m/s、磨削深度0.3mm得到的锡箔熔化深度为0.405mm;磨削参数为砂轮线速度35m/s、工作台速度0.1m/s、磨削深度0.5mm得到的锡箔熔化深度为0.718mm,可以认为工件1在距离磨削表面0.405mm处的最高温度为230℃;工件2在距离磨削表面0.718mm处的最高温度为230℃。
根据材料的热性能参数,以及易熔薄膜熔化层深度,利用传热反问题求解(公式(3-19))得到试验1、试验2磨削表面温度如下图5所示,两张图片中实心菱形曲线代表锡箔熔化界线处温度的变化曲线,该曲线为假设曲线,其最高温度为锡箔的熔点、持续时间为工件走过一个接触弧长的时间、并且按正弦规律变化;空心圆形曲线代表通过传热反问题解析获得的磨削表面温度变化曲线。由图可见对于试验1,得到的最高温度为510℃,对于试验2,得到的最高温度为720℃,两个均与对应参数下由可磨夹丝式热电偶测量到的磨削表面温度一致。另外从图5中还可看出磨削表面达到最高温度的时间,比熔化界线处达到最高温度的时间早,此现象也与实际情况一致。

Claims (1)

1.一种基于传热反问题的磨削温度测量方法,其包括:测温试件的制作、试件检测和磨削表面温度推导三个步骤完成,其中所述测温试件的制作步骤包括将两块磨削工件及易熔测温薄膜组成测温试件,将薄膜置于两块磨削工件之间,所述磨削工件由精密虎钳夹紧,同时为保证两个磨削工件完全贴合,两个磨削工件相对的接触面用46#刚玉砂轮磨平、在流水下分别用320#和600#砂纸抛光,所述易熔测温薄膜厚度为0.02mm,整平后将其裁剪成与工件横截面一致的矩形;
所述试件检测步骤包括:测温试件在磨削过程中受到磨削温度的作用,会造成两磨削工件之间的易熔测温薄膜熔化,将磨削完的磨削工件从精密虎钳上取出,并分开两磨削工件,可见易熔测温薄膜熔化了一层,熔化的薄膜颜色与未熔化薄膜的颜色有很大差异,在磨削工件横截面上形成一条明显的界线,将横截面在显微镜下放大后界线更明显,且利用显微镜的测距功能得到熔化层的深度,从而得到距离磨削表面一定深度处的温度;
所述磨削表面温度推导步骤是利用下述公式进行计算得出:
&theta; ( x p , t ) = &Sigma; n = 0 N b n ( 4 t ) n &Gamma; ( n + 1 ) erfc ( x p 2 t ) 2 n - - - ( 1 - 1 )
&theta; ( x , t ) = &Sigma; n = 0 N b n ( 4 t ) n &Gamma; ( n + 1 ) erfc ( x 2 t ) 2 n - - - ( 1 - 2 )
t=aτ/L0 2    (1-3)
x=X/L0    (1-4)
xp=Xp/L0    (1-5)
式中τ为时间;a为热扩散率;L0为工件厚度;t为无量纲时间;x为无量纲坐标;г(n+1)为伽马函数;为高斯误差补余函数的2n重积分;θ(xp,t)为距离磨削表面距离为xp处的磨削温度;θ(x,t)为距离磨削表面距离为x处的磨削温度;由于距离磨削表面xp处的磨削温度即θ(xp,t)由试验得到,通过公式(1-1)可计算得到bn,再通过bn和公式(1-2)可计算出磨削表面下任意一点的磨削温度,令x=0,代入公式(1-2)即可推导出磨削表面的温度。
CN201310572522.4A 2013-11-15 2013-11-15 一种基于传热反问题的磨削温度测量方法 Expired - Fee Related CN103639895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310572522.4A CN103639895B (zh) 2013-11-15 2013-11-15 一种基于传热反问题的磨削温度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310572522.4A CN103639895B (zh) 2013-11-15 2013-11-15 一种基于传热反问题的磨削温度测量方法

Publications (2)

Publication Number Publication Date
CN103639895A true CN103639895A (zh) 2014-03-19
CN103639895B CN103639895B (zh) 2015-10-28

Family

ID=50245252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310572522.4A Expired - Fee Related CN103639895B (zh) 2013-11-15 2013-11-15 一种基于传热反问题的磨削温度测量方法

Country Status (1)

Country Link
CN (1) CN103639895B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615876A (zh) * 2015-01-28 2015-05-13 大连理工大学 一种复合材料切削热分配系数的计算方法
CN104924154A (zh) * 2015-06-10 2015-09-23 华中科技大学 一种用于测量机床加工时工件表面以下不同深度的温度值的方法
CN109781289A (zh) * 2019-03-15 2019-05-21 华侨大学 修正热电偶测量值获得实际钻削点钻骨温度的方法及设备
CN110328614A (zh) * 2019-07-08 2019-10-15 湖南科技大学 一种内圆磨削温度测量方法
CN115415937A (zh) * 2022-08-10 2022-12-02 温州大学 一种磨削区温度的测量方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244463A (ja) * 1997-02-28 1998-09-14 Chiyoda Kk 研磨装置の研磨熱測定方法および研磨熱測定装置付き研磨装置
CN202066612U (zh) * 2011-05-26 2011-12-07 长沙理工大学 一种可磨式半人工热电偶测量磨削表面温度装置
CN102398220A (zh) * 2011-11-21 2012-04-04 上海理工大学 平面磨削的磨削区温度测量装置
CN203069285U (zh) * 2012-12-18 2013-07-17 华侨大学 一种新型夹丝法磨削测温用热电偶
CN203132725U (zh) * 2013-03-04 2013-08-14 上海电机学院 可磨式双极热电偶测温系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244463A (ja) * 1997-02-28 1998-09-14 Chiyoda Kk 研磨装置の研磨熱測定方法および研磨熱測定装置付き研磨装置
CN202066612U (zh) * 2011-05-26 2011-12-07 长沙理工大学 一种可磨式半人工热电偶测量磨削表面温度装置
CN102398220A (zh) * 2011-11-21 2012-04-04 上海理工大学 平面磨削的磨削区温度测量装置
CN203069285U (zh) * 2012-12-18 2013-07-17 华侨大学 一种新型夹丝法磨削测温用热电偶
CN203132725U (zh) * 2013-03-04 2013-08-14 上海电机学院 可磨式双极热电偶测温系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张魁榜等: "基于传热反算建立磨削三维热模型的新方法", 《中国机械工程》, vol. 24, no. 18, 25 September 2013 (2013-09-25), pages 2480 - 2484 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615876A (zh) * 2015-01-28 2015-05-13 大连理工大学 一种复合材料切削热分配系数的计算方法
CN104924154A (zh) * 2015-06-10 2015-09-23 华中科技大学 一种用于测量机床加工时工件表面以下不同深度的温度值的方法
CN109781289A (zh) * 2019-03-15 2019-05-21 华侨大学 修正热电偶测量值获得实际钻削点钻骨温度的方法及设备
CN110328614A (zh) * 2019-07-08 2019-10-15 湖南科技大学 一种内圆磨削温度测量方法
CN115415937A (zh) * 2022-08-10 2022-12-02 温州大学 一种磨削区温度的测量方法及系统

Also Published As

Publication number Publication date
CN103639895B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN103639895B (zh) 一种基于传热反问题的磨削温度测量方法
Xu et al. Comparison of methods to measure grinding temperatures
Lefebvre et al. Numerical analysis of grinding temperature measurement by the foil/workpiece thermocouple method
Sato et al. Temperature variation in the cutting tool in end milling
CN102565124B (zh) 脉冲红外热波技术定量测量方法
Lefebvre et al. Measurement of grinding temperatures using a foil/workpiece thermocouple
Hwang et al. Measurement of temperature field in surface grinding using infra-red (IR) imaging system
Al Huda et al. Investigation of temperature at tool-chip interface in turning using two-color pyrometer
CN104268343A (zh) 一种用于端铣切削的切削力预测及温度预测的方法
CN104155336B (zh) 同时测定低维材料热导率、热扩散率和热容的方法及系统
Li et al. Temperature monitoring of the tool-chip interface for PCBN tools using built-in thin-film thermocouples in turning of titanium alloy
Liu et al. An in-situ infrared temperature-measurement method with back focusing on surface for creep-feed grinding
CN100410639C (zh) 基于涂层热电效应的刀具瞬态切削温度测试方法
CN104040327A (zh) 用于测量热导率的方法
CN203249885U (zh) 测量激光吸收率的装置
Cui et al. Analysis of transient average tool temperatures in face milling
CN102398220A (zh) 平面磨削的磨削区温度测量装置
Peng et al. Experimental and simulation research on micro-milling temperature and cutting deformation of heat-resistance stainless steel
Sakakura et al. Temperature distribution in a workpiece during cylindrical plunge grinding
CN106353361A (zh) 一种测试材料涂覆涂层后激光吸收率的方法
CN102501173A (zh) 平面磨削的磨削区温度测量方法
Vinay et al. Temperature assessment in surface grinding of tool steels
Pang et al. Heat flux distribution model in the cylindrical grinding contact area
Pang et al. Rayleigh heat flux distribution model investigation and workpiece temperature prediction in the cylindrical grinding
Menon et al. Infrared thermography of the chip-tool interface through transparent cutting tools

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151028

Termination date: 20171115

CF01 Termination of patent right due to non-payment of annual fee