CN103617344B - 基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法 - Google Patents

基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法 Download PDF

Info

Publication number
CN103617344B
CN103617344B CN201310544995.3A CN201310544995A CN103617344B CN 103617344 B CN103617344 B CN 103617344B CN 201310544995 A CN201310544995 A CN 201310544995A CN 103617344 B CN103617344 B CN 103617344B
Authority
CN
China
Prior art keywords
earth
parameter
roughness
inversion
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310544995.3A
Other languages
English (en)
Other versions
CN103617344A (zh
Inventor
吴振森
张元元
苏翔
李海英
令狐龙翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310544995.3A priority Critical patent/CN103617344B/zh
Publication of CN103617344A publication Critical patent/CN103617344A/zh
Application granted granted Critical
Publication of CN103617344B publication Critical patent/CN103617344B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种遗传与多输出支持向量机的联合优化算法,结合雷达后向散射实测数据,快速反演单层地表(均方根高度kσ<1.5,均方根斜率s<0.3)介电参数与粗糙度参数,其步骤包括:利用单层地表HH和VV极化雷达后向散射系数实测数据,获得同极化比值;根据粗糙地表电磁散射的小斜率近似方法计算后向同极化比;采用遗传算法结合小斜率近似同极化比以及实测数据反演地表介电常数;将其反演结果带入电磁散射积分方程模型,生成后向散射系数随粗糙度变化的数据文件;结合两种极化的雷达后向散射实测数据,构成目标函数,利用M‑SVR优化算法反演地表粗糙度参数,并评估反演误差和效率。本发明在保证反演精度的同时,可实现对地表参数的实时预测。

Description

基于雷达后向散射实测数据对单层地表介电参数与粗糙度参 数快速反演的联合优化算法
技术领域
本发明涉及微波遥感技术领域,尤其是涉及一种基于雷达实测数据对单层地表介电参数和粗糙度参数快速反演的联合优化算法。
背景技术
电磁散射和电磁逆散射研究在微波遥感中起着极为重要的作用,对地微波遥感的雷达技术近些年来取得了长足的进步,其能够全天候、全天时观测,具有广泛的应用前景。在陆地和海洋等典型地表的微波遥感中,其后向散射回波与地表的物理参数以及土壤水分等密切相关,其包含了众多的地表信息,例如利用地表微波遥感技术可以获得土壤的含水量、农作物成熟情况以及海水的海态、风速、介电常数等信息,因此逆散射相关领域的科学研究将对国民技术的发展产生重大影响,对地表参数的反演研究工作势在必行。
反演地表的介电参数和粗糙度参数是微波遥感的重要应用之一,近二十多年来,地表参数的反演已发展为多波段、多极化、多角度地表数据的反演,地表介电常数和粗糙度的反演取得了显著的发展。目前,反演方面的研究主要有四条路径:一是经验公式法,如Oh模型,Dubois模型和Shi模型等,但其各自适用范围有限。二是优化算法结合地表电磁散射模型和雷达实测数据,反演粗糙面的介电参数和粗糙度参数,当电磁散射模型较为复杂时,计算速度相当缓慢。一般常采用遗传算法或粒子群算法分别结合积分方程(IEM)模型、微扰法模型以及双尺度模型联合反演电磁参数。王悦泉和金亚秋等基于 裸土后向散射系数实测数据结合遗传算法和双尺度模型反演了地表粗糙度和湿度参数,反演结果和实测值吻合良好,但该反演只局限于满足两尺度模型的地表。电子科技大学贾明全利用L/S/C/X波段裸土单频全极化和双频同极化后向散射实测数据,结合神经网络方法和AIEM法反演了裸土的介电常数和粗糙度参数,其反演精度较高,但耗时较长,无法实现地表参数的实时预测。三是优化算法结合地表电磁散射同极化比值和雷达实测数据,反演介电参数。不同地表电磁模型的同极化比适用范围不同。该反演方法在实验数据较为理想的情况下,运算速度快,反演精度高。Ceraldi采用地表电磁散射模型的微扰法、基尔霍夫近似法的镜像同极化比消去粗糙度的影响,结合遗传算法反演了粗糙面的介电常数,但其只适用于微起伏、曲率不大的粗糙面。四是基于机器学习算法的地表参数反演。传统的支持向量机(SVM)只能进行地表单参数反演,因此无法保证多参数的总反演精度,对于地表多参数同时未知的情况,SVM变得无能为力。M-SVR相比于SVM具有多参数反演能力,且具有精度高、速度快等优点,根据目前检索国内外资料表明,M-SVR应用于地表电磁参数反演还未见报道。
发明内容
本发明所要解决的技术问题是:对于雷达波照射下的地表回波电磁散射模型,如常规的微扰法、基尔霍夫近似法、双尺度法、小斜率近似以及积分方程法等,其地表适用范围不同。已有的地表后向散射模型同极化比仅针对微扰法和基尔霍夫近似法,但这两者的适用范围较窄,使得在未知地表粗糙度的情况下采用同极化比方法反演该粗糙面介电常数,在模型选用上具有一定的盲目性;而传统的IEM地表散射模型在较宽的粗糙度适用范围内和实测数 据吻合良好,与GA方法联合反演电磁参数的精度较高,但其公式繁琐,反演时间漫长,难以实现地表参数的实时预测。
为解决上述技术问题,本发明的技术方案是:在地表粗糙度满足kσ<2,均方根斜率s<0.3的情况下,推导SSA近似同极化比公式,拓宽所反演地表粗糙面的适用范围,在其均方根斜率较小的情况下均具有精确解;采用IEM法生成训练数据,由M-SVR反演参数,解决反演过程中的小样本、非线性以及局部极小等问题,在保证反演精度的同时,减少了反演时间。基于雷达后向散射实测数据对地表介电参数与粗糙度参数反演的联合优化算法,包括如下步骤:
1)根据单层地表雷达后向散射系数实测数据,获得同极化比值;
2)计算粗糙地表电磁散射的小斜率近似方法(SSA)后向同极化比;
3)采用GA算法结合SSA近似同极化比与实测数据同极化比反演地表介电常数;
4)将地表介电常数反演结果带入IEM电磁散射模型,降低未知数维度,生成后向散射系数随均方根高度和相关长度变化的文件(A1);
5)将数据文件(A1)作为训练模型,采用M-SVR建立目标函数∑2并优化为模型Model-1,将地表HH和VV极化雷达后向散射系数实测数据作为测试样本,优化反演地表粗糙度信息(均方根高度和相关长度);
6)评估反演误差RMS和反演所需时间。
进一步的,其中,步骤2)所述的SSA近似方法的同极化比公式为:
p ( ϵ ′ , ϵ ′ ′ , θ i ) = σ hh 0 / σ vv 0 = | B hh / B vv | 2 - - - ( 9 )
进一步的,其中,步骤3)所述的采用GA算法结合SSA近似同极化比理论反演地表介电常数的目标函数取为:
Σ 1 ( ϵ ′ , ϵ ′ ′ ) = 1 N Σ i | p ( ϵ ′ , ϵ ′ ′ , θ i ) - p ^ ( ϵ ′ , ϵ ′ ′ , θ i ) | 2 - - - ( 10 )
其中ε=ε′,+jε″,p(ε′,ε″,θi)为SSA近似后向同极化比理论值,为地表实测数据后向同极化比值。
进一步的,其中,步骤5)所述的采用M-SVR方法结合IEM模型数据反演粗糙度参数(均方根高度和相关长度),按如下步骤进行:
4a)选择入射角和IEM模型HH与VV极化后向散射系数理论值作为训练输入向量X(m×2维);
4b)将训练输入向量对应的均方根高度和相关长度作为训练输出向量Y(m×2维);
4c)采用M—SVR结合训练输入向量X和训练输出向量Y,建立目标函数∑2并优化为模型Model-1;
4d)将雷达实测数据的入射角和后向散射系数作为预测的输入向量X2(n×2维)
4e)根据训练的最优模型Model-1,反演实测后向散射系数对应的均方根高度和相关长度信息Y2(n×2维);
采用上述技术方案,本发明的有益效果为:首次采用SSA近似同极化比结合遗传算法反演地表介电常数,拓宽了所反演粗糙地表的适用范围,将已反演出的介电常数带入积分方程模型,降低未知数维度,采用多输出支持向量机(M—SVR)联合IEM模型训练数据对地表粗糙度参数的快速反演,成功的解决了小样本、非线性以及局部极小等问题,克服了遗传算法与积分方程法运算时间漫长以及M-SVR反演介电常数误差较大的缺点,可实现对地表粗糙 度的实时预测。
附图说明
图1是本发明实施例的流程示意图;
具体实施方式
下面结合附图和实施例对本发明进一步说明。
如图1所示,基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法,具体实现步骤如下:
步骤1,根据地表雷达后向散射系数实测数据,获得同极化比值
步骤2,计算粗糙地表电磁散射的小斜率近似方法(SSA)后向同极化比
p ( ϵ ′ , ϵ ′ ′ , θ i ) = σ hh 0 / σ vv 0 = | B hh / B vv | 2 - - - ( 11 )
步骤3,采用遗传算法结合SSA近似同极化比与实测数据反演地表介电常数,其中种群数目为6000,代数为10000,染色体变异概率为0.02,交叉概率为0.9,上述参数可视具体情况进行调整,目标函数选择为
Σ 1 ( ϵ ′ , ϵ ′ ′ ) = 1 N Σ i | p ( ϵ ′ , ϵ ′ ′ , θ i ) - p ^ ( ϵ ′ , ϵ ′ ′ , θ i ) | 2 - - - ( 12 )
其中ε=ε′+jε″,p(ε′,ε″,θi)为后向同极化比理论值,为地表实测数据后向同极化比值。
步骤4,将地表介电常数反演结果带入IEM电磁散射模型,降低未知数维度,生成后向散射系数随均方根高度和相关长度变化的数据文件(A1)。
步骤5,选择入射角与IEM方法HH和VV极化后向散射系数理论值作为训练输入向量X(m×2维),将训练输入向量对应的均方根高度和相关长度信息作为训练输出向量Y(m×2维)。
步骤6,建立目标函数∑2,选择高斯径向核函数,采用M-SVR方法根据训练输入向量和输出向量确定优化模型Model-1。
步骤7,将地表雷达实测后向散射系数作为预测的输入向量X2(n×2维),根据最优模型Model-1反演地表实测的均方根高度和相关长度信息Y2(n×2维),评估其反演误差和效率。
本发明的效果可通过以下仿真进一步说明:
1.仿真条件及仿真内容:
本实例在Intel(R)Core(TM)i3-CPU2.10GHz Windows7系统下,VS2008和Matlab2010运行平台上,完成本发明的实现。
2.仿真实验结果
本发明根据雷达(如C波段)照射下裸土的实测数据举例分析,根据遗传(GA)算法与多输出支持向量机(M—SVR)方法,联合雷达后向散射实测数据,快速反演地表介电参数和粗糙度参数,对本专利算法的性能进行测试。
a)基于地表雷达0-60度后向散射系数实测数据,遗传算法(GA)联合IEM地表电磁散射模型,同时反演C波段地表的介电常数实部、虚部以及地表均方根高度和相关长度等4个参数,反演结果见表1所示。
表1GA方法联合IEM模型反演地表参数
从表1可以看出,基于地表实测数据,GA方法联合IEM模型同时反演地表介电常数和粗糙度信息,反演精度极高,但耗时较长,实时预测存在困难。
b)根据地表后向散射系数实测数据,获取同极化比值,结合SSA后向同极 化比理论公式,分别选择遗传算法(GA)和多输出支持向量机(M-SVR)反演地表C波段介电常数实部和虚部,结果见表2和表3所示。
表2GA方法联合地表SSA后向同极化比反演介电常数
反演方法 介电常数实部 介电常数虚部 RMSE 耗时
GA反演值 15.39 2.15 1.051e-7 5.23s
真实值 15.40 2.15 0
表3M-SVR方法联合地表SSA后向同极化比反演介电常数
从表2和表3可以看出,GA方法联合SSA极化比反演介电常数实部和虚部精度远大于M-SVR方法,两种方法运算速度均较快,但GA方法更优于M-SVR方法,说明GA方法结合SSA同极化比反演介电常数的高效性以及准确性。
c)将上述地表的介电常数反演结果带入IEM电磁散射模型,减少未知数维度,采用IEM模型生成地表后向散射系数随均方根高度和相关长度变化的文件(A1),结合GA方法和M-SVR方法分别反演地表均方根高度和相关长度参数,并进行对比分析。
表4GA方法结合IEM电磁散射模型反演地表粗糙度
反演方法 均方根高度(cm) 相关长度(cm) RMSE 耗时
GA反演值 0.39 2.16 3.12e-4 148631s
真实值 0.40 2.15 0
表5M—SVR方法结合IEM电磁散射模型反演地表粗糙度
从表4和表5可以看出,传统的IEM电磁散射模型结合GA算法反演地表粗糙度精度较高,但耗时极长,本发明中采用多输出支持向量机(M-SVR),通过IEM电磁散射模型生成训练数据,反演地表均方根高度和相关长度参数,在保证精度的同时,明显提高了反演速度,相比于GA算法具有很大的优势。
通过以上三条反演途径分析可以看出:
a)遗传算法联合IEM电磁散射模型及地表实测数据同时反演地表介电参数和粗糙度参数,总耗时178441s,反演精度3.12e-4。
b)采用多输出支持向量机联合SSA近似后向同极化比理论及地表实测数据反演地表介电常数参数,耗时107.18s,反演精度为1.9158。将介电常数反演结果带入IEM模型并生成训练数据,结合多输出支持向量机(M-SVR)反演地表均方根高度和相关长度参数,.耗时3.77s,反演精度为0.1288。全程总耗时110.95s。
c)采用遗传算法联合SSA近似后向同极化比理论及地表实测数据反演地表介电常数参数,耗时5.23s,反演精度为1.051e-7。将地表介电常数反演结果带入IEM电磁散射模型并生训练数据,结合M—SVR反演地表均方根高度和相关长度参数,耗时3.77s,反演精度为0.1288。全程总耗时9s。
上述三种反演地表介电参数和粗糙度参数的算法比较表明,本发明的c 方案反演性能优越,在保证反演精度的同时,速度得到了极大的提升。
本发明不局限于上述具体的实施方式,本领域的普通技术人员从上述构思出发,不经过创造性的劳动,所做出的种种变换,均落在本发明的保护范围之内。

Claims (4)

1.基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法,其特征在于,包括如下步骤:
1)获取地表HH和VV极化雷达后向散射系数实测数据,处理实测数据获得同极化比值;
2)根据小斜率近似方法SSA,理论计算粗糙地表雷达后向散射系数的同极化比;
3)根据1)和2),建立同极化比值的目标函数∑1,采用遗传算法优化反演地表介电常数;
4)将反演的地表介电常数,代入粗糙面电磁散射积分方程IEM,降低未知数维度,生成HH和VV极化雷达后向散射系数随均方根高度和相关长度变化的数据文件A1;
5)将数据文件A1作为训练模型,采用M-SVR方法建立目标函数∑2,其最优模型为Model-1,将地表HH和VV极化雷达后向散射系数实测数据作为测试样本,利用模型Model-1优化反演地表粗糙度信息,该信息是指均方根高度和相关长度;
以上所述的采用M-SVR方法结合单层地表电磁散射IEM模型反演粗糙度参数,该参数是指均方根高度和相关长度,按如下步骤进行:
4a)选择入射角和IEM模型HH与VV极化后向散射系数理论值作为训练输入向量X,维度为m×2;
4b)将训练输入向量对应的均方根高度和相关长度作为训练输出向量Y,维度为m×2;
4c)采用M-SVR方法结合训练输入向量X和训练输出向量Y,建立目标函数∑2并优化为模型Model-1;
对于非线性问题,支持向量机利用非线性映射函数将样本映射到高维线性空间,并建立一个线性模型来估计回归函数
Y=f(X)=W·φ(X)+b (3)
其中W=[w1,w2,...,wk]T,b=[b1,b2,...,bk]T为高维特征空间的K维线性回归量,所有的训练数据在精度ε下无误差地用线性函数拟合,其中,w是可调的权值向量,b是偏置,采用ε-支持向量机,可转化为如下约束优化问题
min Σ j = 1 k | | w j | | 2 + C Σ i = 1 N ξ i - - - ( 4 )
St.
| | Y i - W φ ( x i ) - b | | 2 ≤ ϵ + ξ i , i = 1 , 2 , ... , N ξ i ≥ 0 , i = 1 , 2 , ... , N - - - ( 5 )
为求解上述M-SVR,将(4)(5)带入(3),并引入拉格朗日函数将其转化为对偶问题求最小:
L = Σ j = 1 k | | w j | | 2 + C Σ i = 1 N ξ i - Σ i = 1 N α i ( ϵ + ξ i - | | Y - W φ ( X ) - b | | 2 ) - Σ i = 1 N μ i ξ i - - - ( 6 )
其中αi和μi为拉格朗日乘子,KKT条件为
∂ L ∂ w j = 2 w j - 2 φ T D a [ y j - φw j - b j ] = 0 , j = 1 , ... k
∂ L ∂ b j = α T [ y j - φw j - b j ] = 0 , j = 1 , ... k
∂ L ∂ ξ j = C - μ i - α i = 0 , i = 1 , ... N - - - ( 7 )
μi,αi≥0 i=1,...N
αi{ε+ξi-||yi-Wφ(xi)-b||2}=0 i=1,...N
μiξi≥0 i=1,...N
通常采用径向基核函数,K(xi,xj)=φT(xi)φ(xj)=exp(-||xi-xj||22),保持αi不变,采用迭代算法计算出wj,bj,其对应的参数模型定义为Model-1;
4d)将雷达实测数据的入射角和后向散射系数作为预测的输入向量X2;维度为n×2;
4e)根据训练的最优模型Model-1,预测实测后向散射系数对应的均方根高度和相关长度信息Y2;维度为n×2;
6)评估地表介电参数与粗糙度散射的反演误差和反演所需时间。
2.根据权利要求1所述的基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法,其特征在于,其中,步骤2)所述的SSA近似方法的同极化比公式为:
其中,p(ε′,ε″,θi)为后向同极化比理论值,θi为入射角。
3.根据权利要求1所述的基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法,其特征在于,其中,步骤3)所述的采用遗传算法结合SSA近似同极化比理论值和实测数据同极化比值,反演地表介电常数的目标函数∑1取为:
Σ 1 ( ϵ ′ , ϵ ′ ′ ) = 1 N Σ i | p ( ϵ ′ , ϵ ′ ′ , θ i ) - p ^ ( ϵ ′ , ϵ ′ ′ , θ i ) | 2 - - - ( 12 )
其中,N为测量数据的总个数,p(ε′,ε″,θi)为后向同极化比理论值,为实测数据后向同极化比值。
4.根据权利要求1所述的基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法,其特征在于,根据以下公式评估其反演误差RMS和反演所需时间:
R M S = 1 N Σ ( X p r e - X r e a l ) 2 - - - ( 8 )
其中,N为测量数据的总个数,Xpre为预测结果,Xreal为真实结果。
CN201310544995.3A 2013-11-02 2013-11-02 基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法 Active CN103617344B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310544995.3A CN103617344B (zh) 2013-11-02 2013-11-02 基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310544995.3A CN103617344B (zh) 2013-11-02 2013-11-02 基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法

Publications (2)

Publication Number Publication Date
CN103617344A CN103617344A (zh) 2014-03-05
CN103617344B true CN103617344B (zh) 2017-02-08

Family

ID=50168047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310544995.3A Active CN103617344B (zh) 2013-11-02 2013-11-02 基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法

Country Status (1)

Country Link
CN (1) CN103617344B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034739A (zh) * 2014-06-20 2014-09-10 环境保护部卫星环境应用中心 双时相雷达监测土壤含水量的方法
CN104267045B (zh) * 2014-09-04 2017-01-18 浙江托普仪器有限公司 一种基于无线网络的广域土壤墒情检测系统
CN105372631B (zh) * 2015-10-29 2017-12-05 中国科学院遥感与数字地球研究所 基于遗传‑偏最小二乘算法的极化雷达反演方法及其应用
CN105701284B (zh) * 2016-01-11 2019-03-15 西安电子科技大学 时变多尺度电大区域海面电磁散射矢量场的并行计算方法
CN105740545A (zh) * 2016-02-01 2016-07-06 西安电子科技大学 微波段地表双站电磁散射系数的统计工程模型的建立方法
LU93431B1 (en) * 2016-12-27 2018-06-28 Iee Sa Polarimetric Radar System and Method for Object Classification and Road Condition Estimation in Stationary Applications
CN106845544B (zh) * 2017-01-17 2017-10-20 西北农林科技大学 一种基于粒子群与支持向量机的小麦条锈病预测方法
CN108761397B (zh) * 2018-05-30 2022-05-27 中南大学 基于电磁散射模拟的极化sar模型分解评价方法
CN109581383B (zh) * 2019-01-17 2020-08-18 中国人民解放军61741部队 各向异性海面雷达后向散射模拟方法及系统
CN110956249B (zh) * 2019-12-05 2023-01-24 桂林电子科技大学 基于重采样优化粒子群算法的层状介质反演方法
CN112731377B (zh) * 2020-12-15 2024-03-26 郑州大学 一种介电常数反演方法、路基检测方法和检测系统
CN112731376A (zh) * 2020-12-15 2021-04-30 郑州大学 多算法联合获取介电常数方法、雷达检测方法和系统
CN112687351B (zh) * 2021-01-07 2023-04-18 哈尔滨工业大学 一种基于遗传算法-bp神经网络快速预测复合介质微波电磁性能的方法
CN113609646B (zh) * 2021-07-08 2022-04-12 中国人民解放军32215部队 一种复杂陆地环境与装备的耦合电磁散射特性建模仿真方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
微波遥感地表参数反演进展;施建成 等;《中国科学》;20120630;第42卷(第6期);全文 *

Also Published As

Publication number Publication date
CN103617344A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
CN103617344B (zh) 基于雷达后向散射实测数据对单层地表介电参数与粗糙度参数快速反演的联合优化算法
Gill et al. Soil moisture prediction using support vector machines 1
CN108008385B (zh) 基于稀疏贝叶斯学习的干扰环境isar高分辨成像方法
CN106021637B (zh) 互质阵列中基于迭代稀疏重构的doa估计方法
Shen et al. Wind-speed inversion from HF radar first-order backscatter signal
CN102156764B (zh) 一种分析天线辐射和电磁散射的多分辨预条件方法
CN105760699A (zh) 一种海表盐度反演方法和装置
Zhao et al. Estimation of atmospheric duct structure using radar sea clutter
Liu et al. Source ranging using ensemble convolutional networks in the direct zone of deep water
Rashidi-Ranjbar et al. Target above random rough surface scattering using a parallelized IPO accelerated by MLFMM
Penton et al. Rough ocean surface effects on evaporative duct atmospheric refractivity inversions using genetic algorithms
CN111046603A (zh) 基于gpu并行加速特征基函数算法的电磁散射特性分析方法
CN105184297A (zh) 基于张量和稀疏自编码器的极化sar图像分类方法
Gehani et al. Analysis and synthesis of multiband Sierpinski carpet fractal antenna using hybrid neuro-fuzzy model
Liu et al. Multiple source localization using learning-based sparse estimation in deep ocean
Shangguan et al. GF-3 polarimetric data quality assessment based on automatic extraction of distributed targets
CN104317984A (zh) 基于分域建模的船舶电磁散射预测方法及系统
Dong et al. Long-term variations of wind and wave conditions in the Taiwan Strait
Yang et al. The effects of rainfall on over-the-Horizon propagation in the evaporation duct over the south China Sea
Neshat et al. A new insight into the position optimization of wave energy converters by a hybrid local search
Yang et al. The short-term forecasting of evaporation duct height (EDH) based on ARIMA model
CN109063760B (zh) 基于随机森林多尺度卷积模型的极化sar分类方法
CN110363232A (zh) 基于bp神经网络的毫米波探测器干扰效果评估方法
CN115097451A (zh) 一种基于sar卫星数据的海浪多参数反演方法及系统
CN108564098B (zh) 基于散射全卷积模型的极化sar分类方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant