CN103589447A - 一种费托合成方法 - Google Patents
一种费托合成方法 Download PDFInfo
- Publication number
- CN103589447A CN103589447A CN201310529789.5A CN201310529789A CN103589447A CN 103589447 A CN103589447 A CN 103589447A CN 201310529789 A CN201310529789 A CN 201310529789A CN 103589447 A CN103589447 A CN 103589447A
- Authority
- CN
- China
- Prior art keywords
- tropsch synthesis
- fischer
- perovskite structure
- metal oxides
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
Abstract
一种费托合成方法,以合成气为原料,在钴基费托合成催化剂的作用下进行费托合成反应,反应条件如下:反应温度为180~250℃,反应压力为1.0~4.0MPa,合成气中H2/CO=1~3(摩尔比),气体体积空速为600~2500h-1,所述的钴基费托合成催化剂中含有钙钛矿结构ABO3- y的复合金属氧化物,其中A为稀土金属和/或碱土金属,B为过渡金属,y为复合氧化物中存在的氧空位的摩尔数。针对现有技术的不足,本发明公开一种费托合成方法。该费托合成方法具有甲烷选择性低、液态烃产物中柴油馏分含量高、能够长周期稳定运转等优点。
Description
技术领域
本发明涉及一种费托合成方法,具体地说涉及一种液态烃产物中柴油馏分含量高、甲烷选择性低的费托合成方法。
背景技术
液体燃料是现代社会赖以运转的血液,它主要是通过原油炼制、加工来生产的。近年来,由于对原油供给前景的担忧造成了液体燃料价格持续上涨,同时液体燃料的大量使用也带来了严重的环境污染问题,建立可持续的清洁液体燃料生产方法是解决上述两个问题的有效手段。费托合成工艺是指将煤、天然气、生物质等含碳资源先转化为合成气(CO和H2的混合物),再将合成气在催化剂上聚合为气态、液态和固态烃的过程,后面的合成气聚合反应过程被称为费托合成反应(Fischer-Tropsch Synthesis)。费托合成制备的液态烃经过加氢提质后,具有与石油炼制生产的液体燃料相同的性质。由于煤、天然气的已知贮量远大于石油的探明贮量,生物质是一种可再生的资源,因此费托合成工艺可以在较长的时间内为社会提供充足的以汽油和柴油等为代表的液体燃料,是理想的生产替代石油燃料的技术。
费托反应是在催化剂上进行的,具有优异性能的催化剂(高活性、高选择性、高稳定性)是实现高效费托合成工艺的技术保障。催化剂活性高,能够提高反应装置的单位生产率,选择性高可以提高反应原料的利用率,稳定性高有利于维持反应装置的满负荷运转、减少非正常停车。 在对费托反应的长期研究中发现:镍、钌、铁和钴具有费托反应活性。镍基催化剂在费托反应条件下,会产生太多的甲烷,同时自身易于生成挥发性的羰基镍而从反应器中流失,难以实现工业应用。钌是已知的最活泼的费托反应催化剂,但它的高昂价格和有限的贮量阻碍了它在工业费托装置上的使用,它一般是以助剂形式添加到铁基和钴基催化剂中、改善它们的反应性能。只有铁基和钴基催化剂被成功地使用于费托合成工业。铁基催化剂和钴基催化剂在反应性能上有着较大差别。
铁基催化剂可以具有很高的反应活性,但研究[Fuel 76(1997)273.]发现随着CO转化率升高,发生反应的CO以更高的比例转化为CO2而不是烃,即生成烃的选择性随着CO转化率升高而下降。为了获得较高的烃产率,铁基催化剂被认为适宜以较低的CO单程转化率工作,通过反应尾气循环进行二次反应方式达到高的CO总转化率(合成气利用率)和高的烃选择性,但这种工作方式增加了尾气分离、气体循环压缩等工作量及相应的能耗,限制了费托合成工艺的总效率提高。
与铁基催化剂反应性能形成对照的是钴基催化剂,它的性能受费托反应中生成水的影响较少,由于它的水汽变换活性很弱,合成气中的CO主要是转化为烃。所以,使用钴基催化剂的费托合成工艺能够以高的单程转化率方式工作,可以省却对反应尾气压缩循环的操作,缩短了工艺流程,有利于提高费托合成工艺的总效率。
US6765026B2公开了一种应用特殊催化剂进行催化的费托合成方法。该方法采用的催化剂前驱体为一种铁族(尤其是钴)金属的可溶化合物或盐和铂的可溶化合物或盐。将前驱体与羟基烃基胺或氢氧化铵的溶液接触,得到一种特殊的催化剂,使C5 +烃类选择性达到58%~80%。
CN101224430A报道了一种疏水有机物改性钴基费托合成催化剂,贵金属和钴负载到二氧化硅载体上,然后进行有机改性。其中当贵金属采用Pt时,催化剂体系15%Co0.8%Pt/SiO2,有机改性试剂采用二甲基二乙氧基硅烷改性,在加压固定床上,反应条件为230℃,1.0MPa,1000h-1(V/V),H2/CO=3/1,CO的转化率为72.7%。
CN200810039490.0公开了一种用于费托合成的沉淀铁钴催化剂,该催化剂的组成包括:元素铁、元素钴2~50g/100gFe,元素钾1~10g/100gFe以及以二氧化硅重量计的含硅氧物质5~100g/100gFe。制备方法为将沉淀剂加入含铁溶液和含钴溶液的混合溶液,待沉淀老化24h后,洗涤过滤,获得含铁钴的共沉淀滤饼, 将去离子水加入滤饼中,打浆使其均匀,在不断匀速搅拌下加入二氧 化硅粉末和碳酸钾粉末,或者加入二氧化硅粉末和硅酸钾胶体,混合 均匀,将所制得催化剂浆料干燥、焙烧,即得到所述沉淀铁钴催化剂, 其重量比组成为Fe∶Co∶K∶SiO2=100∶2~50∶1~10∶5~100。所述催化剂浆料的焙烧温度为400~500℃、焙烧时间为2~6小时。该方法同样具有较高的气体转化率。
综上所述,钴基费托合成方法相比费托合成方法而然,在合成气的转化率及降低二氧化碳的选择性上具有明显的优势,但是在高转化率的同时也存在着液态烃产物分布比较分散,碳链过长石蜡组分偏多,甲烷的选择性高等问题;不利于后续的加工利用,这些问题的解决能够进一步提高钴基费托合成方法的应用及推广。
发明内容
针对现有技术的不足,本发明公开一种费托合成方法。该费托合成方法具有甲烷选择性低、液态烃产物中柴油馏分含量高、能够长周期稳定运转等优点。
一种费托合成方法,以合成气为原料,在钴基费托合成催化剂的作用下进行费托合成反应,反应条件如下:反应温度为180~ 250℃,反应压力为1.0~4.0 MPa,合成气中H2/CO=1~3(摩尔比),气体体积空速为600~2500h-1,所述的钴基费托合成催化剂中含有钙钛矿结构ABO3-y的复合金属氧化物,其中A为稀土金属和/或碱土金属,B为过渡金属,y为复合氧化物中存在的氧空位的摩尔数。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂采用如下的还原方法,首先在氢气气氛下于300℃-400℃下还原3-5h,然后在C1-C3的低碳烷烃气氛下于500℃-700℃下还原0.5-1.5h。采用该还原方式能够明显降低费托合成产物中甲烷的选择性,提高稳定运转周期。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中含有重量含量为10-80%,优选25-60%(不包含复合氧化物中的过渡金属钴)的活性组分钴及重量含量为10-70%,优选20%-60%的具有钙钛矿结构的复合金属氧化物。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中还可以含有重量含量为0.1-15%的金属助剂。所述的助剂为现有技术中所用的各种费托合成金属助剂,如锆、钾、钌、铂、镍、钼、铜、锌、铬、钒、钛、钼、锆中的一种或几种。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中具有钙钛矿结构的ABO3-y的复合金属氧化物中B为至少包括钴的过渡金属,钴与其余过渡金属的摩尔比不低于3:1,优选不低于4:1。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂由活性组分钴、具有钙钛矿结构的复合金属氧化物BaMo1-x CoxO3-y(其中,0.85<x< 0.95)及金属助剂钾组成。此费托合成催化剂与反应工艺相结合能够明显提高产物中柴油馏分含量。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中包括具有钙钛矿结构的复合金属氧化物的制备和活性组分钴及金属助剂负载过程。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中所述的具有钙钛矿结构的复合金属氧化物的制备采用络合法,但不局限于该方法。所述的络合法包括如下过程:首先将计量比的稀土金属和/或碱土金属与过渡金属(优选包括钴的过渡金属)前驱体与络合剂混合配成溶液并搅拌均匀,然后进行水分蒸发,溶液由透明的溶胶转变成粘稠的凝胶,最后干燥、焙烧,焙烧后制得具有钙钛矿结构的复合金属氧化物。以制备具有钙钛矿结构的复合金属氧化物BaMo1-xCoxO3-y(0.85<x< 0.95)为例,具体包括如下内容:以硝酸钡、硝酸钴、硝酸钼为前驱体,以柠檬酸或乙二醇为络合剂,配成溶液并混合搅拌均匀,然后进行水分蒸发,溶液由透明的溶胶转变成粘稠的凝胶,最后干燥、焙烧,焙烧后制得BaMo1-xCoxO3-y(0.85<x< 0.95)复合金属氧化物。
上述络合法制备的具有钙钛矿结构的复合金属氧化物中,络合剂与金属离子摩尔比为1:1~8:1,优选为1:1~4:1。配制和搅拌溶液在20~90℃,优选为50~70℃下进行。搅拌速率为200~500rpm,优选为300~400rpm。搅拌时间为3~8小时,优选为4~6小时。干燥温度为60~200℃,优选为80~150℃。干燥时间为1~36小时,优选为8~24小时。焙烧温度为600~1000℃,焙烧时间为焙烧2~15小时,优选为在700~900℃下焙烧3~8小时。
本发明费托合成方法中,所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中活性组分和金属助剂负载过程采用浸渍法,等体积浸渍或过体积浸渍,分步浸渍或共浸渍,一次浸渍或多次浸渍均可。浸渍后包括干燥和焙烧过程,干燥步骤在50-150℃下干燥8-24小时,焙烧步骤在280-500℃下焙烧2-10小时。例如在复合金属氧化物BaMo1-xCoxO3-y(0.85<x< 0.95)上采用等体积多次浸渍法负载活性组分钴和金属助剂钾。所述的活性组分和金属助剂也可在制备钙钛矿结构的复合金属氧化物的过程中加入。
本发明费托合成方法在保持高活性的同时降低了甲烷的选择性,提高了生成的液态烃中柴油馏分的含量,解决了现有技术中以钴为活性组分的催化剂普遍存在的甲烷选择性及液态烃产品分布及运转稳定性的问题。
具体实施方式
下面结合实施例进一步说明本发明费托合成方法的过程和效果,但不局限于以下实施例。以下重量含量均以最终催化剂的重量计。
实施例1
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原4小时,还原温度为350℃;然后在甲烷气下进行还原1h,还原温度600℃。费托合成反应条件为200℃,1000h-1,2.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸钴和硝酸钡的混合水溶液, 按柠檬酸与混合水溶液中金属离子总量摩尔比为1.2:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在800℃下恒温焙烧4个小时,得到具有钙钛矿结构的复合金属氧化物BaCoO3-y,采用浸渍法在复合金属氧化物BaCoO3-y上负载重量含量为10%的助剂钾,40%的活性组分钴,在80℃干燥8小时,在350℃中焙烧4小时制得催化剂记为C-1。
实施例2
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原3小时,还原温度为400℃;然后在甲烷气下进行还原1.5h,还原温度500℃。费托合成反应条件为220℃,2000h-1,1.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸钙、硝酸钼和硝酸钡的混合水溶液, 按柠檬酸与混合水溶液中金属离子总量摩尔比为2:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在700℃下恒温焙烧6个小时,得到具有钙钛矿结构的复合金属氧化物CaCo0.9Mo0.1O3-y,采用浸渍法在复合金属氧化物CaCo0.9Mo0.1O3-y上负载重量含量为10%的钾,40%的活性组分钴,在80℃干燥8小时,在350℃中焙烧4小时制得催化剂记为C-2。
实施例3
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原5小时,还原温度为300℃;然后在甲烷气下进行还原0.5h,还原温度700℃。费托合成反应条件为230℃,1500h-1,1.5MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸钡、硝酸钴和硝酸钼的混合水溶液, 按柠檬酸与混合水溶液中金属离子总量摩尔比为2:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在700℃下恒温焙烧6个小时,得到具有钙钛矿结构的复合金属氧化物BaCo0.9Mo0.1O3-y,采用浸渍法在复合金属氧化物BaCo0.9Mo0.1O3-y上负载重量含量为10%的钾,40%的活性组分钴,在80℃干燥8小时,在350℃中焙烧4小时制得催化剂记为记为C-3。
实施例4
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原3小时,还原温度为400℃;然后在甲烷气下进行还原1.5h,还原温度500℃。费托合成反应条件为220℃,2000h-1,1.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸钡、硝酸钴和硝酸钼的混合水溶液,按柠檬酸与混合水溶液中金属离子总量摩尔比为4:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在600℃下恒温焙烧8个小时,得到具有钙钛矿结构的复合金属氧化物BaMo0.15Co0.85O3-y,采用浸渍法在复合金属氧化物BaMo0.15Co0.85O3-y上负载重量含量为5%的助剂钾,40%的活性组分钴,在80℃干燥8小时,在350℃中焙烧4小时制得催化剂C-4。
实施例5
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原4小时,还原温度为350℃;然后在甲烷气下进行还原1h,还原温度600℃。费托合成反应条件为200℃,1000h-1,2.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸钼、硝酸钙的混合水溶液, 按柠檬酸与混合水溶液中金属离子总量摩尔比为3:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在1000℃下恒温焙烧5个小时,得到具有钙钛矿结构的复合金属氧化物CaMoO3-y,采用浸渍法在复合金属氧化物CaMoO3-y上负载重量含量为10%的助剂钾,60%的活性组分钴,在80℃干燥8小时,在350℃中焙烧4小时制得催化剂记为C-5。
实施例6
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原4小时,还原温度为350℃;然后在甲烷气下进行还原1h,还原温度600℃。费托合成反应条件为200℃,1000h-1,2.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸钴和硝酸镧的混合水溶液, 按柠檬酸与混合水溶液中金属离子总量摩尔比为1.2:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在800℃下恒温焙烧4个小时,得到呈立方晶形的复合金属氧化物LaCo O3-y,采用浸渍法在复合金属氧化物LaCoO3-y上负载重量含量为5%的助剂钾,40%的活性组分钴,在80℃干燥8小时,在350℃中焙烧4小时,制得催化剂记为C-6。
实施例7
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原4小时,还原温度为350℃;然后在甲烷气下进行还原1h,还原温度600℃。费托合成反应条件为200℃,1000h-1,2.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸钴和硝酸镧的混合水溶液, 按柠檬酸与混合水溶液中金属离子总量摩尔比为1.2:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在800℃下恒温焙烧4个小时,得到具有钙钛矿结构的复合金属氧化物LaCoO3-y,采用浸渍法在复合金属氧化物LaCoO3-y上负载重量含量为5%的助剂钾,在80℃干燥8小时,在350℃中焙烧4小时,制得催化剂记为C-7。
实施例8
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原4小时,还原温度为350℃;然后在甲烷气下进行还原1h,还原温度600℃。费托合成反应条件为200℃,1000h-1,2.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:配制含有硝酸铁和硝酸钡的混合水溶液, 按柠檬酸与混合水溶液中金属离子总量摩尔比为1.2:1称取适量柠檬酸,向混合水溶液中缓慢的加入柠檬酸,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110℃的干燥箱中,干燥过夜。然后取出干燥后的前驱物,置于马弗炉中在800℃下恒温焙烧4个小时,得到具有立方晶形的复合金属氧化物BaCoO3-y,采用浸渍法在复合金属氧化物BaCoO3-y上负载重量含量为10%的助剂钾,在80℃干燥8小时,在350℃中焙烧4小时制得催化剂记为C-8。
实施例9
单独采用氢气还原,还原温度350℃,还原时间8h,其余同实施例5。200h的运转结果见表1,CO的转化率为单程转化率。
比较例1
以石蜡作为溶剂,在高压连续搅拌釜式反应器中进行费托合成反应。首先钴基催化剂在氢气气氛下还原4小时,还原温度为350℃;然后在甲烷气下进行还原1h,还原温度600℃。费托合成反应条件为200℃,1000h-1,2.0MPa,H2/CO=2(摩尔比)。200h的运转结果见表1,CO的转化率为单程转化率。所述催化剂采用如下方法制备:采用常规的共沉淀法制得非钙钛矿结构的钴、钙、钼复合金属氧化物,焙烧温度为450℃,然后浸渍助剂钾,制得催化剂记为B1,氧化物中钡、钴、钾的重量含量同实施例5。
表1 实施例和比较例费托合成反应结果
Claims (15)
1.一种费托合成方法,其特征在于:以合成气为原料,在钴基费托合成催化剂的作用下进行费托合成反应,反应条件如下:反应温度为180~ 250℃,反应压力为1.0~4.0 MPa,合成气中H2/CO=1~3(摩尔比),气体体积空速为600~2500h-1,所述的钴基费托合成催化剂中含有钙钛矿结构ABO3-y的复合金属氧化物,其中A为稀土金属和/或碱土金属,B为过渡金属,y为复合氧化物中存在的氧空位的摩尔数。
2.根据权利要求1所述的方法,其特征在于:所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂采用如下的还原方法,首先在氢气气氛下于300℃-400℃下还原3-5h,然后在C1-C3的低碳烷烃气氛下于500℃-700℃下还原0.5-1.5h。
3.根据权利要求1所述的方法,其特征在于:所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中含有重量含量为10- 80%的活性组分钴及重量含量为10-70%的具有钙钛矿结构的复合金属氧化物。
4.根据权利要求3所述的方法,其特征在于:所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中含有重量含量为25-60%的活性组分钴及重量含量为20%-60%的具有钙钛矿结构的复合金属氧化物。
5.根据权利要求1或3所述的方法,其特征在于:所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中含有重量含量为0.1-15%的金属助剂,所述助剂包括锆、钾、钌、铂、镍、钼、铜、锌、铬、钒、钛、钼、锆中的一种或几种。
6.根据权利要求1或3所述的方法,其特征在于:所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂中具有钙钛矿结构的ABO3-y的复合金属氧化物中B为至少包括钴的过渡金属,钴与其余过渡金属的摩尔比不低于3:1,优选不低于4:1。
7.根据权利要求1或3所述的方法,其特征在于:所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂由活性组分钴、具有钙钛矿结构的复合金属氧化物BaMo1-xCoxO3-y(其中,0.85<x< 0.95)及金属助剂钾组成。
8.根据权利要求1所述的方法,其特征在于:所述的含有钙钛矿结构ABO3-y的复合金属氧化物钴基费托合成催化剂的制备包括具有钙钛矿结构的复合金属氧化物的制备和活性组分钴及金属助剂负载过程。
9.根据权利要求8所述的方法,其特征在于:所述的具有钙钛矿结构的复合金属氧化物的制备采用络合法,包括如下过程:首先将计量比的稀土金属和/或碱土金属与过渡金属前驱体与络合剂混合配成溶液并搅拌均匀,然后进行水分蒸发,溶液由透明的溶胶转变成粘稠的凝胶,最后干燥、焙烧,焙烧后制得具有钙钛矿结构的复合金属氧化物。
10.根据权利要求9所述的方法,其特征在于:以硝酸钡、硝酸钴、硝酸钼为前驱体,以柠檬酸或乙二醇为络合剂,配成溶液并混合搅拌均匀,然后进行水分蒸发,溶液由透明的溶胶转变成粘稠的凝胶,最后干燥、焙烧,焙烧后制得BaMo1-xCoxO3-y(0.85<x< 0.95)复合金属氧化物。
11.根据权利要求9或10所述的方法,其特征在于:络合剂与金属离子摩尔比为1:1~8:1;配制和搅拌溶液在20~90℃;搅拌速率为200~500rpm;搅拌时间为3~8小时;干燥温度为60~200℃;干燥时间为1~36小时;焙烧温度为600~1000℃,焙烧时间为焙烧2~15小时。
12.根据权利要求11所述的方法,其特征在于:络合剂与金属离子摩尔比为1:1~4:1;配制和搅拌溶液在50~70℃下进行;搅拌速率为300~400rpm;搅拌时间为4~6小时;干燥温度为80~150℃;干燥时间为8~24小时;焙烧温度为700~900℃,焙烧时间为3~8小时。
13.根据权利8所述的方法,其特征在于:所述的活性组分和金属助剂负载过程采用浸渍法,等体积浸渍或过体积浸渍,分步浸渍或共浸渍,一次浸渍或多次浸渍均可。
14.根据权利13所述的方法,其特征在于:浸渍后包括干燥和焙烧过程,干燥步骤在50-150℃下干燥8-24小时,焙烧步骤在280-500℃下焙烧2-10小时。
15.根据权利13或14所述的方法,其特征在于:在BaMo1-xCoxO3-y(0.85<x< 0.95)上采用等体积多次浸渍法负载活性组分钴和金属助剂钾。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310529789.5A CN103589447B (zh) | 2013-11-01 | 2013-11-01 | 一种费托合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310529789.5A CN103589447B (zh) | 2013-11-01 | 2013-11-01 | 一种费托合成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103589447A true CN103589447A (zh) | 2014-02-19 |
CN103589447B CN103589447B (zh) | 2015-09-30 |
Family
ID=50079773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310529789.5A Active CN103589447B (zh) | 2013-11-01 | 2013-11-01 | 一种费托合成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103589447B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006134471A2 (en) * | 2005-06-14 | 2006-12-21 | Sasol Technology (Proprietary) Limited | Process for the preparation and conversion of synthesis gas |
CN102041020A (zh) * | 2009-10-13 | 2011-05-04 | 中国石油化工股份有限公司 | 流化床费托合成重质烃的方法 |
CN102139223A (zh) * | 2011-03-02 | 2011-08-03 | 浙江工业大学 | 一种负载型双金属催化剂及其应用 |
-
2013
- 2013-11-01 CN CN201310529789.5A patent/CN103589447B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006134471A2 (en) * | 2005-06-14 | 2006-12-21 | Sasol Technology (Proprietary) Limited | Process for the preparation and conversion of synthesis gas |
CN102041020A (zh) * | 2009-10-13 | 2011-05-04 | 中国石油化工股份有限公司 | 流化床费托合成重质烃的方法 |
CN102139223A (zh) * | 2011-03-02 | 2011-08-03 | 浙江工业大学 | 一种负载型双金属催化剂及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN103589447B (zh) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103599788B (zh) | 一种用于co加氢的钴基催化剂及其制备方法和应用 | |
CN103611540B (zh) | 一种用于co加氢的催化剂及其制备方法和应用 | |
CN104588023B (zh) | 一种费托合成催化剂及其制备方法和应用 | |
CN106268852B (zh) | 一种用于合成气一步法联产混合醇和α-烯烃的催化剂及其制备方法与应用 | |
CN115254100B (zh) | 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用 | |
CN108465484B (zh) | 一种fcc汽油脱硫加氢改质催化剂的制备方法 | |
CN103589446B (zh) | 一种铁基制液态烃的方法 | |
CN114602495B (zh) | 一种丙烷脱氢Pt催化剂的制备方法 | |
CN103785391B (zh) | 一种高活性费托合成催化剂及其制备方法和应用 | |
CN104815664B (zh) | 一种凹凸棒土基复合材料负载Cu‑Zn‑Fe基催化剂、其制备方法及其应用 | |
CN103623828B (zh) | 一种合成液态烃钴基催化剂及其制备方法和应用 | |
CN104588033A (zh) | 一种浆态床费托合成催化剂及其制备方法和应用 | |
CN113441140A (zh) | 加氢脱氧催化剂及其制备方法和应用 | |
CN104588008A (zh) | 饱和烷烃脱氢催化剂及其制备方法 | |
CN103586033B (zh) | 一种钴基费托合成催化剂及其制备方法和应用 | |
CN104588022B (zh) | 一种费托合成催化剂的还原方法 | |
CN108404976B (zh) | 一种fcc汽油脱硫加氢改质方法 | |
CN103586037B (zh) | 一种合成气转化钴基催化剂及其制备方法和应用 | |
CN103589447B (zh) | 一种费托合成方法 | |
CN101269328A (zh) | 一种合成汽柴油馏分的钴基催化剂及制法和应用 | |
CN103586038B (zh) | 一种费托合成催化剂及其制备方法和应用 | |
CN103586034B (zh) | 一种低二氧化碳选择性费托合成催化剂及其制备方法和应用 | |
CN101524644A (zh) | 一种用于油蜡联产合成天然气的钴基催化剂及制法和应用 | |
CN103785392A (zh) | 一种费托合成催化剂及其制备方法和应用 | |
CN103611537B (zh) | 一种铁基费托合成催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |