CN103578991B - 半导体器件制造方法 - Google Patents

半导体器件制造方法 Download PDF

Info

Publication number
CN103578991B
CN103578991B CN201210258807.6A CN201210258807A CN103578991B CN 103578991 B CN103578991 B CN 103578991B CN 201210258807 A CN201210258807 A CN 201210258807A CN 103578991 B CN103578991 B CN 103578991B
Authority
CN
China
Prior art keywords
contact
source
sacrifice layer
drain
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210258807.6A
Other languages
English (en)
Other versions
CN103578991A (zh
Inventor
尹海洲
张珂珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210258807.6A priority Critical patent/CN103578991B/zh
Priority to PCT/CN2012/079694 priority patent/WO2014015536A1/zh
Priority to US14/416,698 priority patent/US20150187892A1/en
Publication of CN103578991A publication Critical patent/CN103578991A/zh
Application granted granted Critical
Publication of CN103578991B publication Critical patent/CN103578991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/66583Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with initial gate mask or masking layer complementary to the prospective gate location, e.g. with dummy source and drain contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种半导体器件制造方法,包括:在衬底上形成接触牺牲层,刻蚀接触牺牲层形成接触牺牲图形,其中接触牺牲图形覆盖源区与漏区并且具有暴露衬底的栅极沟槽;在栅极沟槽中形成栅极侧墙和栅极堆叠结构;部分或者完全刻蚀去除覆盖源区与漏区的接触牺牲图形,形成源漏接触沟槽;在源漏接触沟槽中形成源漏接触。依照本发明的半导体器件制造方法,通过双层接触牺牲层工艺有效降低了栅极侧墙与接触区域之间的间距,并且增大了接触区域面积,从而有效减小了器件寄生电阻。

Description

半导体器件制造方法
技术领域
本发明涉及半导体集成电路制造领域,更具体地,涉及一种具有增大接触区域的MOSFET的制造方法。
背景技术
随着MOSFET的特征尺寸持续缩减,寄生电阻在器件的总电阻中占据的比重越来越大,严重制约了小尺寸器件性能的提升。现有的降低寄生电阻的结构/方法包括形成提升源漏、在源漏区中/上形成金属硅化物、提高接触面积等等。
然而,无论采用何种结构/方法,源/漏区的接触区域(或接触孔,CA)与栅极侧墙之间仍然有较大的间距,电子/空穴的载流子从源区穿越沟道区达到漏区的距离仍然较大,因此寄生电阻依然无法有效的减小,器件性能提升程度有限。
发明内容
有鉴于此,本发明的目的在于采用新的制造方法以接触牺牲层工艺代替传统的替代栅工艺,大幅减小接触区域与栅极之间的间距,从而有效地减小器件寄生电阻。
实现本发明的上述目的,是通过提供一种半导体器件制造方法,包括:在衬底上形成接触牺牲层,刻蚀接触牺牲层形成接触牺牲图形,其中接触牺牲图形覆盖源区与漏区并且具有暴露衬底的栅极沟槽;在栅极沟槽中形成栅极侧墙和栅极堆叠结构;部分或者完全刻蚀去除覆盖源区与漏区的接触牺牲图形,形成源漏接触沟槽;在源漏接触沟槽中形成源漏接触。
其中,接触牺牲层包括第一接触牺牲层和第二接触牺牲层。
其中,第一接触牺牲层包括应变Si、SiGe、Si:C、多晶硅、非晶硅、微晶硅、非晶碳、氧化硅、氮化硅及其组合,第二接触牺牲层包括单晶硅、多晶硅、非晶硅、微晶硅、非晶碳、氧化硅、氮化硅及其组合。
其中,形成源漏接触沟槽的步骤包括:部分刻蚀去除第二接触牺牲层;或者完全刻蚀去除第二接触牺牲层以及部分刻蚀去除第一接触牺牲层;或者完全刻蚀去除第二接触牺牲层和第一接触牺牲层;或者完全刻蚀去除第二接触牺牲层和第一接触牺牲层以及部分刻蚀衬底。
其中,通过外延生长形成接触牺牲层并且掺杂具有第一导电类型。
其中,形成接触牺牲层之后,刻蚀接触牺牲层以及衬底形成浅沟槽,在浅沟槽中填充绝缘材料形成浅沟槽隔离。
其中,形成栅极沟槽之后,刻蚀浅沟槽隔离使其在有源区宽度方向上向隔离区倾斜。
其中,刻蚀形成接触牺牲图形之后,在栅极沟槽两侧衬底中形成轻掺杂源漏区。
其中,形成栅极堆叠结构包括在栅极沟槽中沉积高k材料的栅极绝缘层、金属氮化物的功函数调节层以及金属的电阻调节层。
其中,形成源漏接触的步骤进一步包括:在源漏接触沟槽中形成金属硅化物;在金属硅化物上依次沉积衬垫层和填充层;平坦化填充层和衬垫层直至暴露栅极堆叠结构。
依照本发明的半导体器件制造方法,通过双层接触牺牲层工艺有效降低了栅极侧墙与接触区域之间的间距,并且增大了接触区域面积,从而有效减小了器件寄生电阻。
附图说明
以下参照附图来详细说明本发明的技术方案,其中:
图1至图9为根据本发明的半导体器件制造方法各个步骤的剖视图;以及
图10为根据本发明的半导体器件制造方法的流程图。
具体实施方式
以下参照附图并结合示意性的实施例来详细说明本发明技术方案的特征及其技术效果。需要指出的是,类似的附图标记表示类似的结构,本申请中所用的术语“第一”、“第二”、“上”、“下”、“厚”、“薄”等等可用于修饰各种器件结构。这些修饰除非特别说明并非暗示所修饰器件结构的空间、次序或层级关系。
参照图10以及图1~图4,在衬底上形成接触牺牲图形,覆盖源区与漏区并且暴露栅极区域。
如图1所示,在衬底1上依次形成第一接触牺牲层2和第二接触牺牲层3。提供衬底1,其材质可以是(体)Si(例如单晶Si晶片)、SOI、单晶Ge、GeOI(绝缘体上Ge),也可以是其他化合物半导体,例如GaAs、SiGe、GeSn、InP、InSb、GaN等等。优选地,衬底1选用体Si或SOI,以便与CMOS工艺兼容。
采用LPCVD、PECVD、HDPCVD、MOCVD、MBE、ALD、蒸发、溅射等常规方法并合理控制工艺参数,在衬底1上外延生长了第一接触牺牲层2。第一接触牺牲层2用于稍后器件的实际源漏区(作为提升源漏的一部分),其材质可以是应变Si、SiGe、Si:C及其组合,其厚度例如是10~100nm。由于第一接触牺牲层2的材质与衬底1的材质之间晶格常数不同,可以向沟道区引入应力,因此有助于提高载流子迁移率进而提高器件驱动能力。优选地,通过外延生长同时原位掺杂或者外延生长后额外的离子注入工艺,使得第一接触牺牲层2具有第一导电类型,例如n或者p。此外,第一接触牺牲层2还可以是多晶硅、非晶硅、微晶硅、非晶碳、氧化硅、氮化硅等,此时第一接触牺牲层2将在稍后的图7所示形成源漏接触沟槽的过程中完全去除。
随后,通过类似的外延工艺,在第一接触牺牲层2之上再外延形成第二接触牺牲层3,用于限定稍后要形成源漏接触的区域,与后栅工艺中假栅极所起的作用类似,因此也可以称作假源漏接触区。第二接触牺牲层3材质可以与衬底1相同例如均为Si(可以是单晶硅,也可以是多晶硅、非晶硅、微晶硅,此时第二接触牺牲层3在后续工艺中不被完全刻蚀去除而是保留一部分用作提升源漏区的一部分),材质也可以不同,例如为非晶碳、氮化硅、氧化硅、氮氧化硅(此时第二接触牺牲层3在后续工艺中将刻蚀完全去除而直至暴露第一接触牺牲层2)。第二接触牺牲层3厚度要大于第一接触牺牲层2,并且优选的是40~500nm。第一接触牺牲层2与第二接触牺牲层3的厚度之和要大于稍后要形成的栅极的高度,例如是50~500nm。优选地,当第二接触牺牲层3材质包括Si时(也即稍后将要保留一部分用作提升源漏区的一部分时),通过外延生长同时原位掺杂或者外延生长后额外的离子注入工艺,使得第二接触牺牲层3也具有第一导电类型并且浓度更高,例如n+或者p+。
如图2所示,形成浅沟槽隔离(STI)4。利用传统的光刻/刻蚀技术,依次刻蚀穿透第二接触牺牲层3、第一接触牺牲层2,以及部分刻蚀衬底1,形成浅沟槽(未示出)。通过PECVD、H DPCVD、RTO(快速热氧化)、MBE、ALD等方法,在浅沟槽中沉积填充氧化硅或者氮氧化硅材质的绝缘膜,从而构成浅沟槽隔离(STI)4。此外优选地,STI4的填充的隔离氧化物还可以是100K的温度下线性体积膨胀系数的绝对值大于10-4/K的巨热膨胀介质材料,例如包括Bi0.95La0.05NiO3、BiNiO3、ZrW2O8等的钙钛矿型氧化物,或者诸如Ag3[Co(CN)6]的框架材料。这些巨热膨胀介质材料可以向有源区施加应力,进一步增大载流子迁移率,提高器件性能。STI4的剖面形状不限于图2中所示的上宽下窄的梯形,还可以是上下等宽的矩形、或者是上窄下宽的梯形(以增大有源区下部的应力)。
如图3所示,刻蚀第二接触牺牲层3和第一接触牺牲层2通过栅极沟槽6暴露栅极区域,而形成了接触牺牲图形。在整个器件上旋涂光刻胶层5并曝光显影形成光刻胶图形,仅暴露未来要形成栅极堆叠结构的区域。随后,采用各向异性的刻蚀,例如等离子刻蚀、反应离子刻蚀等干法刻蚀,或者TMAH(针对Si材料)、强酸(HF)与强氧化剂(硫酸、双氧水)组合(针对SiGe材料)等湿法刻蚀,刻蚀第二接触牺牲层3以及第一接触牺牲层2直至暴露衬底1,形成了栅极沟槽6。其中,栅极沟槽6的宽度要等于稍后要形成的栅极堆叠结构(栅极绝缘层以及栅极导电层)的实际宽度与栅极侧墙的宽度之和。剩余的第二接触牺牲层3和第一接触牺牲层2继续覆盖了未来器件的源区和漏区。
优选地,执行源漏轻掺杂工艺,在衬底中形成源漏轻掺杂区。例如以光刻胶图形5及其下方的接触牺牲层3/2为掩模,采用低剂量、低能量的倾斜源漏离子注入,利用阴影效应(Shadow Effect)控制了掺杂剂注入位置而形成了轻掺杂的源漏延伸区1A、以及源漏延伸区1A下方衬底中的晕状(Halo)源漏掺杂区1B。随后快速退火(例如激光快速退火)以激活掺杂剂。掺杂离子的种类、剂量、浓度依照器件电学性能需要而设定。此外,可选地,在栅极沟槽6中在接触牺牲层3/2两侧,形成含有扩散源的侧墙,通过例子扩散作用形成轻掺杂的源漏延伸区1A,随后将该层侧墙去除。
如图4所示,为图3去除顶部光刻胶图形5之后的顶视图。其中,执行STI刻蚀工艺,使得如图中所示的STI4暴露于栅极沟槽6部分的侧面向浅沟槽隔离区倾斜而不是向栅极沟槽6倾斜,以避免在STI4上形成栅极侧墙。
参照图10以及图5,在栅极沟槽6中形成栅极侧墙7。通过PECVD、HDPCVD、MBE、ALD、(磁控)溅射等方法沉积例如为氮化硅、氮氧化硅、类金刚石无定形碳(DLC)的绝缘材质并且随后刻蚀形成了栅极侧墙7,位于栅极沟槽6中沿有源区长度方向(沟道区方向)的两个侧面上,并且与第一和第二接触牺牲层2/3接触。由于栅极沟槽6中沿有源区宽度方向(器件延伸方向)的STI4向浅沟槽隔离区倾斜,两个侧面上的绝缘材质被完全刻蚀,而不会形成栅极侧墙。栅极侧墙7的厚度依照栅极绝缘隔离性能需要而设定,例如为5~30nm。
参照图10以及图6,在栅极沟槽6中形成栅极堆叠结构8/9。通过PECVD、HDPCVD、MOCVD、MBE、ALD等方法,在栅极沟槽6底部与衬底1接触的面上沉积形成栅极绝缘层8。栅极绝缘层8的材质为高k材料,包括但不限于氮化物(例如SiN、AlN、TiN)、金属氧化物(主要为副族和镧系金属元素氧化物,例如Al2O3、Ta2O5、TiO2、ZnO、ZrO2、HfO2、CeO2、Y2O3、La2O3)、钙钛矿相氧化物(例如PbZrxTi1-xO3(PZT)、BaxSr1-xTiO3(BST))。随后,通过PECVD、MOCVD、MBE、ALD、蒸发、溅射等方法在第二接触牺牲层3上以及栅极沟槽6中沉积栅极导电层9。栅极导电层9优选地包括材质为TiN、TaN等金属氮化物的功函数调节层9A,以及材质为Cu、Al、Ti、Mo、Ta、W等金属的电阻调节层9B。栅极绝缘层8与栅极导电层9A/9B共同构成栅极堆叠结构。随后采用回刻工艺或者CMP工艺,平坦化栅极导电层9A/9B直至暴露第二接触牺牲层3。
参照图10以及图7,部分或者完全去除接触牺牲图形,形成源漏接触沟槽,在源漏接触沟槽中形成金属硅化物。例如采用TMAH等各向异性的湿法腐蚀液,刻蚀去除单晶硅、多晶硅、非晶硅、微晶硅等硅基材质的第二接触牺牲层3,或者采用氧等离子刻蚀去除非晶碳材质的第二接触牺牲层3。由此,部分(或者完全)去除了第二接触牺牲层3之后,留下了源漏接触沟槽3A,暴露了剩余的第二接触牺牲层以及栅极侧墙7。根据本发明一个实施例的如图7所示的源漏接触沟槽3A深度小于第二接触牺牲层3的原始厚度,也即仅部分去除了第二接触牺牲层3(此时剩余的部分第二接触牺牲层3将要作为未来源漏区的一部分或者作为源漏接触之一,因此其材质优选的为硅基材质)。但是在本发明其他实施例中,源漏接触沟槽3A的深度可以大于第二接触牺牲层3的原始厚度。具体地,可以完全去除第二接触牺牲层3(未示出,此时第二接触牺牲层3可以是非晶碳等其他材质,甚至可以是氮化硅),还可以继续刻蚀去除部分或者全部的第一接触牺牲层2(未示出,此时第一接触牺牲层2将不再用于源漏区一部分,因此材质不必为SiGe、SiC等),甚至可以进一步刻蚀去除部分衬底1,形成的源漏接触沟槽3A深入衬底(此时可以在深沟槽中外延形成SiGe、SiC并且进一步形成提升源漏)。
特别地,若完全去除第二接触牺牲层3及第一接触牺牲层2(或外延生长接触牺牲层2/3过程中没有进行原位掺杂并且外延生长后没有进行额外的离子注入),对源漏接触沟槽3A中暴露的衬底(或第二接触牺牲层3和/或第一接触牺牲层2)进行重掺杂,使其形成n+或者p+型的重掺杂区,以作为源漏重掺杂区。
此后,在源漏接触沟槽3A中溅射、蒸发形成金属薄层(未示出),例如是Ni、Pt、Co、Ti及其组合,然后快速退火或者低温退火(400~600℃),使得金属薄层与源漏区中的Si反应形成金属硅化物10,用于进一步降低接触电阻。剥除未反应的金属薄层。此时由于氧化物材料的STI4、氮化硅材质的栅极侧墙7与金属薄层不反应,因此金属硅化物10仅形成在源漏区中。
参照图10和图8,在源漏接触沟槽3A中金属硅化物10上依次沉积TiN、TaN的材质的阻挡层11A(衬垫层)以及W、Al、Mo、Ti等材质的填充层11B,以形成了源漏接触11。优选地,采用CM P等工艺平坦化阻挡层11A/填充层11B,直至暴露栅极堆叠结构的栅极导电层9(电阻调节层9B)。此时,源漏接触11与栅极堆叠结构之间的间距仅为栅极侧墙7的厚度,该间距大幅减小了;此外,源漏接触11覆盖了整个源漏区,其面积较之现有技术大幅提升。因此,依照本发明的这种大面积源漏接触有效降低了寄生电阻。
参照图10和图9,完成后续工艺。例如在整个器件上沉积氧化硅、氮化硅、低k材质的层间介质层(ILD)12,刻蚀ILD12形成源漏接触孔,在源漏接触孔中填充金属材料形成第二源漏接触11C,在整个器件上沉积例如为氧化硅、氮化硅或者其他低k材料并且与ILD12材质不同的第二ILD13,刻蚀形成互连孔,在互连孔中沉积Al、Ti等金属形成互连线14。
依照本发明的半导体器件制造方法,通过双层接触牺牲层工艺有效降低了栅极侧墙与接触区域之间的间距,并且增大了接触区域面积,从而有效减小了器件寄生电阻。
尽管已参照一个或多个示例性实施例说明本发明,本领域技术人员可以知晓无需脱离本发明范围而对形成器件结构的方法做出各种合适的改变和等价方式。此外,由所公开的教导可做出许多可能适于特定情形或材料的修改而不脱离本发明范围。因此,本发明的目的不在于限定在作为用于实现本发明的最佳实施方式而公开的特定实施例,而所公开的器件结构及其制造方法将包括落入本发明范围内的所有实施例。

Claims (9)

1.一种半导体器件制造方法,包括:
在衬底上形成接触牺牲层,刻蚀接触牺牲层形成接触牺牲图形,其中接触牺牲图形覆盖源区与漏区并且具有暴露衬底的栅极沟槽,其中接触牺牲图形作为提升源漏的一部分,其中接触牺牲层包括第一接触牺牲层和第二接触牺牲层,第一接触牺牲层的材质与衬底的材质之间晶格常数不同以向沟道区引入应力;
在栅极沟槽中形成栅极侧墙和栅极堆叠结构;
部分刻蚀去除覆盖源区与漏区的接触牺牲图形,形成源漏接触沟槽;
在源漏接触沟槽中形成源漏接触。
2.如权利要求1的半导体器件制造方法,其中,第一接触牺牲层包括应变Si、SiGe、Si:C、多晶硅、非晶硅、微晶硅及其组合,第二接触牺牲层包括单晶硅、多晶硅、非晶硅、微晶硅、非晶碳、氧化硅、氮化硅及其组合。
3.如权利要求1的半导体器件制造方法,其中,形成源漏接触沟槽的步骤包括:部分刻蚀去除第二接触牺牲层;或者完全刻蚀去除第二接触牺牲层以及部分刻蚀去除第一接触牺牲层。
4.如权利要求1的半导体器件制造方法,其中,通过外延生长形成接触牺牲层并且掺杂具有第一导电类型。
5.如权利要求1的半导体器件制造方法,其中,形成接触牺牲层之后,刻蚀接触牺牲层以及衬底形成浅沟槽,在浅沟槽中填充绝缘材料形成浅沟槽隔离。
6.如权利要求5的半导体器件制造方法,其中,形成栅极沟槽之后,刻蚀浅沟槽隔离使其在有源区宽度方向上向隔离区倾斜。
7.如权利要求1的半导体器件制造方法,其中,刻蚀形成接触牺牲图形之后,在栅极沟槽两侧衬底中形成轻掺杂源漏区。
8.如权利要求1的半导体器件制造方法,其中,形成栅极堆叠结构包括在栅极沟槽中沉积高k材料的栅极绝缘层、金属氮化物的功函数调节层以及金属的电阻调节层。
9.如权利要求1的半导体器件制造方法,其中,形成源漏接触的步骤进一步包括:
在源漏接触沟槽中形成金属硅化物;
在金属硅化物上依次沉积衬垫层和填充层;
平坦化填充层和衬垫层直至暴露栅极堆叠结构。
CN201210258807.6A 2012-07-24 2012-07-24 半导体器件制造方法 Active CN103578991B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210258807.6A CN103578991B (zh) 2012-07-24 2012-07-24 半导体器件制造方法
PCT/CN2012/079694 WO2014015536A1 (zh) 2012-07-24 2012-08-03 半导体器件制造方法
US14/416,698 US20150187892A1 (en) 2012-07-24 2012-08-03 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210258807.6A CN103578991B (zh) 2012-07-24 2012-07-24 半导体器件制造方法

Publications (2)

Publication Number Publication Date
CN103578991A CN103578991A (zh) 2014-02-12
CN103578991B true CN103578991B (zh) 2017-12-12

Family

ID=49996527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210258807.6A Active CN103578991B (zh) 2012-07-24 2012-07-24 半导体器件制造方法

Country Status (3)

Country Link
US (1) US20150187892A1 (zh)
CN (1) CN103578991B (zh)
WO (1) WO2014015536A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633009B (zh) * 2012-08-24 2016-12-28 中国科学院微电子研究所 浅沟槽隔离及其制造方法
KR102212267B1 (ko) * 2014-03-19 2021-02-04 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9735245B2 (en) * 2014-08-25 2017-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Recessed salicide structure to integrate a flash memory device with a high κ, metal gate logic device
CN108584984A (zh) * 2018-04-17 2018-09-28 南昌航空大学 一种具有大的负热膨胀系数的金属有机骨架粉末及其制备方法
TWI754266B (zh) * 2019-04-23 2022-02-01 台灣積體電路製造股份有限公司 半導體裝置及其製造方法
US11916107B2 (en) 2019-04-23 2024-02-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof
US20230034854A1 (en) * 2021-07-29 2023-02-02 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method for forming the same
CN116206640B (zh) * 2022-08-18 2024-03-15 北京超弦存储器研究院 存储器及其制造方法、读写控制方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2282780A1 (en) * 1998-11-02 2000-05-02 Zulfiquar Sayeed A method and apparatus for achieving channel variability in spread spectrum communication systems
US8994104B2 (en) * 1999-09-28 2015-03-31 Intel Corporation Contact resistance reduction employing germanium overlayer pre-contact metalization
US6339001B1 (en) * 2000-06-16 2002-01-15 International Business Machines Corporation Formulation of multiple gate oxides thicknesses without exposing gate oxide or silicon surface to photoresist
US6531781B2 (en) * 2000-12-13 2003-03-11 Vanguard International Semiconductor Corporation Fabrication of transistor having elevated source-drain and metal silicide
US20020115289A1 (en) * 2001-02-21 2002-08-22 Bing-Chang Wu Method for decreasing the resistivity of the gate and the leaky junction of the source/drain
US20020168823A1 (en) * 2001-05-08 2002-11-14 Horn-Huei Tseng Method for fabricating recessed lightly doped drain field effect transistors
JP2002343963A (ja) * 2001-05-17 2002-11-29 Sony Corp 溝ゲート型電界効果トランジスタ及びその製造方法
US6383863B1 (en) * 2001-09-27 2002-05-07 Taiwan Semiconductor Manufacturing Company Approach to integrate salicide gate for embedded DRAM devices
US20040175907A1 (en) * 2003-03-07 2004-09-09 Taiwan Semiconductor Manfacturing Company Method of fabricating a salicided device using a dummy dielectric layer between the source/drain and the gate electrode
KR100521381B1 (ko) * 2003-06-25 2005-10-12 삼성전자주식회사 모오스 전계 효과 트랜지스터의 제조 방법
US7910451B2 (en) * 2008-04-04 2011-03-22 International Business Machines Corporation Simultaneous buried strap and buried contact via formation for SOI deep trench capacitor
US8105931B2 (en) * 2008-08-27 2012-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating dual high-k metal gates for MOS devices
US8980706B2 (en) * 2008-09-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Double treatment on hard mask for gate N/P patterning
US8664070B2 (en) * 2009-12-21 2014-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. High temperature gate replacement process
CN102339852B (zh) * 2010-07-27 2013-03-27 中国科学院微电子研究所 半导体器件及其制造方法
CN102487085B (zh) * 2010-12-01 2014-04-23 中国科学院微电子研究所 半导体器件及其制造方法
US9484432B2 (en) * 2010-12-21 2016-11-01 Intel Corporation Contact resistance reduction employing germanium overlayer pre-contact metalization
US8779514B2 (en) * 2010-12-29 2014-07-15 Institute of Microelectronics, Chinese Academy of Sciences Transistor and method for manufacturing the same
US20130059434A1 (en) * 2011-09-07 2013-03-07 Tao Yang Method for manufacturing electrodes and wires in gate last process
US8975672B2 (en) * 2011-11-09 2015-03-10 United Microelectronics Corp. Metal oxide semiconductor transistor and manufacturing method thereof
US8896066B2 (en) * 2011-12-20 2014-11-25 Intel Corporation Tin doped III-V material contacts
US8772159B2 (en) * 2012-02-01 2014-07-08 United Microelectronics Corp. Method of fabricating electrical contact
KR101908451B1 (ko) * 2012-06-04 2018-10-16 삼성전자주식회사 반도체 소자 및 그 제조 방법
US20140001561A1 (en) * 2012-06-27 2014-01-02 International Business Machines Corporation Cmos devices having strain source/drain regions and low contact resistance
CN103545208B (zh) * 2012-07-11 2018-02-13 中国科学院微电子研究所 半导体器件制造方法
CN103545188B (zh) * 2012-07-13 2017-03-08 中国科学院微电子研究所 半导体器件制造方法
US9368592B2 (en) * 2014-01-28 2016-06-14 Taiwan Semiconductor Manufacturing Company Ltd. Metal gate structure

Also Published As

Publication number Publication date
CN103578991A (zh) 2014-02-12
US20150187892A1 (en) 2015-07-02
WO2014015536A1 (zh) 2014-01-30

Similar Documents

Publication Publication Date Title
CN103578991B (zh) 半导体器件制造方法
TWI298519B (en) Nonplanar device with stress incorporation layer and method of fabrication
US9614050B2 (en) Method for manufacturing semiconductor devices
US7154118B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
TWI579925B (zh) 半導體結構及其製造方法
US8853788B2 (en) Replacement gate electrode with planar work function material layers
CN105470135B (zh) 半导体器件制造方法
CN105489651B (zh) 半导体器件及其制造方法
US8835232B2 (en) Low external resistance ETSOI transistors
CN103035712B (zh) 半导体器件及其制造方法
CN105470133B (zh) 半导体器件制造方法
US8969963B2 (en) Vertical source/drain junctions for a finFET including a plurality of fins
CN103545208B (zh) 半导体器件制造方法
US10937862B2 (en) Nanosheet substrate isolated source/drain epitaxy via airgap
US9576802B2 (en) Semiconductor device and method for manufacturing the same
CN104167359B (zh) 半导体器件制造方法
CN103811543B (zh) 半导体器件及其制造方法
CN103545207B (zh) 半导体器件制造方法
CN104167357B (zh) 半导体器件及其制造方法
CN105470136B (zh) 半导体器件制造方法
CN104112668B (zh) 半导体器件及其制造方法
CN104167358B (zh) 半导体器件制造方法
CN105448985B (zh) 半导体器件及其制造方法
CN104218081A (zh) 半导体器件及其制造方法
CN105336787B (zh) 半导体器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant