CN103576282B - 一种静电拉伸薄膜反射镜的制备方法 - Google Patents

一种静电拉伸薄膜反射镜的制备方法 Download PDF

Info

Publication number
CN103576282B
CN103576282B CN201310565137.7A CN201310565137A CN103576282B CN 103576282 B CN103576282 B CN 103576282B CN 201310565137 A CN201310565137 A CN 201310565137A CN 103576282 B CN103576282 B CN 103576282B
Authority
CN
China
Prior art keywords
electrode
reflecting mirror
pressure
film reflecting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310565137.7A
Other languages
English (en)
Other versions
CN103576282A (zh
Inventor
蒋龙军
唐敏学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201310565137.7A priority Critical patent/CN103576282B/zh
Publication of CN103576282A publication Critical patent/CN103576282A/zh
Application granted granted Critical
Publication of CN103576282B publication Critical patent/CN103576282B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明涉及一种静电拉伸薄膜反射镜的制备方法。将薄膜反射镜中的薄膜周边固定在圆环固定装置上,电极置于薄膜正下方;电极包括中心圆形电极和呈同心圆分布的均等径向宽度的环形电极,中心圆形电极的半径为环形电极径向宽度的1.5~1.7倍;环形电极为3~10个;以中心电极半径的中心处的压强为中心电极区域的压强;以各环形电极径向中心点的压强为该环形电极区域的压强,将所述的压强转换成电压信号输入到各对应的电极上,经加工成型,得到静电拉伸薄膜反射镜。采用本发明提供的静电成形控制方法得到的薄膜反射镜三维面形,与标准抛物面比较误差小,与现有技术相比,面形精度显著提高。

Description

一种静电拉伸薄膜反射镜的制备方法
技术领域
本发明涉及一种静电拉伸薄膜反射镜的制备方法,属空间光学成像系统技术领域。
背景技术
实现大口径、低面密度空间光学系统的途径之一是主镜采用薄膜反射镜,它以柔性聚合物薄膜作为反射镜基坯,并通过适当的方式形成所需的曲面面形,具有重量超轻、可折叠/展开和成本低等特点。因此,研制薄膜反射镜对于发展下一代大口径、低密度空间光学系统具有十分重要的意义。
薄膜反射镜在均匀压强作用下的面形是近似抛物面,在非均匀压强作用下可以提高面形精度。研究表明,采用非均匀压强与非等径宽分环方式相结合的方法可以进一步提高面形精度。
目前,国内有关薄膜反射镜静电成形控制电极分布方式的研究主要有两种,第一种方式:各个电极的径向宽度均等,如文献(膜基反射镜面形控制系统设计、仿真与分析[D].苏州:苏州大学信息光学工程研究所,2010.)中采用了5区域等径宽和10区域等径宽的分环方式;第二种方式:各个电极的径向宽度不均等,如文献(静电拉伸薄膜反射镜的多电极成形控制[J].光学精密工程,2012,20(2):344-350.)中采用的三电极分环,中心电极径宽是其余两个均等电极径宽的2倍,即径宽比为2:1:1。上述技术方案加工的静电拉伸薄膜反射镜的面形精度不够。
发明内容
本发明的目的是克服现有技术存在的不足,提供一种结构简单、操作方便、快捷,且能有效提高薄膜反射镜面形精度的静电拉伸薄膜反射镜的制备方法。
实现本发明目的的技术方案是提供一种静电拉伸薄膜反射镜的制备方法,将薄膜反射镜中的薄膜周边固定在圆环装置上,电极置于薄膜正下方,向各电极输入电压信号;所述的电极包括中心圆形电极和呈同心圆分布的均等径向宽度的环形电极;所述的中心圆形电极的半径为环形电极径向宽度的1.5~1.7倍;所述环形电极为3~10个;所述的输入电压信号,以中心电极半径的中心处的压强为中心电极区域的压强;以各环形电极径向中心点的压强为该环形电极区域的压强,将所述的压强转换成电压信号输入到各对应的电极上。
本发明的一个优选方案为所述中心圆形电极的半径为环形电极径向宽度的1.6倍;所述的环形电极为4个。
与现有技术相比,本发明的有益效果是:采用本技术方案的电极分布方式和压强施加方式,能显著提高面形精度。本发明提供的电极分布结构简单,操作方便、快捷,具有实用价值。
附图说明
图1是制备静电拉伸薄膜反射镜的原理结构示意图;
图2是薄膜反射镜面形误差RMS值和K值大小关系图;
图3是本发明实施例所需要薄膜反射镜标准面形图;
图4是本发明实施例提供的电极分布示意图;
图5是本发明实施例提供的薄膜反射镜面形图
图6是本发明实施例提供的薄膜反射镜面形的误差图;
图中,1、中心电极;2、环形电极。
具体实施方式
下面结合附图和实施例对本发明技术方案作进一步的阐述。
实施例1
参见附图1,它是制备静电拉伸薄膜反射镜的原理结构示意图;将待成形的薄膜反射镜中的薄膜周边固定在圆环固定装置上,得到初始面,电极置于薄膜正下方,向各电极输入电压信号。由于薄膜反射镜中的薄膜周边被固定在圆环装置上,当平面薄膜受压强载荷作用时,薄膜上各点相对于初始平面薄膜位置产生位移,薄膜具有几乎没有横向刚度、不能承受弯矩的特点,由Karman方程圆薄膜理论化简后得到的圆薄膜大变形方程为如下的式(1)和(2)所示:
其中为薄膜的弹性模量,为薄膜的厚度,为应力函数,为扰度值,为薄膜半径(0~),为薄膜所受的压强。
薄膜被固定在圆环装置上,其初始条件可表示为式(3):
其中表示薄膜在处沿方向的位移量,表征初始状态下薄膜周边被固定和拉伸的程度,为薄膜的泊松比。表示圆形薄膜周边处于自由平展状态,沿方向不发生位移。
当薄膜所受压强为常数时,薄膜面形近似为抛物面,面形精度有限。为了得到面形精度高的抛物面,有必要调整压强的分布和强度。通常以过边界点与中心点的抛物面为理想抛物面面形,这里对理想抛物面面形所需施加的压强分布进行推导。理想抛物面表达如式(4):
其中为中心扰度,为薄膜反射镜半径,假设压强分布为关于半径的二次多项式,定义为式(5):
其中P0,P2为待定系数。
将(4)式,(5)式代入式(1)则得到式(6)
由(6)式可知,Nr是关于半径r的二次多项式,定义如式(7):
代入,对比系数可得式(8):
求解出,就可得到压强分布。
将(6)式代入(2)式得到式(9):
将(7)式代入边界条件(3)式得到式(10):
将(9)式与(10)式代入(8)式可得式(11):
得到所需压强分布表达为式(12):
(12)式建立了施加压强载荷后形成的薄膜反射镜抛物面面形与边界条件、压强分布的关系。
本实施例采用的薄膜反射镜基底材料为聚酰亚胺薄膜,其参数如表1所示。
表1
当泊松比为0.25时,薄膜反射镜成形所需的理论压强大小如式(13)所示:
由(13)式可以看出,此式没有涉及薄膜所受的预应力大小,而在实际应用时需要给出预应力大小,(12)式给出了压强与预应力大小的关系,则P=P,得到式(14):
对于口径一定,F数一定的薄膜反射镜,其压强表达式只含有两个未知数。由(12)式看出值大小和值大小共同决定了最终所施加的压强值大小,而值大小由电极分布方式和离散压强方式共同决定。由于薄膜反射镜成形时中心区域所需压强比边缘区域所需压强大,则采用电极区域沿径向的中心点压强值来表示此区域所要施加的压强,从而实现压强的离散化,即这里,那么(14)式化简后得到,如式(15):
(15)
再将(15)式代入(12)式的到压强的表达为式(16):
(16)
由(16)式可以看出压强载荷在径向上是连续分布的,在实际应用中难以实现对薄膜施加连续分布的压强载荷,因此需要将径向连续分布的压强离散化。考虑到工程制造的因素,这里采用沿径向分成5个区域的同心圆环电极,并对圆环电极沿径向的尺度大小对薄膜反射镜面形的影响展开分析。
中心电极径向宽度和其余均等电极径向宽度的比例大小与薄膜反射镜面形精度之间存在一定的联系。若定义:
在上述的离散压强方法前提下,无论口径大小,当K=1.6薄膜反射镜面形误差RMS值最小。参见附图2,它是薄膜反射镜面形误差RMS值和K值大小关系图;图2说明了口径分别为200mm,300mm,500mm的薄膜反射镜电极分布K值和面形精度RMS值之间的关系。
本实施例制备口径为300mm、F数为10的标准抛物面,其中心最大变形量=1.875mm。参见附图3,本发明实施例所需要薄膜反射镜标准面形图,它是口径300mm,F数10的标准抛物面在载荷方向上的变形,其中X、Y轴做了规一化处理,Z轴是载荷方向上的变形量,单位是mm。按设计要求,薄膜反射镜的半径=150mm,由(15)式求出,得出关于的解析表达式:
参见附图4,它是本实施例提供的电极分布示意图;把电极板分成五区域,包括中心电极1,四个径向宽度相等的环形电极2。由离散压强的计算方法,得到相应的离散压强为:
利用ANSYS有限元软件对薄膜反射镜进行建模与分析。所用的薄膜反射镜薄膜材料属性如表1,采用智能划分网格的方法来建模,其中网格类型为三角形。
由于薄膜抗弯矩能力极小,不存在稳定的无应力状态,需要施加一定的预应力才能形成结构的基本形态。径向位移与温度差的关系为式(17)所示:
其中为薄膜反射镜半径,为薄膜热膨胀系数,为温度差。所以根据(17)式,通过降温来模拟径向位移,从而实现在薄膜表面施加一定预张力。
将上述各个参数导入ANSYS有限元软件进行分析,可以得到各个节点的施加载荷前的三维坐标。施加载荷后可得到各个节点对应的变化量,将变化前节点的三维坐标加上对应的变化量最终可以得到变化后实际面形的三维坐标。然后选用Zernike多项式作为基底函数,在Matlab软件中采用Household变化法编程求解出Zernike多项式系数,进而拟合出薄膜反射镜的三维面形图,参见附图5,它是口径为300mm,F数为10的薄膜反射镜,通过拟合方法得出的面形图,其中X、Y轴做了规一化处理,Z轴为载荷方向上的变形量,单位是mm。最后将其与理想抛物面进行比较得出薄膜反射镜的面形误差RMS值。
利用上述有限元仿真的方法,对现有技术中的两种电极分环方式(参见文献1:膜基反射镜面形控制系统设计、仿真与分析[D].苏州:苏州大学信息光学工程研究所,2010;文献2:静电拉伸薄膜反射镜的多电极成形控制[J].光学精密工程,2012,20(2):344-350.),与本发明采用的电极分环方式进行面形精度的比较,第一种方式:各电极等径向宽度,即K值大小为1.0。表2为口径300mm、F数为10的薄膜反射镜,5区域K=1.0与K=1.6面形精度比较结果。
表2
由表2数据表明,在同样的离散压强的方式下,采用K=1.6电极分布方式可以有效提高薄膜反射镜的面形精度,其中RMS值提高了70.08%。
第二种方式:K=2.0。下面比较K=2.0与K=1.6的两种电极分环方式,所采用的薄膜反射镜聚酰亚胺薄膜材料参数如表3所示。
表3
提供口径为300mm,中心最大变形量为1.5mm的三电极分环,所采用的径向位移条件,即降温大小为2.777,与上述参数一样的前提下(口径300mm、F数12.5薄膜反射镜,3区域K=2.0和K=1.6),采用本实施例提供的电极分布方式以及离散压强值的方法进行比较,结果如表4所示。
表4
由表4的数据看出采用K=1.6比K=2.0面形精度要高,其中中心最大变形量提高了0.002mm,面形误差RMS值提高了36.83%。参见附图6,它是本实施例提供的口径300mm,F数10的薄膜反射镜标准面形和拟合的面形的误差图,其中X、Y轴做了规一化处理,Z轴坐标是以波长为单位。
由以上比较表明,采用本发明的技术方案可以有效提高薄膜反射镜面形精度。

Claims (3)

1.一种静电拉伸薄膜反射镜的制备方法,将薄膜反射镜中的薄膜周边固定在圆环装置上,电极置于薄膜正下方,向各电极输入电压信号;所述的电极包括中心圆形电极和呈同心圆分布的均等径向宽度的环形电极;其特征在于:所述的中心圆形电极的半径为环形电极径向宽度的1.5~1.7倍;所述环形电极为3~10个;所述的输入电压信号的方法是,以中心电极半径的中心处的压强为中心电极区域的压强,以各环形电极径向中心点的压强为该环形电极区域的压强,分别将中心电极区域的压强和各环形电极区域的压强转换成电压信号输入到各对应的电极上。
2.根据权利要求1所述的一种静电拉伸薄膜反射镜的制备方法,其特征在于:所述的中心圆形电极的半径为环形电极径向宽度的1.6倍。
3.根据权利要求1所述的一种静电拉伸薄膜反射镜的制备方法,其特征在于:所述的环形电极为4个。
CN201310565137.7A 2013-11-13 2013-11-13 一种静电拉伸薄膜反射镜的制备方法 Expired - Fee Related CN103576282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310565137.7A CN103576282B (zh) 2013-11-13 2013-11-13 一种静电拉伸薄膜反射镜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310565137.7A CN103576282B (zh) 2013-11-13 2013-11-13 一种静电拉伸薄膜反射镜的制备方法

Publications (2)

Publication Number Publication Date
CN103576282A CN103576282A (zh) 2014-02-12
CN103576282B true CN103576282B (zh) 2016-01-20

Family

ID=50048427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310565137.7A Expired - Fee Related CN103576282B (zh) 2013-11-13 2013-11-13 一种静电拉伸薄膜反射镜的制备方法

Country Status (1)

Country Link
CN (1) CN103576282B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950439B (zh) * 2015-04-16 2017-05-10 苏州大学 一种静电成形膜基反射镜的载荷加载方法
CN116880036B (zh) * 2023-09-06 2023-11-21 中国科学院长春光学精密机械与物理研究所 超薄反射镜的面形控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157527A (ja) * 2002-10-16 2004-06-03 Olympus Corp 可変形状反射鏡及びその製造方法
CN1752794A (zh) * 2004-09-20 2006-03-29 阿尔卡特公司 由电效应控制电活性材料厚度变化实现局部变形的反射镜
CN101738949A (zh) * 2009-11-20 2010-06-16 苏州大学 一种膜基反射镜面形控制系统及控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230867A (ja) * 2009-03-26 2010-10-14 Olympus Corp 可変形状鏡システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157527A (ja) * 2002-10-16 2004-06-03 Olympus Corp 可変形状反射鏡及びその製造方法
CN1752794A (zh) * 2004-09-20 2006-03-29 阿尔卡特公司 由电效应控制电活性材料厚度变化实现局部变形的反射镜
CN101738949A (zh) * 2009-11-20 2010-06-16 苏州大学 一种膜基反射镜面形控制系统及控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Stretched Membrane with Electrostatic Curvature (SMEC) Mirrors:A new technology for large lightweight space telescopes;Simona Errico etal;《SPIE》;20021231;第356-364页 *
不同载荷作用下膜基反射镜面形分析和仿真;张庚生 等;《激光与光电子学进展》;20101231;第111202-1至111202-7页 *
静电拉伸薄膜反射镜的面形分析;张鹏 等;《静电拉伸薄膜反射镜的面形分析》;20121031;第2758-2762页 *

Also Published As

Publication number Publication date
CN103576282A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
CN106096158B (zh) 一种柔性铰链的拓扑优化设计方法
Li et al. Transient heat conduction analysis using the MLPG method and modified precise time step integration method
CN102890703B (zh) 一种网络异质多维标度方法
CN103761368A (zh) 一种索网反射面天线形面精度与张力状态的同时设计方法
CN103576282B (zh) 一种静电拉伸薄膜反射镜的制备方法
CN107729648A (zh) 一种基于Shepard插值的曲线纤维复合结构设计瀑布型多级优化方法
CN109031497B (zh) 基于硅纳米砖阵列的圆偏振涡旋光起偏器及制备方法
Zhang et al. An improved meshless method with almost interpolation property for isotropic heat conduction problems
CN109871631A (zh) 基于非均匀快速傅里叶变换算法的阵列方向图综合方法
CN203551872U (zh) 一种静电拉伸薄膜反射镜的加工装置
Zheng A simple unified branch-and-bound algorithm for minimum zone circularity and sphericity errors
Frauendiener et al. Exact relativistic treatment of stationary counterrotating dust disks: Physical properties
Wang et al. Development of a novel type of hybrid non-symmetric flexure hinges
CN101504685A (zh) 一种基于Fringe Zernike多项式的光机热集成分析方法
Wang et al. Optimization of parameters for bonnet polishing based on the minimum residual error method
CN104157945A (zh) 一种基于超材料的折射率梯度平板聚焦透镜
CN103605875A (zh) 大视场天文望远镜主镜轴向和侧支撑的自动优化设计方法
CN109946829A (zh) 变焦稳像一体化成像系统中变形镜变焦面形设计方法
CN204422795U (zh) 一种可调薄膜预应力的膜基反射镜成形装置
CN109815548A (zh) 一种基于Garlerkin思想的流体膜压力计算方法
CN106202628B (zh) 基于快速重分析计算的空间映射优化方法
Zhang et al. Adjustment Calculation Method for the Actuators of an Active Main Reflector Antenna
CN105550424A (zh) 一种基于rbf网格变形插值序列的筛选方法
Lu et al. Effect of projection directions on the aero-optical effect around conformal turrets
CN110703436A (zh) 一种方向可控的椭圆光学涡旋阵列掩模板的设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Suzhou City, Jiangsu province 215137 Xiangcheng District Ji Road No. 8

Patentee after: Soochow University

Address before: 215123 Suzhou City, Suzhou Province Industrial Park, No. love road, No. 199

Patentee before: Soochow University

CP02 Change in the address of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20181113

CF01 Termination of patent right due to non-payment of annual fee