CN103546050A - 一种高效率的分段逆变电路拓扑结构 - Google Patents

一种高效率的分段逆变电路拓扑结构 Download PDF

Info

Publication number
CN103546050A
CN103546050A CN201210234997.8A CN201210234997A CN103546050A CN 103546050 A CN103546050 A CN 103546050A CN 201210234997 A CN201210234997 A CN 201210234997A CN 103546050 A CN103546050 A CN 103546050A
Authority
CN
China
Prior art keywords
switching tube
diode
electric capacity
topology structure
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210234997.8A
Other languages
English (en)
Inventor
方刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU GOODWE POWER SUPPLY TECHNOLOGY Co Ltd
Original Assignee
JIANGSU GOODWE POWER SUPPLY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU GOODWE POWER SUPPLY TECHNOLOGY Co Ltd filed Critical JIANGSU GOODWE POWER SUPPLY TECHNOLOGY Co Ltd
Priority to CN201210234997.8A priority Critical patent/CN103546050A/zh
Publication of CN103546050A publication Critical patent/CN103546050A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明公开了一种高效率的分段逆变电路拓扑结构,包括升压和旁路部分、逆变部分、滤波部分和开关管部分,所述开关管部分由开关管和二极管并联组成,所述升压和旁路部分连接有电源,所述升压和旁路部分还与第一电容和第二电容连接,所述第一电容和第二电容接地,所述升压和旁路部分还与所述逆变部分连接,所述逆变部分与所述滤波部分连接,所述滤波部分与输出端连接。本发明既能满足提高双级系统的效率,又能提高单级最大转换效率。

Description

一种高效率的分段逆变电路拓扑结构
技术领域
本发明涉及一种逆变电路领域,具体涉及一种高效率的分段逆变电路拓扑结构。
背景技术
在电力电子产品领域,转换效率是衡量电路拓扑性能的一大关键指标,目前常见的单相逆变电路拓扑结构中,根据输入直流电压的不同,一般常做成单级(DC/AC)逆变系统和双级(DC/DC/AC)逆变系统。
在评估一个中小功率的单级系统中,无论采用如全桥、H5、H6、三电平等其中的何种拓扑,都存在一个转换效率瓶颈;而在评估一个升压加逆变的双级系统时,随着输入直流电压的降低,DC/DC电路损耗增加,其整机转换效率将变的更低。
而且双级系统中,目前一般的逆变思路都是着眼于输出电压的整体波形,先计算设定一个大于输出峰值电压的直流母线电压,当输入电压小于该设定值时,就启动DC/DC电路升压到设定值,然后进行逆变。例如针对一个正弦交流输出逆变器,在一个周期内,事实上并不需要直流母线电压实时都要大于输出电压峰值,而统一将母线电压升到设定值的做法,实际上会导致DC/DC电路过多参与工作,增加损耗,而且提高了逆变的压差,开关管应力增大,损耗也随之增加,导致双级系统的整机转换效率都会下降。
发明内容
本发明的目的在于克服现有技术存在的以上问题,提供一种高效率的分段逆变电路拓扑结构,本发明既能满足提高双级系统的效率,又能提高单级最大转换效率。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种高效率的分段逆变电路拓扑结构,包括升压和旁路部分、逆变部分、滤波部分和开关管部分,所述开关管部分由开关管和二极管并联组成,所述升压和旁路部分连接有电源,所述升压和旁路部分还与第一电容和第二电容连接,所述第一电容和第二电容接地,所述升压和旁路部分还与所述逆变部分连接,所述逆变部分与所述滤波部分连接,所述滤波部分与输出端连接。
进一步的,所述滤波部分由第一电感、第二电感和第三电容串联组成。
进一步的,所述升压和旁路部分由第一二极管、第二二极管、第三电感和第九开关管组成,所述第三电感和所述第二二极管与电源连接,所述第三电感与所述第九开关管和所述第一二极管连接,所述第九开关管接地,所述第一二极管与所述第一电容连接,所述第二二极管与所述第二电容连接。
进一步的,所述逆变部分由8个开关管部分组成,所述第二二极管与第一开关管和第二开关管连接,所述第一二极管与第四开关管和第三开关管连接,所述第一开关管与所述第三开关管连接并串联有第六开关管和第八开关管,所述第二开关管与所述第四开关管连接并串联有第五开关管和第七开关管,所述第五开关管与所述第六开关管连接并接地,所述第八开关管与所述第七开关管串联。
本发明的有益效果是:
1、可以实现单工作周期内单级和双级工作模式的灵活切换,提高了最大效率和整个输入电压范围的整机加权效率。
2、具有8个开关管,和目前常用的拓扑结构相比,增加的数量有限,却可换来大幅的效率提升,具有较高的性价比。
3、在逆变控制上和传统的控制方式没有本质区别,只是驱动的方式不同,没有增加系统的复杂度,而且也是容易实现的。
4、应用范围广泛,控制方式灵活,可应用于新能源等需要进行直流交流变换的场合。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的系统主架构示意图。
图2为本发明的整体结构示意图。
图3为本发明的开关管部分的示意图。
图4为本发明的驱动波形分配图。
图5为本发明的正半周单级逆变时电流路径
图6为本发明的正半周续流时电流路径
图7为本发明的负半周单级逆变时电流路径
图8为本发明的正半周双级逆变时电流路径
图9为本发明的单级模式下的驱动波形分配图。
图中标号说明:1、升压和旁路部分,2、逆变部分,3、滤波部分,4、电源,5、开关管部分,Q、开关管,D、二极管,C1、第一电容,C2、第二电容,C3、第三电容,L1、第一电感,L2、第二电感,L3、第三电感,D1、第一二极管,D2、第二二极管,Q1、第一开关管,Q2、第二开关管,Q3、第三开关管,Q4、第四开关管,Q5、第五开关管,Q6、第六开关管,Q7、第七开关管,Q8、第八开关管,Q9、第九开关管,Vout、输出端。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
参照图1、图2和图3所示,一种高效率的分段逆变电路拓扑结构,包括升压和旁路部分1、逆变部分2、滤波部分3和开关管部分5,所述开关管部分5由开关管Q和二极管D并联组成,所述升压和旁路部分1连接有电源4,所述升压和旁路部分1还与第一电容C1和第二电容C2连接,所述第一电容C1和第二电容C2接地,所述升压和旁路部分1还与所述逆变部分2连接,所述逆变部分2与所述滤波部分3连接,所述滤波部分3与输出端Vout连接。
进一步的,所述滤波部分3由第一电感L1、第二电感L2和第三电容C3串联组成。
进一步的,所述升压和旁路部分1由第一二极管D1、第二二极管D2、第三电感L3和第九开关管Q9组成,所述第三电感L3和所述第二二极管D2与电源4连接,所述第三电感L3与所述第九开关管Q9和所述第一二极管D1连接,所述第九开关管Q9接地,所述第一二极管D1与所述第一电容C1连接,所述第二二极管D2与所述第二电容C2连接。
进一步的,所述逆变部分2由8个开关管部分5组成,所述第二二极管D2与第一开关管Q1和第二开关管Q2连接,所述第一二极管D1与第四开关管Q4和第三开关管Q3连接,所述第一开关管Q1与所述第三开关管Q3连接并串联有第六开关管Q6和第八开关管Q8,所述第二开关管Q2与所述第四开关管Q4连接并串联有第五开关管Q5和第七开关管Q7,所述第五开关管Q5与所述第六开关管Q6连接并接地,所述第八开关管Q8与所述第七开关管Q7串联。
本实施例的工作原理如下:本发明通过采用市电分段逆变思路,并搭配一种无论逆变和续流时开关管工作应力和实际参与工作的个数都具有最优组合的拓扑,实现双级(DC/DC/AC)工作时提升整体效率和单级(DC/AC)工作时获取最大转换效率的目的。
核心思想在于:
1、当输入电压低于逆变输出电压峰值时,摒弃以往常用的将直流母线电压先统一升压至高于逆变输出电压峰值的设定值,然后再逆变的做法,而是以当前输入电压和本周期内实时逆变输出电压交叉点作为分段逆变电压点,当输入电压高于当前逆变输出电压时,切换为单级模式,当输入电压低于当前逆变输出电压时,启动升压环节,变为双级模式,以缩短在一个周期内进入双级工作模式的时间。
2、采用旁路和升压电路,根据输入电压大小,提供不同的工作电流路径,并组合成一个开关管Q工作时数量少应力小的逆变拓扑,以形成新的高效率逆变拓扑。
3、将这种分段逆变思路和高效率拓扑组合在一起,提供不同的工作电流路径,形成一种全新的拓扑,是实现同时提升最大效率和整机效率的关键。
所示图4为实际工作过程中各点驱动波形分配图,以输入直流电压(Vpv)小于逆变输出峰值电压为例,具体分析一下实际工作原理及电流流向:
一、输入直流电压(Vpv)小于逆变输出峰值电压(Vgrid-peak)时,一个周期内,以Vpv和                                                
Figure 652684DEST_PATH_IMAGE002
电压交叉点为切换点, 进行单级和双级切换,最大限度减小双级工作时间及单级工作时直流母线电压(Vbus)和
Figure 151578DEST_PATH_IMAGE002
的压差,降低开关管电压应力,达到提高整体效率的效果:
⑴ Vpv>,图4中T0~T1、T2~T3时段,切换为单级工作,工作电流路径如图5和图6所示。输出负半周时,图4中T3~T4时段,逆变经由Q2、Q6完成,续流经由Q8、Q7(体二极管或并联的二极管)完成,如图7所示。
⑵ Vpv<
Figure 483464DEST_PATH_IMAGE003
,图三中T1~T2时段,切换为双级工作;工作电流路径如图8所示。
二、输入直流电压(Vpv)大于逆变输出峰值电压(Vgrid-peak)时,此种情况下,整个系统只工作于单级模式,电流路径同上述单级模式下的情况,但各开关管的驱动波形如图9所示。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 

Claims (4)

1.一种高效率的分段逆变电路拓扑结构,其特征在于:包括升压和旁路部分(1)、逆变部分(2)、滤波部分(3)和开关管部分(5),所述开关管部分(5)由开关管(Q)和二极管(D)并联组成,所述升压和旁路部分(1)连接有电源(4),所述升压和旁路部分(1)还与第一电容(C1)和第二电容(C2)连接,所述第一电容(C1)和第二电容(C2)接地,所述升压和旁路部分(1)还与所述逆变部分(2)连接,所述逆变部分(2)与所述滤波部分(3)连接,所述滤波部分(3)与输出端(Vout)连接。
2.根据权利要求1所述的一种高效率的分段逆变电路拓扑结构,其特征在于:所述滤波部分(3)由第一电感(L1)、第二电感(L2)和第三电容(C3)串联组成。
3.根据权利要求1所述的一种高效率的分段逆变电路拓扑结构,其特征在于:所述升压和旁路部分(1)由第一二极管(D1)、第二二极管(D2)、第三电感(L3)和第九开关管(Q9)组成,所述第三电感(L3)和所述第二二极管(D2)与电源(4)连接,所述第三电感(L3)与所述第九开关管(Q9)和所述第一二极管(D1)连接,所述第九开关管(Q9)接地,所述第一二极管(D1)与所述第一电容(C1)连接,所述第二二极管(D2)与所述第二电容(C2)连接。
4.根据权利要求1所述的一种高效率的分段逆变电路拓扑结构,其特征在于:所述逆变部分(2)由8个开关管部分(5)组成,所述第二二极管(D2)与第一开关管(Q1)和第二开关管(Q2)连接,所述第一二极管(D1)与第四开关管(Q4)和第三开关管(Q3)连接,所述第一开关管(Q1)与所述第三开关管(Q3)连接并串联有第六开关管(Q6)和第八开关管(Q8),所述第二开关管(Q2)与所述第四开关管(Q4)连接并串联有第五开关管(Q5)和第七开关管(Q7),所述第五开关管(Q5)与所述第六开关管(Q6)连接并接地,所述第八开关管(Q8)与所述第七开关管(Q7)串联。
CN201210234997.8A 2012-07-09 2012-07-09 一种高效率的分段逆变电路拓扑结构 Pending CN103546050A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210234997.8A CN103546050A (zh) 2012-07-09 2012-07-09 一种高效率的分段逆变电路拓扑结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210234997.8A CN103546050A (zh) 2012-07-09 2012-07-09 一种高效率的分段逆变电路拓扑结构

Publications (1)

Publication Number Publication Date
CN103546050A true CN103546050A (zh) 2014-01-29

Family

ID=49969198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210234997.8A Pending CN103546050A (zh) 2012-07-09 2012-07-09 一种高效率的分段逆变电路拓扑结构

Country Status (1)

Country Link
CN (1) CN103546050A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041910A (ja) * 2008-07-08 2010-02-18 Fuji Electric Systems Co Ltd 電源装置
CN102510234A (zh) * 2011-11-10 2012-06-20 珠海天兆新能源技术有限公司 光伏并网逆变器变直流母线电压控制方法和控制系统
CN202750030U (zh) * 2012-07-09 2013-02-20 江苏固德威电源科技有限公司 一种高效率的分段逆变电路拓扑结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041910A (ja) * 2008-07-08 2010-02-18 Fuji Electric Systems Co Ltd 電源装置
CN102510234A (zh) * 2011-11-10 2012-06-20 珠海天兆新能源技术有限公司 光伏并网逆变器变直流母线电压控制方法和控制系统
CN202750030U (zh) * 2012-07-09 2013-02-20 江苏固德威电源科技有限公司 一种高效率的分段逆变电路拓扑结构

Similar Documents

Publication Publication Date Title
CN101741273B (zh) 光伏发电系统中耦合电感式双Boost逆变器电路
CN105305855B (zh) 三相隔离型双向ac-dc变换器及其控制方法
CN100438303C (zh) 五电平双降压式全桥逆变器
CN205160401U (zh) 一种电容自均压多电平高频逆变器
CN105186912B (zh) 一种两级式非隔离全桥并网逆变器
CN104638971B (zh) 一种光伏并网逆变器及其控制方法
CN105281361B (zh) 一种五电平双降压式并网逆变器
CN105119516A (zh) 一种高升压增益准z源逆变器
CN102437759B (zh) 一种高效率的并网逆变电路
CN204068691U (zh) 基于开关电容网络串联的多输入升压变换器
CN203327305U (zh) 一种无桥pfc+t型三电平逆变的变频调光器
CN103683876B (zh) 一种七电平逆变器
CN203675000U (zh) 一种光伏并网微逆变器
CN102403920B (zh) 三电平半桥光伏并网逆变器
CN102291020A (zh) 交流推挽变换-单管整流的ac-dc变换器
CN101552569A (zh) 并网逆变器主电路拓扑
CN103078525A (zh) 一种基于交流链接技术的ac-dc变换器
CN206226317U (zh) 磁集成三电平双降压式半桥逆变器
CN107834881A (zh) 一种高升压能力型z源逆变器拓扑结构
CN107196548A (zh) 三相高增益Buck‑Boost集成式升压逆变器
CN103929087A (zh) 一种高效率高功率因数的双向ac-dc变换器
CN103701342A (zh) 一种准z源逆变器
CN103580529A (zh) 一种能量双向流动的电路结构
CN202750030U (zh) 一种高效率的分段逆变电路拓扑结构
CN202424565U (zh) 一种高效率的并网逆变电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140129