CN103545384B - 一种高倍聚光光伏系统接收器的保护膜的制备方法 - Google Patents

一种高倍聚光光伏系统接收器的保护膜的制备方法 Download PDF

Info

Publication number
CN103545384B
CN103545384B CN201310477739.7A CN201310477739A CN103545384B CN 103545384 B CN103545384 B CN 103545384B CN 201310477739 A CN201310477739 A CN 201310477739A CN 103545384 B CN103545384 B CN 103545384B
Authority
CN
China
Prior art keywords
receptor
protecting film
high power
vacuum chamber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310477739.7A
Other languages
English (en)
Other versions
CN103545384A (zh
Inventor
李愿杰
黄添懋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONGFANG ELECTRIC Co Ltd
Original Assignee
Dongfang Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Electric Corp filed Critical Dongfang Electric Corp
Priority to CN201310477739.7A priority Critical patent/CN103545384B/zh
Publication of CN103545384A publication Critical patent/CN103545384A/zh
Application granted granted Critical
Publication of CN103545384B publication Critical patent/CN103545384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种高倍聚光光伏系统接收器的保护膜的制备方法,所述保护膜为Al2O3薄膜,通过原子层沉积技术制备置于接收器外层;接收器由覆铜陶瓷板、太阳能电池、肖特基二极管以及金线等元件组成,所述保护膜包覆所有元件与空气接触的外表面;Al2O3薄膜通过原子层沉积(ALD)方法制备,置于接收器上表面,覆盖接收器表面的器件和电路;本发明通过调整Al2O3薄膜制备中的不同前驱体反应时间、气压、厚度等参数达到绝缘、防水、防氧化、导热的作用,是一种理想的接收器保护膜。

Description

一种高倍聚光光伏系统接收器的保护膜的制备方法
技术领域
本发明属于太阳能制造技术领域,具体涉及一种高倍聚光光伏系统中接收器的保护膜的制备方法。
背景技术
随着GaAs叠层太阳能电池效率的快速提升,其地面应用前景备受瞩目。高倍聚光光伏系统是目前GaAs叠层太阳能电池大规模地面应用的基础。通过透镜使太阳光汇聚到GaAs叠层太阳能电池表面,可以有效降低系统单位装机容量对GaAs叠层太阳能电池材料的消耗,同时还能在一定程度上提高该类太阳能电池的光电转换效率。目前,GaAs叠层太阳能电池在高倍聚光条件下的光电转换效率可达44%,高倍聚光组件效率可达36%,高倍聚光系统效率超过28%。
在高倍聚光光伏系统中,GaAs叠层太阳能电池固定在接收器上,接收器是高倍聚光光伏系统光电转换以及电路连接的载体。接收器以覆铜陶瓷板为基底,其上表面导电的铜膜刻蚀出基本电路后再通过表面装贴技术安装上GaAs太阳能电池、肖特基二极管等元件,并压焊金丝引出太阳能电池表面电极。通常情况下,接收器是没有保护膜的,其制作完成后便直接安装到高倍聚光光伏系统中,容易受到水汽、污染、腐蚀的影响从而导致系统运行不正常甚至无法发电。后来人们逐渐意识到接收器的绝缘、防护、散热性能对于系统发电效果至关重要,并开始考虑制作保护膜覆盖在接收器上。
硅胶保护膜通常采用手工涂覆的办法进行加工,这种方法的好处在于成本低廉,但是很难避免接收器表面器件边沿处残留空气,形成气泡。在接收器工作过程中,这些气泡容易受热膨胀,产生机械应力对接收器造成损伤。此外,手工涂覆硅胶的厚度均匀性、工艺重复性等方面存在问题,另外还会增加接收器故障返修的难度。
通过物理溅射法制备氧化物薄膜作为接收器保护膜,由于物理溅射工艺原理的限制,很难在装载了高低不平的元件的接收器表面形成厚度均匀的氧化物薄膜。一方面因为物理溅射方法沉积薄很难在原子层的尺度控制膜的均匀性与厚度;另一方面还因为元件本身材料表面性质不同导致保护膜生长速率与成核机制差异。此外,物理溅射方法由于接收器表面元件的遮挡,在元件侧面容易形成溅射源材料堆积,而在元件遮挡处则不能很好地覆盖保护膜。因此,通过物理溅射方法制备的保护膜具有一定缺陷。
发明内容
本发明以现有的高倍聚光光伏系统中的接收器为基础,提出了一种接收器的保护膜的制备方法。采用原子层沉积技术制作Al2O3薄膜作为保护膜,使接收器具有防水、防氧化的功能,并且具有更好的导热性。
本发明具体方案如下:
一种高倍聚光光伏系统接收器的保护膜,其特征在于:所述保护膜为Al2O3薄膜,通过原子层沉积(ALD)技术制备置于接收器外层;接收器由覆铜陶瓷板、太阳能电池、肖特基二极管以及金线等元件组成,所述保护膜包覆所有元件与空气接触的外表面。
所述Al2O3薄膜为均匀致密材料,厚度为30-100nm,厚度均匀性偏差小于3%,台阶覆盖高宽比超过100:1。
所述Al2O3薄膜为高透膜,平均透过率超过80%。
所述 Al2O3薄膜沉积方式采用单原子层周期性生长,单原子层厚度为0.1nm左右,整体厚度在纳米级尺度可控。
制备上述保护膜的具体方法如下:
步骤1:将高倍聚光光伏系统的接收器放置到原子层沉积(ALD)设备真空腔室中的样品架上,真空腔室的真空度保持在600-800pa,腔室温度为室温;
步骤2:将金属有机物前驱体三甲基铝(TMAl)通入真空腔室,金属有机物在接收器的表面形成吸附,控制吸附反应时间0.1~0.3秒,然后将氮气通入真空腔室进行吹扫,吹扫时间为1~2秒;
步骤3:通入第二种前驱体水蒸气,水蒸气使接收器表面的金属原子被进一步氧化成Al2O3,控制表面氧化反应时间为0.2~0.4秒,然后再用氮气吹扫真空腔室1~2秒;完成一个原子层薄膜的生长,一个原子层厚度控制在0.1~0.2nm之间;
步骤4:重复步骤2和3,经过多循环的周期沉积生长,在接收器表面形成一层均匀的Al2O3薄膜,厚度范围为30~100nm;
步骤5:在压强30pa,温度120℃,Ar气气氛下退火20分钟。
研究表明,Al2O3薄膜可以起到隔离水分和氧气的作用。同时,Al2O3还具备优良的导热性,能加快高倍聚光条件按下电池表面热量的传输,有利于降低接收器工作温度。利用Al2O3材料作为接收器保护膜,其保护性能优劣的关键在于Al2O3薄膜的致密性、厚度均匀性,以及膜本身的连续性(最好完全覆盖保护)。原子层沉积技术采用连续的原子级别厚度的薄膜生长控制,沉积温度低、节省原料,相对于溅射等其它工艺对器件表面的损伤更小,且无针孔、缺陷和裂纹产生。所以在较大的比表面积和复杂的结构中,原子层沉积技术均能保持很高的均匀性和致密性。原子层沉积技术制作的Al2O3薄膜,具有良好的台阶覆盖率和极小的厚度偏差率,能在复杂的基体表面达到很高的一致性。在高倍聚光光伏系统的接收器制作完成后,引入原子层沉积技术制作的高致密、高透过率的Al2O3薄膜,可以满足接收器对绝缘、防水、防氧化以及散热方面的要求。
本发明的有益效果如下:
本发明所述保护膜,具有绝缘、防水、防氧化、导热的作用;通过制备保护膜,可以有效防止接收器表面以及GaAs叠层太阳能电池侧面由于水汽结露造成的短路;同时也可以有效防止接收器表面金属电路氧化造成的失效等问题;此外,Al2O3保护膜是热的良导体,可以加快在高倍聚光条件下GaAs叠层太阳能电池表面的热传递,有利于降低接收器工作温度。
附图说明:
图1为本发明所述接收器的俯视示意图
图2为本发明所述接收器制作保护膜前的侧视示意图
图3为本发明所述接收器制作保护膜后的侧视示意图
其中,附图标记为:1、GaAs叠层太阳能电池;2、压焊的金线;3、肖特基二极管;4、电缆接口;5、覆铜陶瓷板;6、保护膜。
具体实施方式
如图1所示,常规结构的接收器包括有GaAs叠层太阳能电池1、压焊的金线2、肖特基二极管3、电缆接口4、覆铜陶瓷板5,以该接收器为例,结合如下方式实施本发明:
步骤1:将接收器放置到原子层沉积(ALD)设备真空腔室中的样品架上,真空腔室的真空度保持在600-800pa,腔室温度为室温;
步骤2:将金属有机物前驱体三甲基铝(TMAl)通入真空腔室,金属有机物在接收器的表面形成吸附,控制吸附反应时间0.1~0.3秒,然后将氮气通入真空腔室进行吹扫,吹扫时间为1~2秒;
步骤3:通入第二种前驱体水蒸气,水蒸气使接收器表面的金属原子被进一步氧化成Al2O3,控制表面氧化反应时间为0.2~0.4秒,然后再用氮气吹扫真空腔室1~2秒;完成一个原子层薄膜的生长,一个原子层厚度控制在0.1~0.2nm之间,整体厚度在纳米级尺度可控;
步骤4:重复步骤2和3,经过多循环的周期沉积生长,在接收器表面形成一层均匀的Al2O3保护膜,厚度范围为30~100nm;
步骤5:在压强30pa,温度120℃,Ar气气氛下退火20分钟。
Al2O3保护膜6制备完成后,接收器的覆铜陶瓷板、太阳能电池、肖特基二极管以及金线等元件均被保护膜6包覆,使得接收器的外表面与空气隔离。
所述Al2O3保护膜6为均匀致密材料,厚度为30-100nm,厚度均匀性偏差小于3%,台阶覆盖高宽比超过100:1。
所述Al2O3保护膜6为高透膜,平均透过率超过80%。

Claims (1)

1.制备一种高倍聚光光伏系统接收器的保护膜的方法,其特征在于步骤如下:
步骤1:将高倍聚光光伏系统的接收器放置到原子层沉积设备真空腔室中的样品架上,真空腔室的真空度保持在600-800pa,腔室温度为室温;
步骤2:将金属有机物前驱体三甲基铝通入真空腔室,金属有机物在接收器的表面形成吸附,控制吸附反应时间0.1~0.3秒,然后将氮气通入真空腔室进行吹扫,吹扫时间为1~2秒;
步骤3:通入第二种前驱体水蒸气,水蒸气使接收器表面的金属原子被进一步氧化成Al2O3,控制表面氧化反应时间为0.2~0.4秒,然后再用氮气吹扫真空腔室1~2秒;完成一个原子层薄膜的生长,一个原子层厚度控制在0.1~0.2nm之间;
步骤4:重复步骤2和3,经过多循环的周期沉积生长,在接收器表面形成一层均匀的Al2O3薄膜,厚度范围为30~100nm;
步骤5:在压强30pa,温度120℃,Ar气气氛下退火20分钟。
CN201310477739.7A 2013-10-14 2013-10-14 一种高倍聚光光伏系统接收器的保护膜的制备方法 Active CN103545384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310477739.7A CN103545384B (zh) 2013-10-14 2013-10-14 一种高倍聚光光伏系统接收器的保护膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310477739.7A CN103545384B (zh) 2013-10-14 2013-10-14 一种高倍聚光光伏系统接收器的保护膜的制备方法

Publications (2)

Publication Number Publication Date
CN103545384A CN103545384A (zh) 2014-01-29
CN103545384B true CN103545384B (zh) 2016-08-10

Family

ID=49968649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310477739.7A Active CN103545384B (zh) 2013-10-14 2013-10-14 一种高倍聚光光伏系统接收器的保护膜的制备方法

Country Status (1)

Country Link
CN (1) CN103545384B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992840B (zh) * 2014-12-29 2018-08-07 中国科学院物理研究所 量子点敏化太阳电池及其制备方法
CN111378934B (zh) * 2020-03-30 2021-03-30 中国科学院上海光学精密机械研究所 提升电子束蒸镀薄膜元件的光谱和应力时效稳定性的镀膜方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308880A (zh) * 2007-05-17 2008-11-19 徐宝安 一种迎光面复合有透明保护膜的光伏电池
CN201804886U (zh) * 2010-08-03 2011-04-20 欧雅大家有限公司 聚光型太阳能接收器
CN203026515U (zh) * 2013-01-17 2013-06-26 云南临沧鑫圆锗业股份有限公司 高倍聚光太阳电池电路基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308880A (zh) * 2007-05-17 2008-11-19 徐宝安 一种迎光面复合有透明保护膜的光伏电池
CN201804886U (zh) * 2010-08-03 2011-04-20 欧雅大家有限公司 聚光型太阳能接收器
CN203026515U (zh) * 2013-01-17 2013-06-26 云南临沧鑫圆锗业股份有限公司 高倍聚光太阳电池电路基板

Also Published As

Publication number Publication date
CN103545384A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
CN104505426B (zh) 一种改善晶体硅太阳能电池组件光致衰减的方法及装置
US20120006397A1 (en) Integrated solar roof tile and method for producing the same
CN105810779B (zh) 一种perc太阳能电池的制备方法
CN107946405B (zh) 一种钝化接触太阳能电池的制作方法
CN102071396B (zh) 锗量子点掺杂纳米二氧化钛复合薄膜的制备方法
US20130104972A1 (en) Se OR S BASED THIN FILM SOLAR CELL AND METHOD OF MANUFACTURING THE SAME
Sopori Silicon nitride processing for control of optical and electronic properties of silicon solar cells
WO2006104107A1 (ja) 多結晶シリコン基板及びその製造方法、多結晶シリコンインゴット、光電変換素子、並びに光電変換モジュール
CN102157570A (zh) 一种用于晶体硅太阳电池的复合钝化减反膜及制备方法
CN101866991A (zh) 非晶硅/晶硅异质结太阳能电池制备方法
CN102176471B (zh) 一种绒面结构bzo/hgzo复合薄膜及应用
CN103545384B (zh) 一种高倍聚光光伏系统接收器的保护膜的制备方法
CN103155161B (zh) 光伏装置及其制造方法
CN102569497B (zh) 在基板上形成减反射膜的方法、太阳能电池片及制备方法
You et al. Reactive Ion etching activating TiO2 substrate for planar heterojunction Sb2S3 solar cells with 6.06% efficiency
Chen et al. RF magnetron sputtering aluminum oxide film for surface passivation on crystalline silicon wafers
JP2001028453A (ja) 光起電力素子及びその製造方法、建築材料並びに発電装置
CN104037262A (zh) 一种超薄晶体硅柔性太阳电池片的制造工艺
CN108807579B (zh) 薄膜封装方法和器件、薄膜封装系统、太阳能电池
CN101931022A (zh) 晶体硅太阳能电池的制备方法
CN102254799A (zh) 一种太阳能电池azo减反射膜制备方法
CN104681639A (zh) 一种基于柔性基底的多晶硅薄膜太阳能电池及其制备方法
JP6430842B2 (ja) 太陽電池素子の製造方法および太陽電池モジュールの製造方法
CN204741023U (zh) 一种新型柔性太阳能电池板
Chen et al. High efficiency screen-printed 156cm 2 solar cells on thin epitaxially grown silicon material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180426

Address after: 610000 18 West core road, hi-tech West District, Chengdu, Sichuan

Patentee after: Dongfang Electric Co., Ltd.

Address before: 610036 Shu Han Road, Jinniu District, Chengdu, Sichuan Province, No. 333

Patentee before: Dongfang Electric Corporation