CN103521929A - 一种压印超疏水性微纳米表面的金属模具及其激光制备方法 - Google Patents

一种压印超疏水性微纳米表面的金属模具及其激光制备方法 Download PDF

Info

Publication number
CN103521929A
CN103521929A CN201310498764.3A CN201310498764A CN103521929A CN 103521929 A CN103521929 A CN 103521929A CN 201310498764 A CN201310498764 A CN 201310498764A CN 103521929 A CN103521929 A CN 103521929A
Authority
CN
China
Prior art keywords
laser
micro
metal die
lotus leaf
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310498764.3A
Other languages
English (en)
Other versions
CN103521929B (zh
Inventor
钟敏霖
林澄
张红军
范培迅
龙江游
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310498764.3A priority Critical patent/CN103521929B/zh
Publication of CN103521929A publication Critical patent/CN103521929A/zh
Application granted granted Critical
Publication of CN103521929B publication Critical patent/CN103521929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

本发明公开了一种压印超疏水性微纳米表面的金属模具及其激光制备方法。包括如下步骤:用超短脉冲激光烧蚀金属基材,经过激光烧蚀去除,在所述金属基材的表面得到荷叶微纳米结构的对称负结构,至此即得到所述金属模具;所述荷叶微纳米结构的对称负结构为微米级凹坑和所述微米级凹坑内表面的纳米级亚结构。本发明提供了一种用于压印非金属或轻金属材料形成其表面超疏水性荷叶微纳米结构的微纳米压印金属模具及其激光制备方法,尤其是利用高功率皮秒激光高效大面积制备这种微纳米压印金属模具及其制备方法,具有制备效率高,微纳米压印模具耐高温、高压,压印材料范围广,微纳米结构参数精密可调、荷叶结构逼真等一系列综合优势,是现有其他方法所难以比较的。

Description

一种压印超疏水性微纳米表面的金属模具及其激光制备方法
技术领域
本发明涉及一种压印超疏水性微纳米表面的金属模具及其制备方法,具体涉及一种压印超疏水性微纳米表面的金属模具及其激光制备方法。
背景技术
荷叶具有“出污泥而不染”的自清洁功能,这种功能来源于荷叶表面的低自由能成分和独特的微纳米结构所产生的超疏水性,即表面与水的接触角超过150°。20世纪70年代,德国Bonn大学植物学家Barthlott教授发现,荷叶表面存在着多重的微米和纳米结构,由平均尺寸约为10μm的微纳米凸起和直径为100~200nm的纳米级蜡丝构成,这种结构将水与界面的面接触转变为水与微纳米结构凸起的点接触,在微米凸起之间的凹陷处形成了纳米级的空气层,再与低表面能的蜡共同作用,使得荷叶表面具有超疏水特性,因此,超疏水性自清洁功能是由表面蜡质和微米级结构共同作用引起的。
荷叶的这种超疏水自清洁效应长期以来受到普遍的关注和研究,荷叶的表面结构、化学成分与浸润性的关系,荷叶表面自清洁效应的本质以及理论上的解释已基本澄清,各种仿荷叶的功能表面也在不断研发。超疏水表面在国防、工农业生产和人们日常生活中有着重要的应用前景,如风力发电机叶片、天线、门窗防积雪,船、潜艇等外壳减小阻力,石油输送管道内壁、微量注射器针尖防止粘附堵塞,减少损耗,建筑、纺织品、皮革制品防水防污等,超疏水表面在节能环保领域将发挥越来越重要的作用。
超疏水性表面的基本制备思路是降低表面自由能同时形成表面微纳米结构,可以在低自由能疏水材料(与水的接触角大于90°)表面制备微纳米结构,也可以在已经具有微纳米结构的粗糙表面上修饰低自由能的材料,或者先制备表面微纳米结构然后再修饰低自由能材料。降低表面自由能可采取表面氟化处理等方法,相对容易实现,制备表面微纳米结构则是实现材料表面的超疏水性的重点。
迄今,制备表面微纳米结构方面已经有很多研究,发展了许多方法。主要可分为“自下而上”(Bottom-Up)和“自上而下”(Top-Down)两类。“自下而上”是材料单元通过彼此之间弱的相互作用经自组装形成微纳米结构的方法,包括模板法、溶胶凝胶法、物理气相沉积、化学气相沉积、水热法、电化学沉积等;“自上而下”是通过刻蚀等微加工技术在材料表面制备出微纳米结构的方法,主要包括光刻蚀法、等离子体刻蚀法、激光烧蚀法、脱合金法等。用上述化学的和物理的方法已经制备了不少表面微纳米结构而从实现了表面超疏水性,如:熔融烷基正乙烯酮二聚体的固化、聚四氟乙烯(PTFE)存在时聚丙烯(PP)的等离子体聚合(或刻蚀)、微波等离子体增强化学气相沉积法、阳极氧化法、将多孔氧化铝凝胶浸入沸水中、将升华材料与硅石或铝石混合、相分离法、激光烧蚀聚二甲基硅氧烷(PDMS)、在硼玻璃表面生长出纳米直径的规则针尖阵列、具有微纳米结构颗粒的油漆涂覆,纳米聚丙烯颗粒粘结在布料的纤维表面等等,上述方法各有特色,均实现了超疏水性表面。目前存在的首要问题是如何大面积、高效、低成本地制备超疏水性表面,以使得超疏水自清洁表面的优异性能能够广泛应用。其中,通过微纳米压印方法是实现大面积、大批量、低成本制备超疏水性表面的有效方法,因此发明一种压印超疏水性微纳米表面的金属模具及其制备方法、实现超疏水性表面的批量压印生产具有重要的意义和广阔的应用前景。
发明内容
本发明的目的是提供一种压印超疏水性微纳米表面的金属模具及其激光制备方法,本发明利用高功率皮秒激光或飞秒激光实现这种微纳米压印金属模具的高效大面积制备。
本发明所提供的一种压印超疏水性微纳米表面的金属模具的激光制备方法,包括如下步骤:
用超短脉冲激光烧蚀金属基材,经过激光烧蚀去除,在所述金属基材的表面得到荷叶微纳米结构的对称负结构,至此即得到所述金属模具;
所述荷叶微纳米结构的对称负结构为微米级凹坑和所述微米级凹坑内表面的纳米级亚结构。
上述的激光制备方法中,所述金属基材的材质可为模具钢、高速钢或硬质合金,所述模具钢包括热作模具钢和冷作模具钢。
上述的激光制备方法中,所述纳米级亚结构可为纳米波纹或纳米颗粒;
所述纳米级波纹或纳米颗粒的大小可为50~900nm,具体可为50~700nm、50nm、100nm或700nm。
上述的激光制备方法中,所述超短脉冲激光可为皮秒激光和/或飞秒激光。
上述的激光制备方法中,所述超短脉冲激光可为红外光、可见光或紫外光。
上述的激光制备方法中,所述皮秒激光的脉冲宽度可为0.9~20皮秒,具体可为3~15皮秒、3皮秒或15皮秒,重复频率可为1K~4MHz,具体可为100K~4MHz、100KHz或4MHz,平均功率可为1W~400W,具体可为40~100W、40W或100W;
所述飞秒激光的脉冲宽度可为10~900飞秒,如100飞秒,重复频率可为1K~1MHz,如1KHz,平均功率可为1W~100W,如4W。
上述的激光制备方法中,所述荷叶微纳米结构的对称负结构可通过下述1)或2)的方法来制备:
1)、固定所述金属基材,所述超短脉冲激光经扫描振镜扫描烧蚀所述金属基材形成所需面积的所述荷叶微纳米结构的对称负结构;
2)、固定所述超短脉冲激光,所述超短脉冲激光烧蚀所述金属基材,所述金属基材经数控X-Y平台移动形成所需面积的所述荷叶微纳米结构的对称负结构。
本发明提供的激光制备方法中的“激光烧蚀去除”是指当脉冲激光能量密度超过某种材料的烧蚀阈值时,激光作用区内材料表面出现蒸发现象,形成材料的去除,去除量取决于激光参数;材料的烧蚀阈值与材料特性和脉冲激光参数如脉冲宽度等有关,如在70飞秒激光作用下,Cu、Al、Fe、Ni和Mo等金属的烧蚀阈值分别为0.25、0.25、0.28、0.20和0.40J/cm2;在10皮秒激光作用下,H13热作模具钢的烧蚀阈值为0.9J/cm2,而高速钢的烧蚀阈值为1.02J/cm2
本发明还进一步提供了由上述方法制备得到的压印超疏水性微纳米表面的金属模具,所述金属模具的表面具有荷叶微纳米结构的对称负结构,所述荷叶微纳米结构的对称负结构为微米级凹坑和所述微米级凹坑内表面的纳米级亚结构。
上述的金属模具中,所述微米级凹坑的形状可为圆形,其直径可为5~100μm,具体可为5~60μm、20~60μm、5μm、20μm或60μm,深度可为5~30μm,具体可为5μm~20μm、5μm、10μm或20μm;
所述微米级凹坑呈蜂窝状密集分布,所述微米级凹坑之间的间距可为5~50μm,具体可为5μm~20μm、5μm、20μm或50μm。
上述的金属模具中,所述纳米级亚结构可为纳米波纹或纳米颗粒;
所述纳米级波纹或纳米颗粒的大小可为50~900nm,具体可为50~700nm、50nm、100nm或700nm。
本发明还提供了所述金属模具在压印超疏水性微纳米表面中的应用,所述金属模具进行压印时,可在被压印材料表面压制出与荷叶微纳米结构一致或相近的密集分布的微米级凸起和其上分布的纳米级亚结构,如该材料本身是低自由能材料(如聚合物等)则压印上述微纳米结构后该材料表面具有超疏水性,如该材料本身不是低自由能材料(如轻金属等),则在压印上述微纳米结构后再进行低自由能处理(如氟化处理),处理后该表面具有超疏水性。
本发明由于采取以上技术方案,具有如下优点:
(1)本发明利用高功率皮秒或飞秒激光烧蚀金属材料表面形成荷叶微纳米结构的对称负结构-即微米级凹坑和其凹坑内表明的纳米级凹陷亚结构,其结构逼真度高,微纳米结构参数如凹坑外形、直径、深度、间距及凹坑密集分布形式均可精密调节,具有极大的灵活性和可设计性;这种模具经压印后可以得到可设计的微纳米结构,获得可设计的疏水性;
(2)本发明利用高功率皮秒或飞秒激光作用高强韧性金属材料如各类模具钢(如热作模具钢、冷作模具钢等)、高速钢、硬质合金等经激光烧蚀形成模具的微纳米结构,具有高耐久性,能够工作于高温(可达700度)、高压(可达30吨压力)的微纳米压印环境,可压印轻金属、玻璃、橡胶、塑料、有机物等多种材料,有广泛的实用性;
(3)本发明利用高功率皮秒激光(最高可达100W)配合高速扫描振镜(最高速度可达11m/s)作用高强韧性金属材料形成微纳米压印模具,制备面积大,效率高,可达2.6mm2/min,明显高于已知方法。
综上所述,本发明提供了一种用于压印非金属或轻金属材料形成其表面超疏水性荷叶微纳米结构的微纳米压印金属模具及其激光制备方法,尤其是利用高功率皮秒激光高效大面积制备这种微纳米压印金属模具及其制备方法,具有制备效率高,微纳米压印模具耐高温、高压,压印材料范围广,微纳米结构参数精密可调、荷叶结构逼真等一系列综合优势,是现有其他方法所难以比较的。本分明制备的超疏水微纳米压印模具可用于轻金属、玻璃、橡胶、塑料、有机物等多种材料的压印,应用面十分广泛。
附图说明
图1是本发明实施例1制备的H13热作模具钢超疏水微纳米压印模具的扫描电镜照片。
图2是本发明实施例2制备的高速钢超疏水微纳米压印模具的扫描电镜照片。
图3是本发明实施例3制备的硬质合金超疏水微纳米压印模具的扫描电镜照片。
图4是用本发明实施例1制备的疏水微纳米压印模具压印铝硅合金所得到的疏水性表面的扫描电镜照片(图4(a))及疏水性测试(图4(b))。
图5是用本发明实施例2制备的疏水微纳米压印模具压印硅橡胶所得到的疏水性表面的扫描电镜照片(图5(a))及疏水性测试(图5(b))。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明采用的激光制备方法的基本原理是采用高功率超短脉冲激光,利用激光烧蚀去除原理,在高强韧性金属材料金属基材表面形成荷叶微纳米结构的对称负结构,即相应于荷叶表面密集分布的微米级凸起和其上的纳米级亚结构,由激光烧蚀形成密集分布的微米级凹坑和其凹坑内表面分布的纳米级亚结构。
实施例1、高功率皮秒激光制备压印超疏水性微纳米表面的模具钢模具
本实施例利用高功率皮秒激光制备压印超疏水性微纳米表面的H13热作模具钢模具,包括以下步骤:
1)、金属基材的准备:首先用机械加工方法将H13热作模具钢基材表面磨平,再用磨抛机进行磨光,用酒精进行超声清洗,干燥待用;
2)、激光处理:采用高功率皮秒激光,激光波长为1.06微米的近红外,激光束为高斯分布,脉冲宽度为15皮秒、重复频率为4M、平均功率为100W,采用超过烧蚀阈值的激光能量密度为3.0J/cm2,配合X-Y扫描振镜,烧蚀H13热作模具钢表面,形成荷叶微纳米结构的对称负结构,即密集分布的微米级凹坑和其凹坑内表明的纳米级亚结构,凹坑直径为20微米,深度为10微米,间距为20微米,微米级凹坑内表面分布尺度为100纳米的波纹亚结构,所得模具的微纳米结构的扫描电镜照片如图1所示。
用本实施例制备的H13压印模具压印铝硅合金,得到疏水性表面,其扫描电镜如图4(a)所示,得到的疏水性表面与水的接触角可达145度,如图4(b)所示;如对该表面再进行氟化处理,则接触角可达155度。
实施例2、高功率皮秒激光制备压印超疏水性微纳米表面的高速钢模具
本实施例利用高功率皮秒激光制备压印超疏水性微纳米表面的模具钢模具,包括以下步骤:
1)、金属基材的准备:首先用机械加工方法将高速钢基材表面磨平,再用磨抛机进行磨光,用酒精进行超声清洗,干燥待用;
2)、激光处理:采用高功率皮秒激光,激光波长为532nm的绿光,激光束为高斯分布,脉冲宽度为3皮秒、重复频率为100K、平均功率为40W,采用超过烧蚀阈值的激光能量密度1.2J/cm2,配合3D扫描振镜,烧蚀高速钢表面,形成荷叶微纳米结构的对称负结构,即密集分布的微米级凹坑和其凹坑内表明的纳米级凹陷亚结构,凹坑直径为60微米,深度为20微米,间距为50微米,微米级凹坑内表面分布尺度为700纳米的纳米颗粒亚结构,所得模具的微纳米结构的扫描电镜照片如图2所示。
用本实施例制备的微纳米压印模具压印硅橡胶,得到超疏水性表面,其扫描电镜如图5(a)所示,得到的疏水性表面与水的接触角可达152度,如图5(b)所示。
实施例3、高功率飞秒激光制备压印超疏水性微纳米表面的硬质合金模具
本实施例利用高功率飞秒激光制备压印超疏水性微纳米表面的硬质合金模具,包括以下步骤:
1)、金属基材的准备:首先用机械加工方法将硬质合金基材表面磨平,再用磨抛机进行磨光,用酒精进行超声清洗,干燥待用;
2)、激光处理:采用高功率飞秒激光,激光波长为1.06微米的近红外,激光束为高斯分布,脉冲宽度为100飞秒、重复频率为1K、平均功率为4W,采用超过烧蚀阈值的激光能量密度1.5J/cm2,配合X-Y平台移动激光束扫描硬质合金基材进行烧蚀,形成荷叶微纳米结构的对称负结构,即密集分布的微米级凹坑和其凹坑内表明的纳米级凹陷亚结构,凹坑直径为5微米,深度为5微米,间距为5微米,微米级凹坑内表面分布尺度为50纳米的波纹亚结构,所得模具的微纳米结构的扫描电镜照片如图3所示。
用本实施例制备的微纳米压印模具压印轻金属、玻璃、橡胶、塑料、有机物等材料,直接得到或经氟化处理后得到超疏水性表面,与水的接触角均超过150度。

Claims (10)

1.一种压印超疏水性微纳米表面的金属模具的激光制备方法,包括如下步骤:
用超短脉冲激光烧蚀金属基材,经过激光烧蚀去除,在所述金属基材的表面得到荷叶微纳米结构的对称负结构,至此即得到所述金属模具;
所述荷叶微纳米结构的对称负结构为微米级凹坑和所述微米级凹坑内表面的纳米级亚结构。
2.根据权利要求1所述的激光制备方法,其特征在于:所述金属基材的材质为模具钢、高速钢或硬质合金。
3.根据权利要求1或2所述的激光制备方法,其特征在于:所述超短脉冲激光为皮秒激光和/或飞秒激光。
4.根据权利要求3所述的激光制备方法,其特征在于:所述超短脉冲激光为红外光、可见光或紫外光。
5.根据权利要求3或4所述的激光制备方法,其特征在于:
所述皮秒激光的脉冲宽度为0.9~20皮秒,重复频率为1K~4MHz,平均功率为1W~400W;
所述飞秒激光的脉冲宽度为10~900飞秒,重复频率为1K~1MHz,平均功率为1W~100W。
6.根据权利要求1-5中任一项所述的激光制备方法,其特征在于:所述荷叶微纳米结构的对称负结构是通过下述1)或2)的方法制备:
1)、固定所述金属基材,所述超短脉冲激光经扫描振镜扫描烧蚀所述金属基材形成所需面积的所述荷叶微纳米结构的对称负结构;
2)、固定所述超短脉冲激光,所述超短脉冲激光烧蚀所述金属基材,所述金属基材经数控X-Y平台移动形成所需面积的所述荷叶微纳米结构的对称负结构。
所述超短脉冲激光烧蚀所述金属基材形成所需面积的所述荷叶微纳米结构的对称负结构。
7.权利要求1-6中任一项所述方法制备的压印超疏水性微纳米表面的金属模具,所述金属模具的表面具有荷叶微纳米结构的对称负结构,所述荷叶微纳米结构的对称负结构为微米级凹坑和所述微米级凹坑内表面的纳米级亚结构。
8.根据权利要求7所述的金属模具,其特征在于:所述微米级凹坑的形状为圆形,其直径为5~100μm,深度为5~30μm;
所述微米级凹坑呈蜂窝状密集分布,所述微米级凹坑之间的间距为10~50μm。
9.根据权利要求7或8所述的金属模具,其特征在于:所述纳米级亚结构为纳米波纹或纳米颗粒;
所述纳米波纹或纳米颗粒的大小为50~900nm。
10.权利要求7-9中任一项所述金属模具在压印超疏水性微纳米表面中的应用。
CN201310498764.3A 2013-10-22 2013-10-22 一种压印超疏水性微纳米表面的金属模具及其激光制备方法 Active CN103521929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310498764.3A CN103521929B (zh) 2013-10-22 2013-10-22 一种压印超疏水性微纳米表面的金属模具及其激光制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310498764.3A CN103521929B (zh) 2013-10-22 2013-10-22 一种压印超疏水性微纳米表面的金属模具及其激光制备方法

Publications (2)

Publication Number Publication Date
CN103521929A true CN103521929A (zh) 2014-01-22
CN103521929B CN103521929B (zh) 2015-09-30

Family

ID=49924472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310498764.3A Active CN103521929B (zh) 2013-10-22 2013-10-22 一种压印超疏水性微纳米表面的金属模具及其激光制备方法

Country Status (1)

Country Link
CN (1) CN103521929B (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191602A (zh) * 2014-07-08 2014-12-10 清华大学 超疏水聚四氟乙烯薄膜及其微纳米压印制备方法与应用
CN104439708A (zh) * 2014-11-18 2015-03-25 清华大学 一种超疏水高粘附金属表面及其制备方法
CN104649233A (zh) * 2015-01-19 2015-05-27 清华大学 一种金属氧化物纳米线的可控图案化超快激光复合制备方法
CN104911329A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超短脉冲激光制备不锈钢超疏水耐腐蚀表面的方法
CN104907701A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超快激光制备不锈钢超疏水自清洁表面的方法
CN104911328A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超短脉冲激光制备铸铁超疏水耐腐蚀表面的方法
CN104907697A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超快激光制备钛合金超疏水抗霜冻表面的方法
CN105479009A (zh) * 2016-02-02 2016-04-13 深圳光韵达光电科技股份有限公司 一种smt模板表面超疏水结构的制备方法
ES2574577A1 (es) * 2014-12-19 2016-06-20 Bsh Electrodomésticos España, S.A. Método para fabricar un componente de aparato doméstico con estructuración doble de una superficie, y componente de aparato doméstico
CN105789061A (zh) * 2014-12-11 2016-07-20 财团法人工业技术研究院 具有表面结构的模具及其制作方法
CN106865487A (zh) * 2017-01-10 2017-06-20 长春理工大学 液体注入型超滑表面及其激光精密微加工方法
CN106984902A (zh) * 2017-04-20 2017-07-28 湖北工业大学 一种利用脉冲激光制备船体钢超疏水表面的制备方法
CN107442942A (zh) * 2017-07-16 2017-12-08 北京工业大学 激光划线扫描材料制备大面积周期性点阵式表面织构的方法
CN107500554A (zh) * 2017-08-24 2017-12-22 清华大学 一种超疏水透明玻璃及其制备方法
CN108728879A (zh) * 2017-04-19 2018-11-02 优尔工业材料(廊坊)有限公司 铁基金属与塑料的复合体及其制备方法
CN110028037A (zh) * 2019-05-07 2019-07-19 大连理工大学 一种超疏水半球阵列的复制加工工艺
CN110434043A (zh) * 2019-08-07 2019-11-12 西南科技大学 一种具有超疏水/超低粘附表面的基体及其制备方法
CN110752386A (zh) * 2019-09-20 2020-02-04 江苏大学 一种燃料电池双极板和方法
CN112756233A (zh) * 2020-12-14 2021-05-07 中国船舶重工集团公司第七二五研究所 一种模板压印法制备大尺寸微沟槽仿生防污涂层的方法
CN112872597A (zh) * 2021-01-21 2021-06-01 北京理工大学 一种飞秒激光直写与电镀法相结合制备超疏水表面的方法
CN113770668A (zh) * 2021-10-13 2021-12-10 湖南大学 一种利用热压成型制备光学玻璃超疏水功能表面的方法
CN113913564A (zh) * 2021-10-21 2022-01-11 齐鲁工业大学 一种激光刻蚀模板法制备自清洁皮革面料的方法
CN113967796A (zh) * 2021-10-26 2022-01-25 江苏大学 一种铝合金表面激光冲击压印微纳米颗粒制备超疏水性表面的方法
CN114473212A (zh) * 2022-03-11 2022-05-13 北京理工大学 一种热解碳表面自组织三级微纳复合结构
CN114619148A (zh) * 2022-03-01 2022-06-14 南京理工大学 一种通过飞秒激光改变因瓦合金表面润湿性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001964A1 (en) * 1999-08-30 2004-01-01 Canon Kabushiki Kaisha Method of manufacturing a structure having pores
CN101219506A (zh) * 2008-01-07 2008-07-16 江苏大学 金属基超疏水性微结构表面的激光制备方法
WO2009113063A2 (en) * 2008-03-10 2009-09-17 Yeda Research & Development Company Ltd. N Method for fabricating nano-scale patterned surfaces
KR20100026101A (ko) * 2008-08-29 2010-03-10 중앙대학교 산학협력단 양극 산화 알루미늄을 이용한 초소수성 마이크로/나노 복합구조 표면 제작용 스탬프, 그 제조 방법, 및 이를 통해제작된 구조물
CN102515091A (zh) * 2011-12-22 2012-06-27 哈尔滨工业大学 用于塑料功能性微结构表面批量化生产的采用软光刻技术复制塑料功能性微结构表面的方法
WO2013120001A1 (en) * 2012-02-08 2013-08-15 Ross Technology Corporation Hydrophobic surfaces on injection molded or shaped articles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001964A1 (en) * 1999-08-30 2004-01-01 Canon Kabushiki Kaisha Method of manufacturing a structure having pores
CN101219506A (zh) * 2008-01-07 2008-07-16 江苏大学 金属基超疏水性微结构表面的激光制备方法
WO2009113063A2 (en) * 2008-03-10 2009-09-17 Yeda Research & Development Company Ltd. N Method for fabricating nano-scale patterned surfaces
KR20100026101A (ko) * 2008-08-29 2010-03-10 중앙대학교 산학협력단 양극 산화 알루미늄을 이용한 초소수성 마이크로/나노 복합구조 표면 제작용 스탬프, 그 제조 방법, 및 이를 통해제작된 구조물
CN102515091A (zh) * 2011-12-22 2012-06-27 哈尔滨工业大学 用于塑料功能性微结构表面批量化生产的采用软光刻技术复制塑料功能性微结构表面的方法
WO2013120001A1 (en) * 2012-02-08 2013-08-15 Ross Technology Corporation Hydrophobic surfaces on injection molded or shaped articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
单宏宇: "仿生非光滑耦合模具表面粘附性能研究", 《工程科技Ⅱ辑》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191602A (zh) * 2014-07-08 2014-12-10 清华大学 超疏水聚四氟乙烯薄膜及其微纳米压印制备方法与应用
CN104439708A (zh) * 2014-11-18 2015-03-25 清华大学 一种超疏水高粘附金属表面及其制备方法
CN105789061A (zh) * 2014-12-11 2016-07-20 财团法人工业技术研究院 具有表面结构的模具及其制作方法
ES2574577A1 (es) * 2014-12-19 2016-06-20 Bsh Electrodomésticos España, S.A. Método para fabricar un componente de aparato doméstico con estructuración doble de una superficie, y componente de aparato doméstico
CN104649233A (zh) * 2015-01-19 2015-05-27 清华大学 一种金属氧化物纳米线的可控图案化超快激光复合制备方法
CN104911329A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超短脉冲激光制备不锈钢超疏水耐腐蚀表面的方法
CN104907701A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超快激光制备不锈钢超疏水自清洁表面的方法
CN104911328A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超短脉冲激光制备铸铁超疏水耐腐蚀表面的方法
CN104907697A (zh) * 2015-05-28 2015-09-16 湖北工业大学 一种利用超快激光制备钛合金超疏水抗霜冻表面的方法
CN105479009A (zh) * 2016-02-02 2016-04-13 深圳光韵达光电科技股份有限公司 一种smt模板表面超疏水结构的制备方法
CN106865487A (zh) * 2017-01-10 2017-06-20 长春理工大学 液体注入型超滑表面及其激光精密微加工方法
CN108728879A (zh) * 2017-04-19 2018-11-02 优尔工业材料(廊坊)有限公司 铁基金属与塑料的复合体及其制备方法
CN108728879B (zh) * 2017-04-19 2020-02-28 优尔工业材料(廊坊)有限公司 铁基金属与塑料的复合体及其制备方法
CN106984902A (zh) * 2017-04-20 2017-07-28 湖北工业大学 一种利用脉冲激光制备船体钢超疏水表面的制备方法
CN107442942B (zh) * 2017-07-16 2019-02-26 北京工业大学 激光划线扫描材料制备点阵式表面织构的方法
CN107442942A (zh) * 2017-07-16 2017-12-08 北京工业大学 激光划线扫描材料制备大面积周期性点阵式表面织构的方法
CN107500554A (zh) * 2017-08-24 2017-12-22 清华大学 一种超疏水透明玻璃及其制备方法
CN110028037B (zh) * 2019-05-07 2021-08-10 大连理工大学 一种超疏水半球阵列的复制加工工艺
CN110028037A (zh) * 2019-05-07 2019-07-19 大连理工大学 一种超疏水半球阵列的复制加工工艺
CN110434043A (zh) * 2019-08-07 2019-11-12 西南科技大学 一种具有超疏水/超低粘附表面的基体及其制备方法
CN110752386A (zh) * 2019-09-20 2020-02-04 江苏大学 一种燃料电池双极板和方法
CN110752386B (zh) * 2019-09-20 2022-08-23 江苏大学 一种燃料电池双极板和方法
CN112756233A (zh) * 2020-12-14 2021-05-07 中国船舶重工集团公司第七二五研究所 一种模板压印法制备大尺寸微沟槽仿生防污涂层的方法
CN112872597A (zh) * 2021-01-21 2021-06-01 北京理工大学 一种飞秒激光直写与电镀法相结合制备超疏水表面的方法
CN113770668A (zh) * 2021-10-13 2021-12-10 湖南大学 一种利用热压成型制备光学玻璃超疏水功能表面的方法
CN113913564A (zh) * 2021-10-21 2022-01-11 齐鲁工业大学 一种激光刻蚀模板法制备自清洁皮革面料的方法
CN113967796A (zh) * 2021-10-26 2022-01-25 江苏大学 一种铝合金表面激光冲击压印微纳米颗粒制备超疏水性表面的方法
CN113967796B (zh) * 2021-10-26 2023-09-22 江苏大学 一种铝合金表面激光冲击压印微纳米颗粒制备超疏水性表面的方法
CN114619148A (zh) * 2022-03-01 2022-06-14 南京理工大学 一种通过飞秒激光改变因瓦合金表面润湿性的方法
CN114473212A (zh) * 2022-03-11 2022-05-13 北京理工大学 一种热解碳表面自组织三级微纳复合结构

Also Published As

Publication number Publication date
CN103521929B (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
CN103521929B (zh) 一种压印超疏水性微纳米表面的金属模具及其激光制备方法
Moradi et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity
Milles et al. Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology
CN104439708B (zh) 一种超疏水高粘附金属表面及其制备方法
Cardoso et al. Superhydrophobicity on hierarchical periodic surface structures fabricated via direct laser writing and direct laser interference patterning on an aluminium alloy
Rukosuyev et al. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation
Chun et al. Fabrication of transparent superhydrophobic surface on thermoplastic polymer using laser beam machining and compression molding for mass production
Allahyari et al. Laser surface texturing of copper and variation of the wetting response with the laser pulse fluence
CN106583930A (zh) 基于飞秒激光直写钛片实现湿润性可逆转化的方法
Huerta-Murillo et al. Fabrication of multi-scale periodic surface structures on Ti-6Al-4V by direct laser writing and direct laser interference patterning for modified wettability applications
Han et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method
Zhang et al. Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface
CN106392332B (zh) 一种改善医用植入物表面细胞粘附性的激光纹理化方法
CN108466015B (zh) 一种纳米结构三维分布的超双疏金属表面及其制备方法
CN104181770B (zh) 一种基于4d打印和纳米压印制造微纳复合结构的方法
He et al. Lotus-leaf-like microstructures on tungsten surface induced by one-step nanosecond laser irradiation
Yang et al. Fabrication of controllable wettability of crystalline silicon surfaces by laser surface texturing and silanization
CN106167247A (zh) 基于能量调节飞秒激光仿生加工的各向异性微纳米表面
Chen et al. Investigating the ablation depth and surface roughness of laser-induced nano-ablation of CVD diamond material
CN105619774A (zh) 一种基于热压印的超疏水材料的制备方法
CN114101920A (zh) 一种基于皮秒激光构建异性超疏水聚四氟乙烯的方法
Xing et al. Assessment machining of micro-channel textures on PCD by laser-induced plasma and ultra-short pulsed laser ablation
Antoszewski et al. Utilization of the UV laser with picosecond pulses for the formation of surface microstructures on elastomeric plastics
Zhao et al. Ultrasonic vibration assisted laser (UVAL) treatment of copper for superhydrophobicity
Kobayashi et al. Surface flattening and nanostructuring of steel by picosecond pulsed laser irradiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant