CN103514890A - 具有位于空气承载表面远端的偏置结构的磁性元件 - Google Patents

具有位于空气承载表面远端的偏置结构的磁性元件 Download PDF

Info

Publication number
CN103514890A
CN103514890A CN201310220131.6A CN201310220131A CN103514890A CN 103514890 A CN103514890 A CN 103514890A CN 201310220131 A CN201310220131 A CN 201310220131A CN 103514890 A CN103514890 A CN 103514890A
Authority
CN
China
Prior art keywords
magnetic
layer
free layer
abs
lamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310220131.6A
Other languages
English (en)
Other versions
CN103514890B (zh
Inventor
M·W·科温顿
D·V·季米特洛夫
宋电
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of CN103514890A publication Critical patent/CN103514890A/zh
Application granted granted Critical
Publication of CN103514890B publication Critical patent/CN103514890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/20Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier
    • G11B21/21Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier with provision for maintaining desired spacing of head from record carrier, e.g. fluid-dynamic spacing, slider
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • G11B5/3932Magnetic biasing films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1193Magnetic recording head with interlaminar component [e.g., adhesion layer, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种装置总地涉及具有位于空气承载表面(ABS)上的磁性自由层的磁性叠层。该磁性自由层在各实施例中可通过偏置结构偏置至预定磁化,该偏置结构耦合至磁性自由层并位于ABS远端。

Description

具有位于空气承载表面远端的偏置结构的磁性元件
发明内容
磁性元件可被构造为具有位于空气承载表面(ABS)上的磁性自由层的磁性叠层。各实施例可通过与磁性自由层耦合并位于ABS远端的偏置结构使磁性自由层偏移至预定的磁化。 
附图说明
图1是能够用于本文各实施例中的示例性数据存储设备的框图表示。 
图2示出能在图1的数据存储设备中使用的示例性磁性元件的框图表示。 
图3示出根据本发明的各个实施例构造和操作的磁性传感器。 
图4总地示出在各实施例中能使不想要的磁通转向的磁屏蔽。 
图5给出能被用于图1的数据存储设备中的磁性传感器。 
图6示出能在图2各实施例中用作磁屏蔽的材料的结构特征。 
图7展示出根据本发明各实施例的示例磁性传感器配置。 
图8给出根据本发明的各实施例实现的磁性传感器制造例程的流程图。 
具体实施方式
对数据存储设备正不断强调提高的数据容量和更快的数据传输速度。提供这种提高的数据存储性能的能力可对应于减小的数据存取元件尺寸,例如数据换能元件和数据介质磁道。然而,减小磁性元件的屏蔽-屏蔽间距可引发若干操作和结构问题,比如对诸如数据读取器宽度和长度的工艺和设计变量增加的敏感性。尽管比如三层磁性叠层之类的数据读取元件已朝向对设计和工艺变量更保守的敏感性方向发展,然而对于具有可靠的磁性和热稳定性以及设计和工艺敏感性的形状因数减小的磁性元件的发展仍然存在困难。因此,业内越来越需要发展形状因数减小的数据存取元件。 
形状因数减小的磁性元件当前面临的一些困难中的一个示例是,具有多个磁性自由层的三层磁性元件至少部分地由于缺乏使元件厚度增加的钉扎的磁性基准结构而具有减小的屏蔽-屏蔽间距,但可能容易受到稳定性以及对工艺和设计变量的不稳定敏感性的影响。 
三层磁性元件的各种配置可能在高于18nm的元件宽度上增加稳定性和敏感性问题。如今为止,将元件宽度减至低于18nm阈值可能引发一些难题,即提供足够的退磁能量以将三层元件的磁性自由层中的一个或多个带入到静止状态。这种退磁能量行为可能造成高的负元件不对称性,其中负磁场产生很大的响应而正磁场产生最小的响应。因此,业内一直特别强调控制退磁能量和元件不对称性的宽度小于18nm的元件。 
在提供这种磁性元件的努力中,磁性叠层可配置有位于空气承载表面(ABS)上并通过偏置结构偏置至预定磁化的磁性自由层。尽管不限于特定设计,但偏置结构可从ABS凹进并在ABS远端耦合至磁性自由层。偏置结构与磁性自由层在从ABS凹进的位置处进行耦合可维持减小的屏蔽-屏蔽间距,同时提供帮助使磁性叠层趋于静止状态的磁偏置。 
尽管利用偏置结构的磁性元件可用于无限数量的环境,然而图1总地示出数据存储设备100的一个实施例的框图表示。设备100可具有至少一控制器102,该控制器102与主机104、换能装置106和数据介质108通信以将数据编程至数据介质108和从数据介质108检索数据。作为示例,控制器102可控制主轴电机方面以使数据介质108旋转并同时将换能装置106定位在数据介质108的至少一个数据位部分上以将数据读取至主机104和从主机104写入。 
应当注意,控制器102、主机104、换能装置106和数据介质108能各自配置为多个不同的组件。例如,换能装置可以是一个或多个数据换能器(读/写头),它们各自由头万向(head gimbal)组件(HGA)支持并适配成在通过介质本身的旋转产生的空气承载上在数据介质108之上飞行。图2中给出换能装置的另一示例性配置,它给出了能用于图1的数据存储设备中的磁性元件120的一个实施例。 
如图所示,传感器可构造有设置在第一和第二磁屏蔽124、126之间 的磁性叠层122。磁性叠层122的结构不受限制并可以是具有磁响应的任何磁化方向的任意数量的层的层压。一种这样的结构具有被设置在各自直接附连于电极132的磁性自由层130之间的非磁性间隔层128(例如MgO),电极132可以是多种不同取向和材料,例如被覆层和籽晶层。 
磁性叠层122的结构具有无固定磁化的多个磁性自由层130被用作基准,偏置磁体134可与接触空气承载表面(ABS)136的部分相对地位于叠层122附近以在自由层130上施加磁偏置力而不增加屏蔽-屏蔽间距或影响自由层130的ABS侧的工作特性。也就是说,每个自由层130可通过高磁矫顽性偏置磁体134偏置至共同或不同的默认磁化,这些默认磁化允许横跨ABS136的数据位的准确感测。 
磁性元件120可通过在静止状态和激活状态之间剪切以沿Y轴感测屏蔽-屏蔽间距(SSS)中以及预定轨道宽度138中的数据位经过而配置成作为数据读取器工作。磁屏蔽124、126可适配成具有由过渡区144界定的变化厚度140、142,以阻断来自轨道138之外的磁通并同时提供屏蔽124、126之间更大的空间以允许偏置磁体134沿Y轴具有比磁性叠层122更宽的厚度146。变化厚度的磁屏蔽结构可进一步允许偏置磁体134通过非磁性材料更加绝缘,以减少从偏置磁体134至屏蔽124、126形成磁分路的机会。 
尤其在图2所示实施例中,每个磁屏蔽124、126配置有在ABS近端的第一厚度140和在ABS远端的第二厚度142。第一和第二厚度140、142可通过一个或多个过渡区144连接,该过渡区144可形成为无限数量的结构,例如连续曲线的且相对于X轴以预定θ°角线性倾斜,这能在磁性叠层122和屏蔽124、126之间提供不同形状的口袋。 
以各种厚度和形状的过渡区144调谐磁屏蔽124、126的能力可允许磁性叠层122具有增加的条带高度148,由此能够提供增加的磁稳定性和对工艺和设计变差减小的敏感性。然而,增加的条带高度148可能在设定自由层130中的默认静止磁化时降低偏置磁体134的效率,尤其在低于18nm的元件宽度下。 
因为这个和其它的原因,通过用偏置元件部分或完全地填充磁性叠层122和屏蔽124、126之间的区域,变化厚度磁屏蔽、长条带高度的磁性元 件结构在18nm元件宽度以下可具有的稳定性增加的静止磁性状态。图3A和3B示出根据各实施例配置有这种偏置元件的示例性磁性元件150的横截面图和俯视图。元件150具有磁性叠层152,该磁性叠层152由设置在磁性自由层156之间的非磁性间隔层154构成。磁性叠层152可包括或不包括电极层,该电极层将每个自由层156连接至相应的顶部和底部屏蔽158。 
更像图2的磁屏蔽124、126,每个屏蔽158被构造有过渡区160,该过渡区160界定ABS处的增加的屏蔽厚度和ABS远端的减小的厚度。过渡区160进一步界定屏蔽158和自由层156之间的斜切区,该斜切区部分或完全地由偏置元件162填充,该偏置元件162连续地接触至少屏蔽158、电极和自由层156。各实施例配置偏置元件162以直接和连续地接触自由层156在ABS远端的部分。偏置元件162相对于ABS的这种“凹进”位置可提供自由层156的高效偏置而不增加磁性元件150的屏蔽-屏蔽间距。 
偏置元件162可构造成无限数量的结构,具有不同的材料、层数和磁性质。在图3A所示的实施例中,偏置元件162由单层材料构成,该单层材料具有增加和减小的厚度164、166以适应将偏置磁体168放置在磁性叠层152位于ABS远端的后部的附近但与之隔开。 
偏置磁体168和耦合至每个自由层156的偏置元件162的结合通过提供磁通的接触和非接触感应以对每个自由层156设置静止默认磁化(尤其在减小的磁性元件150形状因数下)而允许自由层156的可靠偏置。偏置元件162和自由层156的接触结构允许这些组件的各向异性被调节以提供容易在自由层156中感应出预定静止默认磁化的磁矩。也就是说,偏置元件162和自由层156各自被调谐至预定的各向异性,这些预定的各向异性产生有益于将自由层磁化引向预定静止方向的磁矩。 
对自由层156和偏置元件162的调谐不需要或限制各组件的各向异性性质至同一配置。例如,偏置元件162可以是以与自由层156不同的方式沉积的不同材料。关键在于使偏置元件162和自由层156的结构彼此互补以高效和可靠地达成自由层156中的预定静止磁化。 
对自由层156和偏置元件162的调谐可为磁性叠层152提供充分的偏置并且在没有偏置磁体168存在的情况下也可使用。在这种情形下,一个 或两个偏置元件162可具有向ABS远端增加的厚度以延伸至磁性叠层152的后部附近。诸偏置元件160可单独或全体地以数种不同方式配置,以调谐施加于这些自由层156上的偏置的方向和强度。 
图3B示出一种示例偏置元件162配置,它是从图3A中的A-A横截面观察到的。如图所示,偏置元件162凹进以使其不接触ABS并以大致半圆形状从磁性叠层152的一个侧面围绕叠层152的后部连续地延伸至相对的侧面。尽管不限于曲线形状,但以连续曲线侧壁配置偏置元件162可使磁性叠层152的侧面上的偏置元件162的尺寸最大化而不增加屏蔽158或磁性元件150的尺寸。应当注意,偏置磁体168在图3B中表示为虚线以解说偏置元件162如何能够连续地延伸以围住磁体168的整个面积范围。 
图4给出一示例性磁性元件170的横截面示图,其示出如何如能够调谐偏置元件172、174以提供将磁性叠层178的自由层176设定至预定静止磁性状态的预定磁矩的多个实施例。如所能理解的那样,图4的偏置元件172、174以不同方式在磁性元件170中配置。在各实施例中使用这种结构来向各自由层174提供不同的磁性质。 
对于偏置元件172,绝缘材料180将倾斜籽晶层182与底部屏蔽184和电极层隔开。倾斜籽晶层182可通过例如喷溅的倾斜沉积技术来构造,该技术以倾斜角度沉积籽晶材料以产生高的单轴各向异性和预定纹理。产生具有倾斜沉积的这种各向异性和纹理的能力提供调谐旋钮,它可被调整以提供对沉积在其上的铁磁层186的磁性质的精确调谐并更一般地作为整体调谐偏置元件172。一示例性实施例可沉积具有粗纹理的倾斜籽晶层182,该粗纹理有助于产生可经历或不经历桔皮耦合的高各向异性铁磁层186。 
以一种不同方式但仍然提供经调谐的磁性质,偏置元件174被配置成交替出现的铁磁层188和非磁性层190的层压,铁磁层188和非磁性层190通过绝缘层194各自与顶部屏蔽192的电极层和过渡区隔开。可各自地调整铁磁层188和非磁性层190的数目、厚度和材料组成以改变偏置元件174的磁性质以及这些磁性质与自由层176相互作用的方式。因此,磁性元件170可配置有偏置元件172、174,偏置元件172、174以不同方式配置以提供诸磁矩,这些磁矩将各自由层176有效地诱导至静止磁性状态,这些静 止磁性状态依赖于磁性叠层178预定的剪切操作是相同或不同的。 
图5示出根据各实施例构造以提供不同配置的第一和第二偏置元件202、204的另一示例性磁性元件200的横截面表示,该第一和第二偏置元件202、204各自耦合至第一和第二自由层206、208位于ABS远端的部分。如图所示,第一偏置元件202具有连续地沿顶部屏蔽212和电极层延伸的绝缘层210。高矫顽性磁性层——诸如永磁体(PM)——向与第一自由层206接触的铁磁层214提供预先设定的磁化。 
偏置元件204与偏置元件202类似具有沿底部屏蔽218连续的绝缘层216,但另一方面配置有反铁磁层220,这些反铁磁层220向与第二自由层208接触的铁磁层222提供预先设定的磁化。高矫顽性和反铁磁性钉扎的使用一般地示出偏置元件202、204可取以提供精确的预先确定的磁性质以及与自由层206、208相互作用的庞大行列的调谐能力中的一些。 
应当特别指出,磁性元件可配有偏置元件,这些偏置元件被配置为相同或不同的层压,每种层压被唯一地调谐以向各自由层提供预定的磁矩和交换耦合。例如,与同一磁性叠层的不同自由层接触的偏置元件可通过一倾斜籽晶层构造,该倾斜籽晶层与诸如图4的偏置元件172的铁磁层接触,但被调谐以提供不同的磁性质以在各自由层中诱导出不同的静态磁化状态。 
图6和图7各自绘出根据各实施例与配置有至少一个经调谐偏置元件的磁性元件相关的工作数据。图6用曲线表示作为偏置元件和磁性叠层自由层的集合体内的各向异性的函数的不对称百分比和振幅。实线230、232对应于针对不同的各向异性的不对称百分比并示出800emu/cc磁饱和(如实线230所示)和1500emu/cc磁饱和(如箭头232所示)如何提供能被调谐以适应大量不同的磁性工作性质的宽范围的不对称性,这些磁性工作性质可随着磁性叠层形状因数的减小而减小。 
如前所述,偏置元件的各向异性可单独地被调谐或与自由层的各向异性一并被调谐,实线230、232还示出通过调谐自由层和偏置元件的各向异性(例如用倾斜沉积)能达到多好的敏感性和多接近零的各向异性。虚线240、242示出当不对称性最接近零时回读信号的振幅是最大的。这种操作符合自 由层与外部磁场中的自由层的磁化的最大旋转相关的经调谐静止磁性状态。 
图7用图形表示在磁性元件的各实施例中可用于取得近零不对称的交换钉扎能量。实线250示出将诸如图5的层220的反铁磁层用作偏置元件层压的一部分如何在偏置元件层压的反铁磁层和铁磁层之间以大约0.7尔格/厘米2的交换能量产生800-1000emu/cc范围内的低自由层磁性饱和。 
图8给出根据各实施例执行以制造以预定偏置磁化调谐的磁性元件的磁性元件制造例程260的示例性流程图。起先,例程260在步骤262设计一个或多个磁屏蔽以适应至少一个偏置元件的结构。步骤262可设计至少一个屏蔽以使其具有一过渡区,该过渡区界定ABS远端屏蔽厚度的减小。然后通过根据由步骤262中得出的设计具有或不具有过渡区和变化厚度的底部屏蔽的沉积和后续处理在步骤264中应用步骤262中所选的设计。 
随着底部屏蔽成形,判决266随后确定磁性元件的磁性叠层部分如何偏置至预定的静止磁化。判决266可预期使用与磁性叠层的自由层直接接触或分离的一个或多个偏置元件。如果在判决266中选择将后偏置磁体构筑在底部屏蔽上,则步骤268以变化的厚度形成和处理偏置元件以适应后偏置磁体的围长,例如图3A和图3B的后偏置磁体168的尺寸和位置。 
在步骤268中将偏置元件作为单层材料或多种材料的层压沉积导致对直接形成的偏置元件是在磁性叠层顶部还是底部的评估。如果偏置元件接触底部屏蔽,则例程260进至步骤270,其中后偏置元件邻接于在步骤272构造的磁性叠层但与之分隔开。尽管不作为限制,但步骤272相继地沉积多个层以形成磁性叠层,例如具有双自由层但没有固定的磁性基准层的三层叠层。 
在一些实施例中,磁性叠层和后偏置磁体的至少一个层在步骤272被同时沉积并之后被处理——例如通过形成一隔离沟——以将叠层和后磁性组件隔开。然而,如果从判决266得知偏置配置中不包括后磁体,则步骤274根据哪个偏置元件被沉积而在底部磁体或磁性叠层顶上沉积偏置元件单层或叠层。 
也就是说,在判决266中选择的偏置配置可具有与在步骤272沉积的 磁性叠层的顶部和底部自由层接触的偏置元件,并根据在步骤268或274沉积的偏置元件的位置,例程260要么前进以在步骤272沉积磁性叠层要么在步骤276形成具有变化厚度的顶部屏蔽。例如,例程260可构造具有单个偏置元件层压(例如图4和图5的层压172、174、202和204)、具有后偏置磁体的磁性元件,或者磁性元件可具有偏置元件,该偏置元件在磁性层压相对两侧上耦合至自由层,具有或不具有通过例程260的步骤制造出的后偏置磁体。 
可以理解,多种偏置配置可通过经调谐的磁性质从例程260构造出,然而例程260不仅限于图8中提供的步骤和判决,因为可增加、省去和修改任何数量的步骤和判定以适应精确调谐的磁性元件的制造。 
本公开中描述的磁性元件的各实施例的偏置组件的配置和材料特性允许对形状因数减小的数据存储设备增加的数据访问性能。变化的屏蔽厚度与具有用与磁性叠层的自由层互补的各向异性调谐的各向异性的偏置元件的结合使用提供预定的磁矩,该磁矩与自由层至磁性状态的有效和可靠的回归相符。此外,在偏置元件和自由层中利用经调谐的各向异性允许低于18nm的磁性元件的可靠操作,这与更小的数据访问元件的不断增长的业界需求相符。 
将理解,尽管在先前描述中连同各实施例的结构和功能的细节一起阐述了本公开的各实施例的许多特性和配置,但是此详细描述仅仅是示例性的,并且可以在细节上作出修改,尤其在由表达所附权利要求的术语的宽泛的一般含义所指示的尽可能范围内在当前技术的原理内对部件的结果和布置的诸方面作出修改。例如,在不偏离本公开的精神和范围的情况下,特定元件可以随着特定应用而变化。 

Claims (20)

1.一种包括磁性叠层的装置,所述磁性层压具有位于空气承载表面(ABS)上并通过偏置结构偏置至预定磁化的磁性自由层,所述偏置结构与所述磁性自由层耦合并位于所述ABS的远端。
2.如权利要求1所述的装置,其特征在于,所述偏置结构包括交替的磁性层和非磁性层的层压。
3.如权利要求2所述的装置,其特征在于,每个磁性层是铁磁材料并且一个磁性层与所述自由层接触。
4.如权利要求2所述的装置,其特征在于,绝缘层将所述磁性和非磁性层与磁屏蔽的过渡表面隔开。
5.如权利要求1所述的装置,其特征在于,所述偏置结构位于磁性屏蔽在所述磁性叠层附近的过渡区内,所述过渡区界定在ABS远端的厚度的减小。
6.如权利要求1所述的装置,其特征在于,所述偏置结构包括构造以预定粗糙度的籽晶层和与所述自由层接触的铁磁层的层压。
7.如权利要求6所述的装置,其特征在于,所述预定粗糙度是通过倾斜溅射沉积来形成的。
8.如权利要求6所述的装置,其特征在于,所述预定粗糙度为所述铁磁层提供增加的平面内各向异性。
9.如权利要求1所述的装置,其特征在于,所述偏置结构包括具有固定磁化方向的钉扎层和与所述自由层接触的铁磁层的层压。
10.如权利要求9所述的装置,其特征在于,所述钉扎层是反铁磁材料。
11.如权利要求9所述的装置,其特征在于,所述钉扎层是永磁体。
12.如权利要求1所述的装置,其特征在于,所述偏置结构是具有不同条纹高度的层的层压。
13.如权利要求1所述的装置,其特征在于,所述偏置结构与所述自由层接触的一部分具有偏置的平面内各向异性,所述偏置的平面内各项异性与所述自由层的叠层平面内各向异性互补以产生预定的磁矩。
14.一种包含磁性叠层的磁性元件,所述磁性叠层具有第一和第二磁性自由层,每个所述磁性自由层位于空气承载表面(ABS)上并通过相应的第一和第二偏置结构被偏置至预定的磁化,每个偏置结构分别与所述第一和第二磁性自由层耦合并位于所述ABS的远端。
15.如权利要求14所述的磁性元件,其特征在于,所述第一和第二偏置结构偏置结构各自位于ABS上的磁性叠层的相对两侧上的顶部磁屏蔽和底部磁屏蔽的过渡区,所述过渡区各自界定在所述ABS远端的磁屏蔽厚度的减小。
16.如权利要求14所述的磁性元件,其特征在于,所述第一和第二偏置结构被配置为具有不同层材料的层压。
17.如权利要求14所述的磁性元件,其特征在于,所述第一和第二偏置结构被配置为具有共同层材料的层压。
18.一种包括磁性叠层的传感器,所述磁性叠层具有磁性自由层,所述磁性自由层位于空气承载表面(ABS)上并通过偏置结构和后偏置磁体同时被偏置至预定的磁化,所述偏置结构和后偏置磁体各自从ABS凹进,所述偏置结构在所述ABS远端耦合至所述磁性自由层,所述后偏置磁体在所述ABS远端与所述磁体叠层隔开。
19.如权利要求18所述的传感器,其特征在于,所述第一和第二偏置结构各自具有在ABS远端减小的变化厚度。
20.如权利要求18所述的传感器,其特征在于,所述后偏置磁体具有大于所述磁体叠层的叠层厚度的偏置厚度。
CN201310220131.6A 2012-06-29 2013-06-04 具有位于空气承载表面远端的偏置结构的磁性元件 Active CN103514890B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/538,990 2012-06-29
US13/538,990 US8837092B2 (en) 2012-06-29 2012-06-29 Magnetic element with biasing structure distal the air bearing surface

Publications (2)

Publication Number Publication Date
CN103514890A true CN103514890A (zh) 2014-01-15
CN103514890B CN103514890B (zh) 2017-08-15

Family

ID=48325413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310220131.6A Active CN103514890B (zh) 2012-06-29 2013-06-04 具有位于空气承载表面远端的偏置结构的磁性元件

Country Status (5)

Country Link
US (2) US8837092B2 (zh)
EP (1) EP2680267A3 (zh)
JP (1) JP5714057B2 (zh)
KR (1) KR101496141B1 (zh)
CN (1) CN103514890B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400738B2 (en) * 2011-04-25 2013-03-19 Seagate Technology Llc Magnetic element with dual magnetic moments
US8896971B2 (en) * 2012-08-21 2014-11-25 Seagate Technology Llc Aligned magnetic insulating feature
JP5697708B2 (ja) * 2013-04-01 2015-04-08 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ、磁気記録再生装置及び磁気抵抗効果素子の製造方法
US9508366B2 (en) 2013-08-23 2016-11-29 Seagate Technology Llc Reader structure
US9318133B2 (en) * 2013-12-23 2016-04-19 HGST Netherlands B.V. Recessed antiferromagnetic design with antiparallel pinned stitch layers for improved pinning field
US9076468B1 (en) * 2014-03-12 2015-07-07 HGST Netherlands B.V. Scissor magnetic read sensor with shape enhanced soft magnetic side shield for improved stability
US9230576B1 (en) * 2014-09-08 2016-01-05 HGST Netherlands B.V. Scissor reader with side shield decoupled from bias material
WO2016079085A1 (en) * 2014-11-17 2016-05-26 Imec Vzw A vcma multiple gate magnetic memory element and a method of operating such a memory element
US9653102B1 (en) * 2014-12-19 2017-05-16 Seagate Technology Llc Data reader with pinned front shield
US9449621B1 (en) * 2015-03-26 2016-09-20 Western Digital (Fremont), Llc Dual free layer magnetic reader having a rear bias structure having a high aspect ratio
US9679589B2 (en) 2015-09-11 2017-06-13 Seagate Technology Llc Magnetoresistive sensor with enhanced uniaxial anisotropy
US9886974B2 (en) * 2015-10-30 2018-02-06 Seagate Technology Llc Read head free layer having front and rear portions biased at different levels
US11087785B1 (en) * 2020-06-29 2021-08-10 Western Digital Technologies, Inc. Effective rear hard bias for dual free layer read heads
US11532324B2 (en) * 2020-10-13 2022-12-20 Western Digital Technologies, Inc. Vertical junction to provide optimal transverse bias for dual free layer read heads
US11170808B1 (en) * 2021-01-14 2021-11-09 Western Digital Technologies, Inc. Dual free layer reader head with magnetic seed layer decoupled from shield

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838246A (zh) * 2005-02-28 2006-09-27 西加特技术有限责任公司 具有叠层内偏置的磁传感器
US8015694B2 (en) * 2007-12-18 2011-09-13 Hitachi Global Storage Technologies Netherlands B.V. Method for making a scissoring-type current-perpendicular-to-the-plane (CPP) magnetoresistive sensor
US20120134057A1 (en) * 2010-11-30 2012-05-31 Seagate Technology Llc Magnetic Element with Improved Stability

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576914A (en) 1994-11-14 1996-11-19 Read-Rite Corporation Compact read/write head having biased GMR element
US5515221A (en) 1994-12-30 1996-05-07 International Business Machines Corporation Magnetically stable shields for MR head
US5696656A (en) * 1996-09-06 1997-12-09 International Business Machines Corporation Highly sensitive orthogonal spin valve read head
US5818685A (en) 1997-05-05 1998-10-06 Read-Rite Corporation CIP GMR sensor coupled to biasing magnet with spacer therebetween
JP2000113416A (ja) 1998-10-01 2000-04-21 Fujitsu Ltd 磁気抵抗型ヘッド及びその製造方法
DE19983944T1 (de) 1999-04-14 2002-03-21 Seagate Technology Llc Hochempfindliche Spin-Valve-Köpfe mit einem selbstausgerichteten Demagnetisierungsfeld-Ausgleichselement
US6266218B1 (en) * 1999-10-28 2001-07-24 International Business Machines Corporation Magnetic sensors having antiferromagnetically exchange-coupled layers for longitudinal biasing
US6700760B1 (en) 2000-04-27 2004-03-02 Seagate Technology Llc Tunneling magnetoresistive head in current perpendicular to plane mode
JP3618654B2 (ja) 2000-09-11 2005-02-09 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置
CN1459094A (zh) 2000-09-19 2003-11-26 西加特技术有限责任公司 具有独立消磁场的大磁阻传感器
US6667862B2 (en) 2001-02-20 2003-12-23 Carnegie Mellon University Magnetoresistive read head having permanent magnet on top of magnetoresistive element
US6597546B2 (en) 2001-04-19 2003-07-22 International Business Machines Corporation Tunnel junction sensor with an antiferromagnetic (AFM) coupled flux guide
US7035062B1 (en) 2001-11-29 2006-04-25 Seagate Technology Llc Structure to achieve sensitivity and linear density in tunneling GMR heads using orthogonal magnetic alignments
US6847510B2 (en) * 2002-09-27 2005-01-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetic tunnel junction device with bottom free layer and improved underlayer
JP3895281B2 (ja) 2003-02-18 2007-03-22 Tdk株式会社 パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US7719802B2 (en) * 2003-09-23 2010-05-18 Seagate Technology Llc Magnetic sensor with electrically defined active area dimensions
US7093347B2 (en) 2003-12-05 2006-08-22 Seagate Technology Llc Method of making a current-perpendicular to the plane (CPP) magnetoresistive (MR) sensor
US7236333B2 (en) 2003-12-11 2007-06-26 Seagate Technology Llc Domain wall free shields of MR sensors
US7414816B2 (en) 2004-05-28 2008-08-19 Hitachi Global Storage Technologies Netherlands B.V. Planar magnetic thin film head
JP4377777B2 (ja) 2004-08-31 2009-12-02 株式会社東芝 磁気ヘッド、ヘッドサスペンションアッセンブリ、および磁気再生装置
US7333304B2 (en) 2004-11-04 2008-02-19 Hitachi Global Storage Technologies Netherlands B.V. CPP sensor having hard bias stabilization placed at back edge of the stripe
US7467459B2 (en) 2005-04-18 2008-12-23 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing a current in plane magnetoresistive sensor having a contiguous hard bias layer located at back edge of stripe height
US7369374B2 (en) 2005-04-18 2008-05-06 Hitachi Global Storage Technologies Netherlands B.V. Current in plane magnetoresistive sensor having a contiguous hard bias layer located at back edge of stripe height
JP2007005417A (ja) 2005-06-22 2007-01-11 Alps Electric Co Ltd 磁気検出素子及びその製造方法
US8068317B2 (en) * 2005-07-22 2011-11-29 Hitachi Global Storage Technologies Netherlands B.V. Magnetic tunnel transistor with high magnetocurrent
US7446984B2 (en) * 2005-12-14 2008-11-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetic random access memory (MRAM) having increased reference layer anisotropy through ion beam etch of magnetic layers
US7606007B2 (en) 2006-02-17 2009-10-20 Hitachi Global Storage Technologies Netherlands B.V. Shield stabilization for magnetoresistive sensors
US7616411B2 (en) * 2006-03-28 2009-11-10 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane (CPP) magnetoresistive sensor having a flux guide structure and synthetic free layer
US7580230B2 (en) * 2006-10-24 2009-08-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having shape enhanced pinning, a flux guide structure and damage free virtual edges
JP2008299995A (ja) * 2007-06-01 2008-12-11 Sharp Corp 磁気再生素子
US7916429B2 (en) 2007-07-30 2011-03-29 Tdk Corporation Magnetic field detecting element having thin stack with a plurality of free layers and thick bias magnetic layer
US7869165B2 (en) 2007-07-30 2011-01-11 Tdk Corporation Magnetic field detecting element having stack with a plurality of free layers and side shield layers
US7961440B2 (en) * 2007-09-27 2011-06-14 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane magnetoresistive sensor with reduced read gap
US7894166B2 (en) * 2007-10-25 2011-02-22 Tdk Corporation CPP GMR device with ferromagnetic layer split in depth direction
US8149546B2 (en) 2007-10-26 2012-04-03 Tdk Corporation Magnetic field detecting element including tri-layer stack with stepped portion
US8310792B2 (en) * 2007-11-15 2012-11-13 Tdk Corporation Magneto-resistive element for a magneto-resistive device and method of manufacturing thereof
US20090168241A1 (en) 2007-12-26 2009-07-02 Masafumi Mochizuki Magnetic disk drive
US7876534B2 (en) 2008-01-15 2011-01-25 Tdk Corporation Magneto-resistive effect device of the CPP type, and magnetic disk system
JP2009259354A (ja) 2008-04-18 2009-11-05 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド及びその製造方法
US8514524B2 (en) 2008-05-09 2013-08-20 Headway Technologies, Inc. Stabilized shields for magnetic recording heads
US8098463B2 (en) 2008-07-30 2012-01-17 Hitachi Global Storage Technologies Netherlands, B.V. Current perpendicular to plane magnetoresistance read head design using a current confinement structure proximal to an air bearing surface
US8189303B2 (en) 2008-08-12 2012-05-29 Tdk Corporation Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers
US8563147B2 (en) * 2009-06-24 2013-10-22 Headway Technologies, Inc. Thin seeded Co/Ni multilayer film with perpendicular anisotropy for read head sensor stabilization
US8072800B2 (en) * 2009-09-15 2011-12-06 Grandis Inc. Magnetic element having perpendicular anisotropy with enhanced efficiency
US8179642B2 (en) * 2009-09-22 2012-05-15 Tdk Corporation Magnetoresistive effect element in CPP structure and magnetic disk device
US8659855B2 (en) * 2010-03-19 2014-02-25 Seagate Technology Llc Trilayer reader with current constraint at the ABS
US8289660B2 (en) * 2010-06-16 2012-10-16 Seagate Technology Llc Auxiliary magnetoresistive shield
US8144437B2 (en) 2010-06-28 2012-03-27 Tdk Corporation Magnetoresistive element and thin film magnetic head
US8514525B2 (en) * 2010-09-13 2013-08-20 HGST Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with reference layer integrated in magnetic shield
US8390963B2 (en) * 2011-04-25 2013-03-05 Seagate Technology Llc Trilayer reader with current constraint at the ABS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838246A (zh) * 2005-02-28 2006-09-27 西加特技术有限责任公司 具有叠层内偏置的磁传感器
US8015694B2 (en) * 2007-12-18 2011-09-13 Hitachi Global Storage Technologies Netherlands B.V. Method for making a scissoring-type current-perpendicular-to-the-plane (CPP) magnetoresistive sensor
US20120134057A1 (en) * 2010-11-30 2012-05-31 Seagate Technology Llc Magnetic Element with Improved Stability

Also Published As

Publication number Publication date
EP2680267A3 (en) 2014-01-08
JP2014010881A (ja) 2014-01-20
KR20140002531A (ko) 2014-01-08
KR101496141B1 (ko) 2015-02-27
EP2680267A2 (en) 2014-01-01
US8837092B2 (en) 2014-09-16
JP5714057B2 (ja) 2015-05-07
US20140004386A1 (en) 2014-01-02
US9001474B2 (en) 2015-04-07
US20140340792A1 (en) 2014-11-20
CN103514890B (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
CN103514890A (zh) 具有位于空气承载表面远端的偏置结构的磁性元件
CN102760445B (zh) 具有双磁矩的磁性元件
US9153258B2 (en) Scissor magnetic read sensor with novel multi-layer bias structure for uniform free layer biasing
US8780508B2 (en) Magnetic element with biased side shield lamination
KR101442092B1 (ko) 상부 쉴드 커플링된 측부 쉴드 라미네이션을 갖는 자기 엘리먼트
US9390735B1 (en) Data reader side shield with differing stripe heights
KR101467963B1 (ko) 에어 베어링 표면으로부터 분리되는 측면 실드 바이어싱 층
US9899045B2 (en) Data reader with pinned front shield
CN104143345A (zh) 具有下降边表面的数据读取器
KR101536634B1 (ko) 전류 집중 피쳐를 갖는 자기 엘리먼트
US8737023B2 (en) Magnetic reader with tuned anisotropy
US8922951B2 (en) Data storage device with variable anisotropy side shield
US9240200B2 (en) Magnetic element with crossed anisotropies
CN104821171B (zh) 具有窄轨道宽度和小读间隙的磁传感器
KR101618255B1 (ko) 수평 라미네이션 실드를 갖는 데이터 리더
US9165571B2 (en) Magnetic stack coupling buffer layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant