CN103489361A - 利用电控调变焦的双液体变焦透镜人眼系统及调焦方法 - Google Patents

利用电控调变焦的双液体变焦透镜人眼系统及调焦方法 Download PDF

Info

Publication number
CN103489361A
CN103489361A CN201310459816.6A CN201310459816A CN103489361A CN 103489361 A CN103489361 A CN 103489361A CN 201310459816 A CN201310459816 A CN 201310459816A CN 103489361 A CN103489361 A CN 103489361A
Authority
CN
China
Prior art keywords
liquid
lens
double
human
varifocal lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310459816.6A
Other languages
English (en)
Other versions
CN103489361B (zh
Inventor
彭润玲
李一凡
胡水兰
魏茂炜
陈家璧
庄松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201310459816.6A priority Critical patent/CN103489361B/zh
Publication of CN103489361A publication Critical patent/CN103489361A/zh
Application granted granted Critical
Publication of CN103489361B publication Critical patent/CN103489361B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prostheses (AREA)

Abstract

本发明公开了一种利用电控调变焦的双液体变焦透镜人眼系统及调焦方法,以Gullstrand-Le Grand人眼模型为基础,在前室与玻璃体之间置入基于双液体变焦透镜的人工晶体,所述双液体变焦透镜的人工晶体由第一玻璃透镜、第二玻璃透镜以及金属圆柱容器构成,金属圆柱容器内置绝缘液体和导电液体,金属圆柱管内壁涂覆一层绝缘介质,利用导电液体以及金属管外壁施加在绝缘液体上的外部电压调控和改变液体界面的曲率半径,从而改变双液体变焦透镜的焦距,得到个性化人眼的可调节范围。本发明具有结构简单、实施方便、可调范围宽等特点,为设计人眼最佳光学结构,提高人眼屈光系统的视觉质量提供帮助。

Description

利用电控调变焦的双液体变焦透镜人眼系统及调焦方法
技术领域
本发明涉及一种人眼光学模型,具体涉及一种利用电控调焦的双液体变焦透镜人眼系统及调焦方法,用于视光学和眼科技术领域。
背景技术
眼睛是人体最重要的感觉器官之一,也是人类获取外界信息的主要工具。人眼是一个有多个界面的复杂光学系统,其主要成分由外向里为:角膜、房水、晶状体和玻璃体,从角膜到眼底视网膜前的每一界面都是该复合光学系统的组成部分。但有些人由于先天或有病、受伤等原因导致眼睛失明,给生活带来不便,给人生带来痛苦。因此人眼模型研究在光学成像、生物医学等领域具有重要意义。
对人眼模型研究的一般方法是对人眼各光学常数的大量实测结果取平均值作为人眼的光学常数,设定各折射面面型和折射率。人类历史上最早的人眼模型是由Listing在1851年提出的近轴眼模型,自此以后,人眼模型的研究成为光学和眼科学领域的热门课题。
近些年,结合光学测试在眼视光学领域应用的最新成果,基于生理解剖学数据,通过研究每一个界面和内部介质的光学特性,建立的人眼模型,可在术前通过收集患者眼睛的数据,通过建立人眼光学模型,进行模拟分析,选择术前方案、预测术后效果等等。所以,人眼光学模型在视光学和眼科领域都有着重要的应用价值。
个性化人眼系统中的人工晶体通常包括传统的单焦点人工晶体,多焦点人工晶体和可调节人工晶体。传统的单焦人工晶体虽然能够帮助患者达到复明手术的目的,但其使患者术后丧失调节力,患者需依赖眼镜满足近距离工作需求。多焦点人工晶体是近年来人工晶体设计方面的一大进展,它仍为一个光学透镜,同时可产生两个或多个焦点,明显降低了白内障患者术后的戴镜率,但因其同时提供多个视网膜图像,造成图像质量下降;同时视网膜成像的对比度低、分辨力差、相邻色相混等缺点限制了其应用。可调节人工晶体通过对患者植入带襻人工晶体,在缩瞳药毛果芸香碱与散瞳药环喷脱脂的刺激下,在睫状肌收缩时产生位移调节。不同于多焦点人工晶体的假性调节,可调节人工晶体产生调节力的生理基础是睫状肌收缩使人工晶体的光学部在视轴方向产生前移,从而焦点向前漂移,但这是一种单焦晶体,严格说是一种假调节,所以其调节的范围是有限的
发明内容
本发明公开了一种利用电控调变焦的双液体变焦透镜人眼系统及调焦方法,目的在于克服现有单焦点人工晶体存在的:患者术后丧失调节力,需依赖眼镜满足近距离工作;多焦点人工晶体存在图像质量下降;可调节人工晶体存在调节范围有限等弊端。本发明以Gullstrand-Le Grand人眼模型的角膜特征参数及眼内各部分轴向间距数据为基础,在其中置入双液体变焦透镜替代晶状体,并利用电控调变焦,从而进一步构建个性化人眼模型。通过CodeV软件的优化功能,设计人眼最佳光学结构,提高人眼屈光系统的光学质量和视觉功能。
本发明技术方案是这样实现的:
一种利用电控调变焦的双液体变焦透镜人眼系统,由角膜、前室、双液体变焦透镜的人工晶体以及玻璃体构成;其特点是:在前室b与玻璃体g之间置入基于双液体变焦透镜的人工晶体,所述双液体变焦透镜的人工晶体由第一玻璃透镜、第二玻璃透镜以及金属圆柱容器构成,所述的金属圆柱容器中由绝缘液体和导电液体形成双液体界面,所述的第一玻璃透镜与前室接触面为曲面,另一面为平面,第二玻璃透镜与玻璃体接触面为曲面,另一面为平面,所述的金属圆柱管内壁涂覆一层绝缘介质,利用导电液体以及金属管外壁施加在绝缘介质上的外部电压调控和改变液体界面的曲率半径,从而改变双液体变焦透镜的焦距,得到个性化人眼的可调节范围。
所述的外部电压调控获取的液体界面曲率半径的变化范围在(-∞,-5.667mm)和(3.778mm,+∞)之间。
利用电控调变焦的双液体变焦透镜人眼系统的调焦方法,以Gullstrand-Le Grand人眼模型的角膜特征参数及眼内各部分轴向间距数据为基础,具体步骤如下:
A)首先提取Gullstrand-Le Grand人眼模型中角膜特征参数和眼内各部分轴向间距数据在光学设计软件Code V中构建个性化人眼模型;
B)在所构建的个性化人眼模型中的前室与玻璃体之间置入基于双液体变焦透镜的人工晶体;
C)以构建的人眼模型为基础,在双液体变焦透镜中引入第一玻璃透镜曲面和第二玻璃透镜曲面,优化基于双液体变焦透镜的人工晶体的结构以矫正球差;
D)利用优化后的人眼结构,对双液体变焦透镜采用电驱变焦,得到个性化人眼的可调节范围。
本发明具有结构简单、实施方便、可调范围宽等特点,以Gullstrand-Le Grand人眼模型的角膜特征参数及眼内各部分轴向间距数据为基础,在其中置入双液体变焦透镜替代晶状体,并利用电控调变焦,从而进一步构建个性化人眼模型。通过Code V软件的优化功能,设计人眼最佳光学结构,提高人眼屈光系统的光学质量和视觉功能。
附图说明
图1是本发明在Gullstrand-Le Grand人眼模型中置入双液体变焦透镜后的人眼模型结构示意图。
图2是由实施例得到的液体界面曲率半径与人眼系统的屈光度示意图。
1、角膜a的前表面,2、角膜a的后表面,3、第一玻璃透镜曲面,4、第一玻璃透镜平面,5、液体界面,6、第二玻璃透镜平面,7、第二玻璃透镜曲面,8、视网膜。
a、角膜,b、前室,c、第一玻璃透镜,d、绝缘液体,e、导电液体,f、第二玻璃透镜,g、玻璃体。
具体实施方式
以下结合附图和实施例对本发明进行详细说明,但本实施例不能用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
基于Gullstrand-Le Grand人眼模型和电湿效应双液体变焦透镜的个性化人眼系统,其结构示意图如图1所示,由角膜a、前室b、双液体变焦透镜的人工晶体以及玻璃体g构成;在前室b与玻璃体g之间置入基于双液体变焦透镜的人工晶体,所述双液体变焦透镜的人工晶体由第一玻璃透镜c、第二玻璃透镜f以及金属圆柱容器构成,所述的金属圆柱容器中由绝缘液体d和导电液体e形成双液体界面,所述的第一玻璃透镜c与前室b接触面为第一玻璃透镜曲面3,另一面为第一玻璃透镜平面4,第二玻璃透镜与玻璃体接触面为第二玻璃透镜曲面7,另一面为第二玻璃透镜平面6,所述的金属圆柱管内壁涂覆一层绝缘介质,利用导电液体e以及金属管外壁施加在绝缘介质上的外部电压调控和改变液体界面的曲率半径,从而改变双液体变焦透镜的焦距,得到个性化人眼的可调节范围。
从Gullstrand-Le Grand人眼模型中提取角膜特征参数和眼内各部分轴向间距数据,用基于双液体变焦透镜的人工晶体替代个性化人眼模型中前室与玻璃体之间的晶状体,在光学设计软件Code V中构建个性化人眼模型,具体步骤如下:
(1)从Gullstrand-Le Grand人眼模型中提取角膜特征参数和眼内各部分轴向间距数据如下:角膜a的前表面1半径为7.8mm,角膜a折射率为1.3771,角膜a的后表面2半径为6.5mm,角膜a的中心厚度为0.55mm,前室b体液的折射率为1.3374,玻璃体g的折射率为1.3360,视网膜8的曲率半径为-12.3mm,角膜a前表面1到视网膜8中心距离即整个人眼模型中心长度为24.2mm。
(2)在前室b与玻璃体g之间置入基于双液体变焦透镜的人工晶体,该人工晶体由第一玻璃透镜c和第二玻璃透镜f以及在内径为6mm的金属圆柱容器中形成液体界面5的绝缘液体d和导电液体e构成,其中第一玻璃透镜c和第二玻璃透镜f均有一面为平面即图1中的第一玻璃透镜平面4和第二玻璃透镜平面6,使用的材料均为BK7,两者密封的液体总长度为6mm,绝缘液体d和导电液体e的折射率分别为1.55和1.38,两者的体积相同。以上数据为个性化人眼模型的固定参量。而第一玻璃透镜c和第二玻璃透镜f均有一面为曲面即图1中的第一玻璃透镜曲面3和第二玻璃透镜曲面7,其曲率半径和中心间距均为可变参量,用来优化个性化人眼模型。
(3)由第一玻璃透镜c和第二玻璃透镜f、金属圆柱管内的绝缘液体d以及导电液体e所构成的双液体变焦透镜中,金属圆柱管内壁涂覆一层绝缘介质,通过导电液体以及金属管外壁施加在绝缘介质上的外部电压可以有效的改变液体界面5的曲率半径,从而改变双液体变焦透镜的焦距。实验中通过控制外部电压可以获取的液体界面曲率半径的变化范围在(-∞,-5.667mm)和(3.778mm,+∞)之间。通过双液体变焦透镜中几何参数的关系,可以计算出每一个液体界面曲率半径所对应的光学间距,即图1中第一玻璃透镜平面4和液体界面5、液体界面5和第二玻璃透镜平面6之间的中心间距。
(4)把以上获取的参数放入光学设计软件Code V中进行仿真,构建的基于Gullstrand-LeGrand人眼模型和电湿效应双液体变焦透镜的个性化人眼系统如图1所示。
图2给出了双液体变焦透镜在外加电压的作用下液体界面在(-∞,-5.667mm)和(3.778mm,+∞)之间变化时对应的物距范围。从图2可知在对双液体变焦透镜电驱变焦的作用下可获得该模型眼的聚焦范围为110.7mm到无穷远,用屈光度表示就是约9D的调焦范围,这与20岁的正常人眼10D的调焦范围比较接近。
(5)此时整个系统的球差较大,通过运用Code V的优化功能对第一玻璃透镜曲面3和第二玻璃透镜曲面7进行优化,优化后的模型人眼系统球差值明显减小,比优化之前的三阶球差值绝对值小了两个数量级。在人工晶体中引入非球面结构,成功减小了系统球差。
本发明成功的构建和优化了一种基于Gullstrand-Le Grand人眼模型和电湿效应双液体变焦透镜的个性化人眼系统。

Claims (3)

1.一种利用电控调变焦的双液体变焦透镜人眼系统,由角膜、前室、双液体变焦透镜的人工晶体以及玻璃体构成;其特征在于:在前室与玻璃体之间置入基于双液体变焦透镜的人工晶体,所述双液体变焦透镜的人工晶体由第一玻璃透镜、第二玻璃透镜以及金属圆柱容器构成,所述的金属圆柱容器中由绝缘液体和导电液体形成双液体界面,所述的第一玻璃透镜与前室接触面为曲面,另一面为平面,第二玻璃透镜与玻璃体接触面为曲面,另一面为平面,所述的金属圆柱管内壁涂覆一层绝缘介质,利用导电液体以及金属管外壁施加在绝缘介质上的外部电压调控和改变液体界面的曲率半径,从而改变双液体变焦透镜的焦距,得到个性化人眼的可调节范围。
2.根据权利要求1所述的利用电控调变焦的双液体变焦透镜人眼系统,其特征在于:所述的外部电压调控获取的液体界面曲率半径的变化范围在(-∞,-5.667mm)和(3.778mm,+∞)之间。
3.利用电控调变焦的双液体变焦透镜人眼系统的调焦方法,以Gullstrand-Le Grand人眼模型的角膜特征参数及眼内各部分轴向间距数据为基础,其特征在于具体步骤如下:
A)首先提取Gullstrand-Le Grand人眼模型中角膜特征参数和眼内各部分轴向间距数据在光学设计软件Code V中构建个性化人眼模型;
B)在所构建的个性化人眼模型中的前室与玻璃体之间置入基于双液体变焦透镜的人工晶体;
C)以构建的人眼模型为基础,在双液体变焦透镜中引入第一玻璃透镜曲面和第二玻璃透镜曲面,优化基于双液体变焦透镜的人工晶体的结构以矫正球差;
D)利用优化后的人眼结构,对双液体变焦透镜采用电驱变焦,得到个性化人眼的可调节范围。
CN201310459816.6A 2013-09-24 2013-09-24 利用电控调变焦的双液体变焦透镜人眼系统及调焦方法 Expired - Fee Related CN103489361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310459816.6A CN103489361B (zh) 2013-09-24 2013-09-24 利用电控调变焦的双液体变焦透镜人眼系统及调焦方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310459816.6A CN103489361B (zh) 2013-09-24 2013-09-24 利用电控调变焦的双液体变焦透镜人眼系统及调焦方法

Publications (2)

Publication Number Publication Date
CN103489361A true CN103489361A (zh) 2014-01-01
CN103489361B CN103489361B (zh) 2016-09-14

Family

ID=49829552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310459816.6A Expired - Fee Related CN103489361B (zh) 2013-09-24 2013-09-24 利用电控调变焦的双液体变焦透镜人眼系统及调焦方法

Country Status (1)

Country Link
CN (1) CN103489361B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116541A (zh) * 2015-07-01 2015-12-02 南京邮电大学 基于三液体透镜结构模拟人眼晶状体的非球面分析方法
CN105223635A (zh) * 2015-10-21 2016-01-06 苏州大学 一种利用非均匀薄膜设计和制作非球面液体透镜的方法
CN110072431A (zh) * 2016-12-17 2019-07-30 诺华股份有限公司 使用多焦点角膜曲率测量法确定眼睛表面轮廓

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073758A (ja) * 1996-06-07 1998-03-17 Olympus Optical Co Ltd 結像光学系
KR20100030594A (ko) * 2008-09-09 2010-03-18 유나이티드 라디안트 테크놀로지 코퍼레이션. 이중층 액정 렌즈 및 이를 제조하기 위한 방법
CN102156348A (zh) * 2011-03-31 2011-08-17 上海理工大学 一种模拟人眼变焦的双液体变焦透镜光学成像系统及成像方法
CN202033490U (zh) * 2011-04-12 2011-11-09 上海理工大学 液体变焦透镜的密封结构
US20120176530A1 (en) * 2008-09-11 2012-07-12 Omnivision Technologies, Inc. Electrically-Controlled, Variable Focal Length Liquid-Based Optical Imaging Apparatus and Method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073758A (ja) * 1996-06-07 1998-03-17 Olympus Optical Co Ltd 結像光学系
KR20100030594A (ko) * 2008-09-09 2010-03-18 유나이티드 라디안트 테크놀로지 코퍼레이션. 이중층 액정 렌즈 및 이를 제조하기 위한 방법
US20120176530A1 (en) * 2008-09-11 2012-07-12 Omnivision Technologies, Inc. Electrically-Controlled, Variable Focal Length Liquid-Based Optical Imaging Apparatus and Method
CN102156348A (zh) * 2011-03-31 2011-08-17 上海理工大学 一种模拟人眼变焦的双液体变焦透镜光学成像系统及成像方法
CN202033490U (zh) * 2011-04-12 2011-11-09 上海理工大学 液体变焦透镜的密封结构

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116541A (zh) * 2015-07-01 2015-12-02 南京邮电大学 基于三液体透镜结构模拟人眼晶状体的非球面分析方法
CN105116541B (zh) * 2015-07-01 2017-09-26 南京邮电大学 基于三液体透镜结构模拟人眼晶状体的非球面分析方法
CN105223635A (zh) * 2015-10-21 2016-01-06 苏州大学 一种利用非均匀薄膜设计和制作非球面液体透镜的方法
CN105223635B (zh) * 2015-10-21 2017-03-22 苏州大学 一种利用非均匀薄膜设计和制作非球面液体透镜的方法
CN110072431A (zh) * 2016-12-17 2019-07-30 诺华股份有限公司 使用多焦点角膜曲率测量法确定眼睛表面轮廓
CN110072431B (zh) * 2016-12-17 2023-12-12 爱尔康公司 使用多焦点角膜曲率测量法确定眼睛表面轮廓

Also Published As

Publication number Publication date
CN103489361B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
AU2015262976B2 (en) Ophthalmic devices, system and methods that improve peripheral vision
US10133056B2 (en) Flexible fluidic mirror and hybrid system
AU2012298703B2 (en) Ophthalmic devices, systems, and methods for optimizing peripheral vision
US9931200B2 (en) Ophthalmic devices, systems, and methods for optimizing peripheral vision
EP3113723B1 (en) Refocusable lens system with mutually-applanating internal surfaces
CN110179581B (zh) 基于张力性调节机制防控近视及屈光不正的矫正方法
JP6265984B2 (ja) 眼科インプラント用の広角光学系
CN104797215B (zh) 用于减少眼内透镜中的光效应的边缘设计
CN103489361B (zh) 利用电控调变焦的双液体变焦透镜人眼系统及调焦方法
CN114010371A (zh) 一种后房型有晶体眼渐进多焦点人工晶状体
CN107260123B (zh) 一种手机外接眼底成像镜头及眼底图像获取方法
WO2013109315A2 (en) Refractive-diffractive switchable optical element
CN205620626U (zh) 一种智能眼镜
US11583387B2 (en) Ophthalmic assembly for implantation in an anterior chamber of an eye of a patient and method for accommodating the vision of the patient
CN112099244A (zh) 基于视网膜成像检测的自适应变焦眼镜
CN102028449B (zh) 可进行分层成像的人眼视网膜成像系统及方法
CN109116580A (zh) 一种三明治式谐衍射Alvarez变焦智能眼镜
EP3910409A1 (en) Method to design and manufacture an intraocular lens
CN209417457U (zh) 三明治式谐衍射Alvarez变焦智能眼镜
CN105572901A (zh) 矫正近视和老视的非球面衍射型隐形眼镜
US10076241B2 (en) Vision system responsive to a presence of a wearable ophthalmic element
US10076409B2 (en) Vision system responsive to a presence of a wearable ophthalmic element
RU2820775C1 (ru) Интраокулярная линза с расширенной глубиной фокуса
CN218037515U (zh) 一种用于纠正近视的激光物镜
CN209450888U (zh) 一种屈光度调节器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914

Termination date: 20180924