CN103457455B - 将dc/dc转换器扩展成为多相dc/dc转换器 - Google Patents

将dc/dc转换器扩展成为多相dc/dc转换器 Download PDF

Info

Publication number
CN103457455B
CN103457455B CN201310210560.5A CN201310210560A CN103457455B CN 103457455 B CN103457455 B CN 103457455B CN 201310210560 A CN201310210560 A CN 201310210560A CN 103457455 B CN103457455 B CN 103457455B
Authority
CN
China
Prior art keywords
drive singal
power stage
output
signal
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310210560.5A
Other languages
English (en)
Other versions
CN103457455A (zh
Inventor
阿尔伯特·M.·吴
苏晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog equipment International Co.,Ltd.
Original Assignee
Linear Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linear Technology LLC filed Critical Linear Technology LLC
Publication of CN103457455A publication Critical patent/CN103457455A/zh
Application granted granted Critical
Publication of CN103457455B publication Critical patent/CN103457455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

能够构造用于如多相DC/DC那样工作的DC/DC转换器。控制器产生主驱动信号以控制主功率开关产生希望水平的输出DC信号。多个次功率级被联接在输入节点和输出节点之间用于产生输出DC信号。多个次功率级中的每个具有至少一个次功率开关,该至少一个功率开关响应于输入DC信号用于产生输出DC信号。扩展器系统将DC/DC转换器构造成以多相DC/DC转换模式工作。扩展器系统响应于主驱动信号用于产生多个从驱动信号,所述多个从驱动信号被供给到多个次功率级用于控制次功率开关。从驱动信号具有关于主驱动信号并且关于从驱动信号彼此偏移的相位。

Description

将DC/DC转换器扩展成为多相DC/DC转换器
技术领域
本公开涉及电源系统,并且更特别地涉及用于将DC/DC转换器扩展成为多相DC/DC转换器的技术。
背景技术
常规的多相DC/DC转换器可以采用并联布置在输入和负载之间的两个或更多个相同的交错的单相DC/DC转换器。n“相”中的每个在开关期间以相同的间隔被接通,从而多相系统的有效输出-纹波频率为n×f,其中f是每个转换器的工作频率,而n是转换器中的相位数。与单相系统相比,这提供了更好的动态特性和弱的解耦能力。另外,多相转换器系统能够如同n倍快的开关那样快速响应于负载变化,而不会增大开关损耗。因此,能够响应于快速变化的负载,诸如现代微处理器。
但是,常规的多相转换器系统是不经济的,因为它们要求带有全部关联元件的多个单相转换器。
对于具有高相位数的系统,难以在电路板上对每个单相转换器的引脚布线。另外,系统中的各个单相转换器将影响其它转换器的性能,例如,各个转换器能够拾取到来自其它转换器的噪声。
对于升压-降压多相系统,开关的控制方案是非常复杂的,使得难以使全部的相以协调的方式执行。例如,一个单相转换器能够以升压-降压峰模式工作,而其它转换器能够以升压-降压谷模式工作。
因此,存在对于新的技术的需求:该技术将允许DC/DC转换器如多相DC/DC转换器那样工作,而没有常规多相系统的缺陷。
发明内容
根据一个方面,本公开提出了一种能够构造成为多相DC/DC转换器的单个DC/DC转换器。所述DC/DC转换器具有联接在输入节点和输出节点之间的主功率级,并且包括至少一个主功率开关,该至少一个主功率开关响应于输入DC信号以产生输出DC信号。该转换器还包括控制器,所述控制器用于产生主驱动信号以控制主功率开关以产生希望水平的输出DC信号。
多个次功率级被设置在输入节点和输出节点之间用于产生所述输出DC信号。多个次功率级中的每一个具有至少一个次功率开关,所述至少一个次功率开关响应于输入DC信号以产生输出DC信号。
扩展器系统被提供用于将DC/DC转换器构造成在多相DC/DC转换模式下工作。扩展器系统响应于主驱动信号以产生多个从驱动信号,所述多个从驱动信号分别被供给到多个次功率级以控制从功率开关。
扩展器系统可以产生关于主驱动信号并且关于从驱动信号彼此具有偏移的相位的从驱动信号。从驱动信号的相位可以基于DC/DC转换器的相位数目来确定。
扩展器系统可以响应于主功率级和次功率级中的输出电流的感测值用于变化次功率开关的占空比,以在DC/DC转换器的全部功率级中提供相等的输出电流值。
在示例性实施方式中,扩展器系统可以包括相位发生器,所述相位发生器响应于主驱动信号以产生用于每个次功率级的至少一个基本从驱动信号。由相位发生器产生的用于特别的次功率级的基本从驱动信号可以关于主驱动信号相位偏移,偏移量由特别的次功率级确定。
扩展器系统可以进一步包括电流感应电路,所述电流感应电路构造用于将主功率级中的输出电流的均值与每个次功率级中的输出电流的均值比较。
另外,扩展器系统可以包括占空比调节电路,所述占空比调节电路由电流感应电路控制以基于基本从驱动信号产生用于每个次功率级的至少一个被调节的从驱动信号。用于特别的次功率级的被调节的从驱动信号被产生以控制在各自的所述次功率级中的次功率开关的占空比,以使各自的次功率级中的输出电流的均值等于主功率级中的输出电流的均值。
主功率开关和次功率开关中的每个均可以包括MOSFET晶体管。主驱动信号可以被产生以控制主功率级中的MOSFET晶体管的栅极,并且多个从驱动信号可以被产生以控制所述次功率级中的各个MOSFET晶体管的栅极。
根据本公开的另一方面,执行如下步骤以将DC/DC转换器构造成在多相DC/DC转换模式下工作:
-产生主驱动信号,以控制DC/DC转换器的联接在DC/DC转换器的输入节点和输出节点之间的主功率级中的主开关,以及
-基于主驱动信号,产生多个从驱动信号以分别控制联接在DC/DC转换器的输入节点和输出节点之间的多个次功率级中的次开关,从驱动信号具有关于主驱动信号并且关于从驱动信号彼此偏移的相位。
从驱动信号的相位可以基于DC/DC转换模式中的希望的相位数目来确定。
所述方法可以进一步包括步骤:感测主功率级和次功率级中的输出电流值,并且基于所感测的值变化次开关的占空比。次开关的占空比可以被变化以在DC/DC转换器的全部功率级中的提供相等的输出电流值。
根据又一方面,本公开提出了用于使得DC/DC转换器如多相DC/DC转换器那样工作的扩展器系统。该扩展器系统包括相位发生器,所述相位发生器被供给由DC/DC转换器的控制器产生的主驱动信号,所述主驱动信号被产生用于控制联接在DC/DC控制器的输入节点和输出节点之间的主功率级中的主功率开关,
相位发生器可以构造用于产生至少一个基本从驱动信号用于控制联接在DC/DC转换器的所述输入节点和输出节点之间的多个次功率级中的每一个中的次功率开关,所产生的用于特别的次功率级的基本从驱动信号可以关于主驱动信号相位偏移,偏移量由特别的次功率级确定。
该扩展器系统可以进一步包括:电流感应电路,所述电流感应电路构造用于将主功率级中的输出电流的均值与每个次功率级中的输出电流的均值比较;和占空比调节电路,所述占空比调节电路由电流感应电路控制以基于基本从驱动信号产生用于每个次功率级的至少一个被调节的从驱动信号。用于特别的次功率级的该被调节的从驱动信号可以被产生以控制相应的次功率级中的次功率开关的占空比,以使各自的次功率级中的输出电流的均值等于主功率级中的输出电流的均值。
例如,占空比调节电路可以构造用于使基本从驱动信号中的脉冲的轨迹(trail)偏移。
主功率开关和次功率开关中的每个均可以包括MOSFET晶体管。主驱动信号可以被产生以控制主功率级中的MOSFET晶体管的栅极,并且多个从驱动信号可以被产生以控制次功率级中的各个MOSFET晶体管的栅极。
从下面的详细说明中,本领域技术人员将易于显而易见本公开的其它优点和方面,其中本公开的实施方式仅以旨在实践本公开的最佳模式举例示出和说明,如将要描述的,本公开适用于其他的和不同的实施方式,并且其多个细节能够在各种显而易见的方面进行修改,所有这些均不偏离本公开的精神。因此,附图和说明书在本质上被认为是说明性的,而不是限制性的。
附图说明
当结合附图阅读时,能够最佳地理解本公开的实施方式的以下详细说明,其中特征不必按比例绘制,而是被绘制成最佳地示出了相关的特征,其中:
图1示出了本公开的DC/DC转换器的示例性实施方式。
图2示出了图1中示出了的主功率级18或者次功率级22的简化示例性实施方式。
图3示出了图1中所示的DC/DC扩展器的示例性实施方式。
图4A-4F是示出本公开的DC/DC转换器中的各种信号的示例性波形的时序图。
具体实施方式
将基于DC/DC同步降压(buck)转换器构造使用示例性实施方式提出本公开。但是,显然的,本公开的构思可应用于任意的DC/DC转换器,包括降压、升压以及升压-降压转换器。
图1示出了本公开的DC/DC转换器10的示例性实施方式。该转换器包括具有单相DC/DC转换器布置的主开关12。DC/DC转换器10进一步包括次(secondary)开关部分14,该次开关部分14用于将DC/DC转换器10构造成如多相DC/DC转换器那样工作。例如,主开关12和次开关部分14可以基于同一半导体芯片来提供,即主开关12和次开关部分14的元件可以整合到或者附接到同一半导体芯片。
主开关12可以包括DC/DC控制器16和主功率级(primarypowerstage)18,主功率级18具有至少一个主功率开关,诸如MOSFET,该主功率开关受来自DC/DC控制器16的栅极驱动信号控制,以产生关于供给到功率级18的输入DC电压Vin具有希望值的输出DC电压Vout。下面将更详细地讨论功率开关18的示例性布置。
次开关部分14可以包括DC/DC扩展器20和一个或更多个次功率级22。虽然图1示出了多个次功率级1至N,本领域技术人员将认识到本公开的构思还可应用于单个次功率级。次功率级1至N中的每个具有至少一个次功率开关,诸如MOSFET,该次功率开关受DC/DC扩展器20产生的相应栅极驱动信号1至N的控制,以响应于输入DC电压Vin形成输出DC电压Vout。每个次功率级22可以具有与主功率级18相类似的布置。
如下面更详细地讨论的,DC/DC扩展器20接收来自主功率级18的电流感应信号和各个次功率级1至N的电流感应信号1至N。电流感应信号提供了各个功率级的输出处的电流值的指示。另外,DC/DC扩展器20接收来自DC/DC控制器16的时序感应信号。该时序感应信号可以基于DC/DC控制器16产生的栅极驱动信号来提供。
基于时刻(timing)感应信号和电流感应信号,DC/DC扩展器20产生一个或更多个栅极驱动信号1至N,该栅极驱动信号被提供到各个次功率级1至N以控制各个次功率级。如下所述,栅极驱动信号1至N形成为允许DC/DC转换器10如具有(N+1)相的多相DC/DC转换器那样工作。
例如,如图2所示,主功率级18和次功率级22中的每个均可以具有提供用以产生比输入电压Vin低的输出电压Vout的同步降压布置。在图2中的简化示例性实施方式中,主功率级和次功率级中的每个均可以具有被供给输入DC电压Vin的输入电压节点Vin和用于产生输出DC电压Vout的输出电压节点Vout。每个功率级包括联接在输入电压节点Vin和接地端子之间的上MOSFET30和下MOSFET32、联接到MOSFETs30和32的输出的感应元件L、布置用于确定在功率级的输出处的电流值的感应电阻器Rs以及联接到输出电压端子Vout的输出电容器元件Cout。MOSFETs30和32可以是N型MOSFETs。替代地,P型MOSFETs可用作MOSFETs30和32。另外,MOSFETs30和32之一可以是P型MOSFET,而另一MOSFET可以是N型MOSFET。
MOSFETs30和32的栅极由各自地经由输入控制节点INA和INB提供的栅极驱动信号控制。输入控制节点INA和INB可以被供给关于彼此异相180°的一对栅极驱动信号。在主功率级18中,该对栅极驱动信号由DC/DC控制器16产生。在每个次功率级22中,各对栅极驱动信号由DC/DC扩展器20产生。
图2示出了其中在电感元件L的输出处使用差分电流感应感测感应电阻器Rs两端的电流的示例。经由功率级的一对电流感应输出,来自主功率级18和次功率级22中每个的电流感应信号被提供到DC/DC扩展器20的各自的电流感应输入。如本领域技术人员将认识到的,本公开的构思能够使用任意电流感测技术实施。
图3示出了DC/DC扩展器20的简化示例性实施方式,DC/DC扩展器20包括时序感应和控制电路电路34以及电流感应电路36。时序感应和控制电路34包括具有非反相输入的比较器38和40,其被供给由DC/DC控制器16形成的栅极驱动信号。比较器38接收形成用于驱动主功率级18中的上MOSFET30的栅极的栅极驱动信号,而比较器40接收形成用于驱动主功率级18中的下MOSFET32的栅极的栅极驱动信号。比较器38的反相输入可以联接到主功率级18中的MOSFETs30和32之间的节点,而比较器40的反相输入可以联接到主功率级18的接地节点。
比较器38和40的输出形成一对主驱动信号,该一对主驱动信号由扩展器20使用,以产生多对从驱动信号,该多对从驱动信号用于驱动各个次功率级22中的成对MOSFETs。比较器38的输出处的信号在图4A的时序图中示出。该信号表示在主功率级18的上MOSFET30的栅极处感测的信号。如图4B中的时序图所示,比较器40的输出处的、表示在主功率级18中的下MOSFET32的栅极处的感测信号的信号可以关于比较器38的输出处的信号异相180°。
在比较器38和40的输出处形成的主驱动信号被分别供给到相位发生器42的输入INA和INB。相位发生器42的模式输入可用以将扩展器20编程为允许扩展器20将DC/DC转换器10设置为在具有希望相位数的多相模式下工作。特别地,相位发生器42的模式输入可以被供给标示用于DC/DC转换器10的工作的希望相位数的信号。
基于模式输入处的信号,相位发生器42使主驱动信号的相位移相,以提供从驱动信号的适当相位延迟,用于使DC/DC转换器10以具有希望相位数的多相模式工作。特别地,相位发生器42可以包括多个移相通道1至N,所述移相通道1至N具有共用对的输入INA和INB以及与各个次功率级1至N相对应的多对输出OUT1A、OUT1B至OUTNA和OUTNB。在每个通道1至N中,相位发生器42使输入INA、INB处的主驱动信号移相以在各个对的输出OUT1A、OUT1B至OUTNA和OUTNB处产生具有关于主驱动信号的相位延迟适当量的相位的成对基本从驱动信号。
图4C示出了通过使输入INA处的主驱动信号移相在相位发生器42的输出OUT1A处产生的基本从驱动信号。图4D示出了通过使输入INB处的主驱动信号移相在相位发生器42的输出OUT1B处产生的基本从驱动信号。基本从驱动信号和各自的主驱动信号之间的相位延迟由希望的相位数确定。
例如,为将DC/DC转换器10构造成为四相转换器,相位发生器42将三个额外相位添加到与主开关12对应的相位。在该情况中,移相通道1的输出OUT1A和OUT1B处的每个基本从驱动信号的相位可以关于相应的主驱动信号的相位延迟90°。移相通道2的输出OUT2A和OUT2B处的每个基本从驱动信号的相位可以关于各自的主驱动信号的相位延迟180°。最后,移相通道3的输出OUT3A和OUT3B处的每个基本从驱动信号的相位可以关于各自的主驱动信号的相位延迟270°。这将导致在DC/DC转换器10的输入和输出处的最高水平的纹波消减。
来自输出OUT1A、OUT1B至OUTNA、OUTNB的基本从驱动信号被分别供给到修改次功率级22中的次功率开关的占空比的占空比调节电路44的输入IN1A、IN1B至INNA、INNB,以在DC/DC转换器的包括主功率级18和全部次功率级20的全部功率级中提供相等的输出电流值。开关的占空比确定开关处于ON的时间相对于包括开关处于ON和OFF的时间段的整个开关周期的比例。
占空比调节电路44具有与各自的次功率级1至N相对应的多个控制输入1至N。占空比调节电路44的控制输入被供给由从主功率级18和全部的次功率级22接收电流感应信号的电流感应电路36所产生的各个控制信号。电流感应电路36包括主运算放大器46和分别对应于多个次功率级22的多个次运算放大器48。主运算放大器46感应流过主功率级18中的感应电阻器Rs的电流。每个次运算放大器48感测流过各个次功率级22中的感应电阻器Rs的电流。
由联接到电容器C的电阻器R组成的平均RC电路设置在每个运算放大器46和48的输出处,以确定从各个主或次功率级感测的电流的均值。经由该平均RC电路,运算放大器46的输出被联接到分别与多个次功率级22相对应的多个运算放大器50的非反相输入。每个运算放大器50的反相输入经由所述平均RC电路联接到相应的运算放大器48的输出。每个运算放大器50将从主功率级18感测的电流的均值与从相应的从功率级22感测的电流的均值比较。当从任一次功率级22感测的平均电流值不同于从主功率级18感测的平均电流值时,相应的运算放大器50产生标示平均电流值之间的差的输出信号,以变化相应次功率级22中的功率开关的占空比,直到各个次功率级22中的平均电流值变得等于主功率级18中的平均电流值。
运算放大器50的输出信号被馈送到可包括与多个次功率级1至N相对应的多个占空比调节通道1至N的占空比调节电路44的相应控制输入1至N。每个占空比调节通道1至N由各自的控制输入1至N控制,以调节各自的次功率级1至N中的MOSFETs30和32中每个的占空比,以使各个次功率级1至N中的输出电流的均值等于主功率级18中的输出电流的均值。
如果特别的次功率级22中的平均电流值小于主功率级18中的平均电流值,则各个占空比调节通道使得该次功率级中的上MOSFET30的占空比增大,并且分别减小该次功率级中的下MOSFET32的占空比,直到次功率级22中的平均电流值达到主功率级18中的平均电流值。类似地,如果特别的次功率级22中的平均电流值高于主功率级18中的平均电流值,则各个占空比调节通道减小该次功率级中的上MOSFET30的占空比并且分别增大该次功率级中的下MOSFET32的占空比,直到次功率级22中的平均电流值下降到主功率级18中的平均电流值。
为提供占空比调节,每个占空比调节通道1至N可以使占空比调节电路44的各个对的输入IN1A、IN1B至INNA、INNB处的基本从驱动信号的末边沿(trailedge)偏移,以在占空比调节电路44的各个对的输出OUT1A、OUT1B至OUTNA、OUTNB处产生被调节的从驱动信号。来自输出OUT1A至OUTNA的被调节的从驱动信号被分别供给到次功率级1至N的上MOSFETs30的栅极,以利用被调节的占空比控制各个上MOSFETs30的开关。来自输出OUT1B至OUTNB的被调节的从驱动信号被分别供给到次功率级1至N的下MOSFETs32的栅极,以利用被调节的占空比控制各个下MOSFETs32的开关。
图4E示出了在占空比调节通道1的输出OUT1A处形成的用于供给到次功率级1的上MOSFET30的被调节的从驱动信号的示例。在该示例中,被调节的从驱动信号的末边沿被关于图4C中的基本从驱动信号偏移,以减小上MOSFET30的占空比。图4E中的波形还示出了在无占空比调节的波形。
图4F示出了在占空比调节通道1的输出OUT1B处形成的用于供给到次功率级1的下MOSFET32的被调节的从驱动信号的示例。在该示例中,被调节的从驱动信号的末边沿被关于图4D中的基本从驱动信号偏移,以增加下MOSFET32的占空比。图4F中的浅阴影区域示出了无占空比调节的波形。
前述说明例示并描述了本发明的方面。另外,本公开示出并说明了仅优选的实施方式,但如前所述,应理解,本发明能够以各种其它的组合、修改和环境来使用,并且能够在本文表述的发明构思的范围内根据上述教导和/或相关领域的技术或知识进行改变和修改。
前文所述的实施方式另外旨在解释实践本发明的已知最佳方式,并且允许本领域的其它技术人员以这样的或其它的实施方式以及利用本发明的具体应用或使用所要求的各种修改来利用本发明。因此,本说明书并不意图将本发明局限于本文公开的形式。

Claims (4)

1.一种用于将转换器的输入节点处的输入DC信号转换成为所述转换器的输出节点处的输出DC信号的DC/DC转换器,包括:
主功率级,所述主功率级联接在所述输入节点和所述输出节点之间,并且具有至少一个主功率开关,所述至少一个主功率开关响应于所述输入DC信号以产生所述输出DC信号,
控制器,所述控制器用于产生主驱动信号以控制所述主功率开关来产生希望的水平的所述输出DC信号,
多个次功率级,所述次功率级联接在所述输入节点和所述输出节点之间用于产生所述输出DC信号,所述多个次功率级中的每一个具有至少一个次功率开关,所述至少一个次功率开关响应于所述输入DC信号以产生所述输出DC信号,和
扩展器系统,所述扩展器系统用于将所述DC/DC转换器构造成在多相DC/DC转换模式下工作,所述扩展器系统响应于所述主驱动信号以产生多个从驱动信号,所述多个从驱动信号分别被供给到所述多个次功率级用于控制次功率开关;
其中所述扩展器系统包括相位发生器,所述相位发生器响应于所述主驱动信号以产生用于每个次功率级的至少一个基本从驱动信号,由所述相位发生器产生的用于特别的次功率级的所述基本从驱动信号相对于所述主驱动信号相位偏移,偏移量由所述特别的次功率级确定;
其中所述扩展器系统进一步包括电流感应电路,所述电流感应电路构造用于将所述主功率级中的输出电流的均值与每个次功率级中的输出电流的均值比较;以及
其中所述扩展器系统进一步包括占空比调节电路,所述占空比调节电路由所述电流感应电路控制以基于所述基本从驱动信号产生用于每个次功率级的至少一个被调节的从驱动信号,用于特别的次功率级的所述被调节的从驱动信号,被产生以控制各自的所述次功率级中的所述次功率开关的占空比,以使各自的所述次功率级中的输出电流的均值等于所述主功率级中的输出电流的均值。
2.根据权利要求1所述的DC/DC转换器,其中所述扩展器系统构造成产生关于从驱动信号彼此具有偏移的相位的所述从驱动信号。
3.根据权利要求2所述的DC/DC转换器,其中所述从驱动信号的所述相位基于所述DC/DC转换器的相位数目来确定。
4.根据权利要求1所述的DC/DC转换器,其中所述主功率开关和次功率开关中的每个均包括MOSFET晶体管,所述主驱动信号被产生以控制所述主功率级中的MOSFET晶体管的栅极,并且所述多个从驱动信号被产生以控制所述次功率级中的各个MOSFET晶体管的栅极。
CN201310210560.5A 2012-05-30 2013-05-30 将dc/dc转换器扩展成为多相dc/dc转换器 Active CN103457455B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/483,693 US9077244B2 (en) 2012-05-30 2012-05-30 Expanding DC/DC converter into multiphase DC/DC converter
US13/483,693 2012-05-30

Publications (2)

Publication Number Publication Date
CN103457455A CN103457455A (zh) 2013-12-18
CN103457455B true CN103457455B (zh) 2016-04-06

Family

ID=49669413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310210560.5A Active CN103457455B (zh) 2012-05-30 2013-05-30 将dc/dc转换器扩展成为多相dc/dc转换器

Country Status (3)

Country Link
US (1) US9077244B2 (zh)
CN (1) CN103457455B (zh)
TW (1) TWI493856B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370373A (zh) * 2016-05-13 2017-11-21 英飞凌科技奥地利有限公司 用于半谐振电源转换器中的相位对准方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548714B2 (en) 2008-12-29 2017-01-17 Altera Corporation Power converter with a dynamically configurable controller and output filter
US8867295B2 (en) 2010-12-17 2014-10-21 Enpirion, Inc. Power converter for a memory module
TWI506959B (zh) * 2012-12-18 2015-11-01 Ind Tech Res Inst 調變方法以及應用該調變方法之控制裝置
KR101500206B1 (ko) * 2013-11-26 2015-03-06 현대자동차주식회사 2상 인터리브 컨버터 및 이의 제어 방법
KR101610469B1 (ko) * 2014-05-15 2016-04-07 현대자동차주식회사 다상 인터리브 컨버터 및 이의 제어 방법
KR101592744B1 (ko) * 2014-07-28 2016-02-15 현대자동차주식회사 다상 인터리브 컨버터의 전류 제어 방법 및 장치
US9509217B2 (en) * 2015-04-20 2016-11-29 Altera Corporation Asymmetric power flow controller for a power converter and method of operating the same
US9872346B2 (en) * 2015-05-15 2018-01-16 Cypress Semiconductor Corporation Phase controller apparatus and methods
US20170141684A1 (en) * 2015-11-18 2017-05-18 Intersil Americas LLC Method and System for DC-DC Voltage Converters
US10110127B2 (en) 2015-12-04 2018-10-23 Intersil Americas LLC Method and system for DC-DC voltage converters
US9785166B2 (en) 2015-12-14 2017-10-10 Intersil Americas LLC Method and system for DC-DC voltage converters
US10170986B2 (en) * 2016-06-22 2019-01-01 Dialog Semiconductor (Uk) Limited Hybrid buck
JP7128280B2 (ja) * 2017-08-31 2022-08-30 アクティブ-セミ(ビーブイアイ)・インコーポレーテッド 多相変換器システムおよび制御方法
US11075578B1 (en) * 2020-01-06 2021-07-27 Shenzhen GOODIX Technology Co., Ltd. Inductor current based mode control for converter circuit
US11294411B1 (en) * 2020-11-17 2022-04-05 Texas Instruments Incorporated Stackable multi-phase power stage controller with current matching

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662212A (zh) * 2008-07-18 2010-03-03 英特赛尔美国股份有限公司 主动下降均流
CN101741238A (zh) * 2008-11-05 2010-06-16 半导体元件工业有限责任公司 电流平衡电路及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462520B1 (en) * 2001-05-09 2002-10-08 Maxim Integrated Products, Inc. Differential output switching converter with ripple reduction
US6574124B2 (en) * 2001-09-13 2003-06-03 Netpower Technologies, Inc. Plural power converters with individual conditioned error signals shared on a current sharing bus
US7026798B2 (en) * 2003-10-27 2006-04-11 Intersil Americas Inc. Multi-channel driver interface circuit for increasing phase count in a multi-phase DC-DC converter
JP4347230B2 (ja) * 2005-01-19 2009-10-21 富士通マイクロエレクトロニクス株式会社 マルチフェーズdc−dcコンバータ
US7688607B2 (en) * 2005-09-30 2010-03-30 Volterra Semiconductor Corporation Voltage regulator with inductor banks
US7626372B2 (en) * 2007-10-04 2009-12-01 System General Corporation Control circuit for multi-phase, multi-channels PFC converter with variable switching frequency
US7944721B2 (en) 2008-03-24 2011-05-17 System General Corp. Switching control circuit for multi-channels and multi-phases power converter operated at continuous current mode
EP2415148B1 (en) 2009-04-01 2014-08-13 Telefonaktiebolaget LM Ericsson (publ) Current share configuration in a power converter system
US8385030B2 (en) * 2009-06-16 2013-02-26 Intersil Americas Inc. Component fault detection for use with a multi-phase DC-DC converter
US8278895B2 (en) 2009-12-24 2012-10-02 Linear Technology Corporation Efficiency measuring circuit for DC-DC converter which calculates internal resistance of switching inductor based on duty cycle
JP5420433B2 (ja) 2010-01-14 2014-02-19 ルネサスエレクトロニクス株式会社 半導体装置および電源装置
US20110187189A1 (en) 2010-02-02 2011-08-04 Intersil Americas Inc. System and method for controlling single inductor dual output dc/dc converters
US8558524B2 (en) * 2010-10-19 2013-10-15 International Rectifier Corporation Master/slave power supply switch driver circuitry
TWM417600U (en) 2011-07-19 2011-12-01 Richtek Technology Corp Multi-phase switching regulator and droop circuit therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662212A (zh) * 2008-07-18 2010-03-03 英特赛尔美国股份有限公司 主动下降均流
CN101741238A (zh) * 2008-11-05 2010-06-16 半导体元件工业有限责任公司 电流平衡电路及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370373A (zh) * 2016-05-13 2017-11-21 英飞凌科技奥地利有限公司 用于半谐振电源转换器中的相位对准方法和装置

Also Published As

Publication number Publication date
US20130320951A1 (en) 2013-12-05
US9077244B2 (en) 2015-07-07
TW201406028A (zh) 2014-02-01
CN103457455A (zh) 2013-12-18
TWI493856B (zh) 2015-07-21

Similar Documents

Publication Publication Date Title
CN103457455B (zh) 将dc/dc转换器扩展成为多相dc/dc转换器
US10498241B2 (en) Load transient detection method used in multi-phase converters
CN101039069B (zh) 非绝缘降压型dc-dc变压器
CN101753024B (zh) 用于改进调压器的瞬态响应的pwm时钟发生系统和方法
JP4926625B2 (ja) スイッチングレギュレータ及びそのスイッチングレギュレータを有する半導体装置
US20040041543A1 (en) Method and apparatus for auto-interleaving synchronization in a multiphase switching power converter
CN101542882A (zh) 开关稳压器及其控制方法
CN101944850B (zh) 升降压切换式电源电路与其控制电路与方法
JP5717680B2 (ja) Dc−dc変換器およびその制御回路
US10871810B2 (en) Power supply system with pulse mode operation
JP2014171351A (ja) 電源回路
JP5456495B2 (ja) 昇降圧型のスイッチング電源の制御回路、昇降圧型のスイッチング電源、及び昇降圧型のスイッチング電源の制御方法
US7317304B2 (en) Inductive load driving device
JP7249388B2 (ja) 多相スイッチモード電源
US20110133553A1 (en) System and method for delaying phase shift within a dc/dc converter
KR102394869B1 (ko) 부스트 dc/dc 컨버터
US20200136514A1 (en) System and Method for Balancing Current of Converter Phases
US20160294287A1 (en) Multiphase DC-To-DC Switching Power Converter with Leading Edge and Cross Channel Blanking
JP6677905B2 (ja) 異常検出装置及び電源装置
JP2006280062A (ja) スイッチングレギュレータを用いる半導体装置およびスイッチングレギュレータの制御方法
CN109309451A (zh) 多相切换式电源供应器、及其控制电路与控制方法
US9680387B2 (en) Switched mode power supply, base station, and method of operating a switched mode power supply
JP2015046985A (ja) 電力変換装置
TWI699954B (zh) 多相dc-dc電源轉換器及其驅動方法
TWI513153B (zh) 直流轉直流控制器及其控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: The United States of California Milpitas City

Patentee after: LINEAR TECHNOLOGY Corp.

Address before: The United States of California Milpitas City

Patentee before: Linear Technology Corp.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20210831

Address after: Limerick

Patentee after: Analog equipment International Co.,Ltd.

Address before: The United States of California Milpitas City

Patentee before: LINEAR TECHNOLOGY Corp.

TR01 Transfer of patent right