CN103454261A - 一种利用拉曼光谱定量测定纳米微粒的方法 - Google Patents

一种利用拉曼光谱定量测定纳米微粒的方法 Download PDF

Info

Publication number
CN103454261A
CN103454261A CN2013104236540A CN201310423654A CN103454261A CN 103454261 A CN103454261 A CN 103454261A CN 2013104236540 A CN2013104236540 A CN 2013104236540A CN 201310423654 A CN201310423654 A CN 201310423654A CN 103454261 A CN103454261 A CN 103454261A
Authority
CN
China
Prior art keywords
solution
concentration
quantum dots
sample
colloidal quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013104236540A
Other languages
English (en)
Other versions
CN103454261B (zh
Inventor
覃爱苗
吴秀兰
蒋丽
廖雷
余心亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201310423654.0A priority Critical patent/CN103454261B/zh
Publication of CN103454261A publication Critical patent/CN103454261A/zh
Application granted granted Critical
Publication of CN103454261B publication Critical patent/CN103454261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种利用拉曼光谱定量测定纳米微粒的方法。首先在水相中制备Ag2S胶体溶液,并在常温和冰冻条件下保存待用;其次,将Ag2S胶体溶液稀释到合适浓度并分别加入含有银胶、NaCl、罗丹明6G的基底中,配成不同浓度的溶液;最后将配置好的溶液以未加Ag2S样品的溶液为空白样,应用DXRsmart拉曼光谱仪,进行采样,收集样品峰,观察1508cm-1处的样品特征峰随浓度不同的变化。计算收集到样品峰强度与空白样品相对应的峰强度,然后用相对峰强度对浓度作图。本发明方法简便,灵敏度高,丰富了纳米颗粒的测定方法。

Description

一种利用拉曼光谱定量测定纳米微粒的方法
技术领域
本发明涉及一种利用拉曼光谱测定纳米微粒含量的方法。
背景技术
无机半导体纳米晶体,通常被称为胶体量子点。量子点以其具有不同于宏观材料的独特物理化学性能,引起了国内外研究者广泛的兴趣。目前,随着量子点不断地深入研究,基于量子点荧光增强或淬灭的原理应用于重金属阳离子、有机小分子和药物分子的检测等屡见报道。与利用金属阳离子对量子点的荧光猝灭来测定阳离子浓度的不同,本发明是基于表面增强拉曼散射(SERS)的活性表面荧光增强或淬灭的机制:荧光物质罗丹明6G(Rh6G)分子吸附在银胶表面并在波长1508cm-1处产生一个较强的SERS散射峰,当加入Ag2S量子点时,体系中SERS峰相对强度发生减弱,并随着Ag2S加入量的增加在一定范围内成线性减小的趋势,根据这一现象从而建立了一种拉曼光谱技术测量Ag2S量子点浓度的新方法。
发明内容
本发明的目的是提供一种利用拉曼光谱技术定量测定纳米粒子浓度的方法。
具体步骤为:
    (1)在水相体系中,用0.016-0.25g L-半胱氨酸修饰0.10-0.80mmolAgNO3,并用NaOH调节pH=9-12,再加入0.05-0.20mmolNa2S,最终获得棕红色的Ag2S胶体量子点,将Ag2S胶体量子点常温或冰冻保存。
(2)取步骤(1)所得Ag2S胶体量子点用二次蒸馏水稀释后得到0.3090×103ppb浓度的Ag2S胶体量子点溶液;以500uL浓度为19.9×103ppb银胶、100uL浓度为1mol/L的NaCl溶液和100uL浓度为5.23×10-5mol/L的罗丹明6G(Rh6G)溶液为基底,取一组容量瓶,用移液枪分别准确量取基底溶液于容量管中,再分别加入0-170uL稀释后的Ag2S胶体量子点溶液,定容到2mL,从而配成0-26.27ppb不同浓度的溶液。
(3)将步骤(2)配置好的溶液以未加Ag2S胶体量子点的溶液为空白样,应用DXR smart拉曼光谱仪,进行采样,收集样品峰,观察1508cm-1处的样品特征峰随浓度不同的变化;计算收集到样品峰强度与空白样品相对应的峰强度,然后用相对峰强度对浓度作图。
(4)在常温下或冰冻保存下,分别在2.01-5.10ppb 及1.64-10.91ppb范围内,表面增强拉曼散射(SERS)峰相对强度与Ag2S胶体溶液的浓度均呈线性关系,其中,常温下的相关系数为-0.9510,检测限为2.01ppb,而冰冻保存的相关系数为-0.9926,检测限为1.64ppb。
本发明方法简便,灵敏度高,丰富了纳米颗粒的测定方法。
附图说明
图1为本发明Ag2S胶体量子点合成装置示意图。
图2为本发明Ag2S胶体量子点的紫外可见吸收光谱图(a)和荧光光谱图(b)。
图3为本发明Ag2S胶体量子点常温和冰冻处理后的荧光光谱图。
图4为本发明含不同浓度Ag2S胶体量子点的基底溶液体系的拉曼光谱图;图中:a -0ppb;b -2.41ppb ;c -3.96ppb ;d -5.50ppb 。
图5为本发明实施例1中SERS峰相对强度与Ag2S胶体量子点浓度的线性关系图。
具体实施方法
实施例1:
(1)将0.1g的L-半胱氨酸(L-Cysteine,L-Cys)粒状固体置于圆底烧瓶中,加入100mL去离子水,常温下搅拌溶解,加入0.25mmol的AgNO3,并用NaOH调节pH=11,再加入0.10mmolNa2S,最终获得棕红色的Ag2S胶体量子点,放置冰箱中保存待用。
(2)取步骤(1)所得溶液用二次蒸馏水稀释后得到浓度为0.3090×103ppb的Ag2S胶体量子点溶液;以500uL浓度为19.9×103ppb银胶、100uL浓度为1mol/L的NaCl溶液和100uL浓度为5.23×10-5mol/L的Rh6G溶液为基底,取12个容量瓶,用移液枪分别准确量取基底溶液于容量管中,再分别加入浓度为0.3090×103ppb的Ag2S胶体量子点溶液0 uL、5.6 uL、10.6 uL、15.6 uL、20.6 uL、25.6 uL、30.6 uL、35.6 uL、50.6 uL、60.6 uL、70.6uL和80.6 uL定容到2mL,从而配成浓度为0-12.45ppb的Ag2S胶体量子点溶液体系。 
(3)将步骤(2)配置的浓度为0-12.45ppb的溶液并以未加Ag2S胶体量子点的溶液为空白样,应用DXR smart拉曼光谱仪,进行采样,收集样品峰,观察1508cm-1处的样品特征峰随浓度不同的变化。计算收集到样品的峰强度与空白样品相对应的峰强度,然后用相对峰强度对浓度作图。
(4)以不同浓度的Ag2S的拉曼谱图的相对峰高对浓度作图,发现在浓度为1.64-10.91ppb范围内,Ag2S胶体量子点的谱图的相对峰高对浓度均呈线性关系,相关系数R为-0.9926,最低检测限为1.64ppb。
实施例2:
(1)同实施例1中制备Ag2S胶体量子点,常温下保存待用。
(2)取步骤(1)所得溶液用二次蒸馏水稀释后得到浓度为0.3090×103ppb的Ag2S胶体量子点溶液;以500uL浓度为19.9×103ppb银胶、100uL浓度为1mol/L的NaCl溶液和100uL浓度为5.23×10-5mol/L的Rh6G溶液为基底,取10个容量瓶,用移液枪分别准确量取基底溶液于容量管中,再分别加入浓度为0.3090×103ppb的Ag2S胶体量子点溶液0uL、1uL、2uL、3uL 、8uL、13uL、18uL、23uL、28uL、33uL,定容到2mL,从而配成浓度为0-5.10ppb的Ag2S胶体量子点溶液体系。
(3)同实施例1步骤(3)。
(4)以溶液体系中不同浓度的Ag2S胶体量子点的拉曼谱图的相对峰高对浓度作图,发现在浓度为2.01-5.10ppb范围内,Ag2S的谱图的相对峰高对浓度均呈线性关系,相关系数R为-0.9510,最低检测限为2.01ppb。

Claims (2)

1.一种利用拉曼光谱定量测定纳米微粒的方法,其特征在于具体步骤为:
(1)在水相体系中,用0.016-0.25g L-半胱氨酸修饰0.10-0.80mmolAgNO3,并用NaOH调节pH=9-12,再加入0.05-0.20mmolNa2S,最终获得棕红色的Ag2S胶体量子点,将Ag2S胶体量子点常温或冰冻保存;
(2)取步骤(1)所得Ag2S胶体量子点用二次蒸馏水稀释后得到0.3090×103ppb浓度的Ag2S胶体量子点溶液;以500uL浓度为19.9×103ppb的银胶、100uL浓度为1mol/L的NaCl溶液和100uL浓度为5.23×10-5mol/L的罗丹明6G即Rh6G溶液为基底,取一组容量瓶,用移液枪分别准确量取基底溶液于容量管中,再分别加入0-170uL稀释后的Ag2S胶体量子点溶液,定容到2mL,从而配成0-26.27ppb不同浓度的Ag2S胶体量子点溶液;
(3)将步骤(2)配置好的溶液以未加Ag2S胶体量子点的溶液为空白样,应用DXR smart拉曼光谱仪,进行采样,收集样品峰,观察1508cm-1处的样品特征峰随浓度不同的变化;计算收集到样品峰强度与空白样品相对应的峰强度,然后用相对峰强度对浓度作图。
2.根据权利要求1所述的方法,其特征在于(4)在常温下或冰冻保存下,分别在2.01-5.10ppb 及1.64-10.91ppb范围内,表面增强拉曼散射即SERS峰相对强度与Ag2S胶体溶液的浓度均呈线性关系,其中,常温下的相关系数为-0.9510,检测限为2.01ppb,而冰冻保存的相关系数为-0.9926,检测限为1.64ppb。
CN201310423654.0A 2013-09-17 2013-09-17 一种利用拉曼光谱定量测定纳米微粒的方法 Active CN103454261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310423654.0A CN103454261B (zh) 2013-09-17 2013-09-17 一种利用拉曼光谱定量测定纳米微粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310423654.0A CN103454261B (zh) 2013-09-17 2013-09-17 一种利用拉曼光谱定量测定纳米微粒的方法

Publications (2)

Publication Number Publication Date
CN103454261A true CN103454261A (zh) 2013-12-18
CN103454261B CN103454261B (zh) 2015-09-23

Family

ID=49736868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310423654.0A Active CN103454261B (zh) 2013-09-17 2013-09-17 一种利用拉曼光谱定量测定纳米微粒的方法

Country Status (1)

Country Link
CN (1) CN103454261B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597024A (zh) * 2014-12-01 2015-05-06 中检国研(北京)科技有限公司 一种用于果蔬中百草枯现场快速检测的拉曼光谱法
CN109799201A (zh) * 2018-12-29 2019-05-24 芯视界(北京)科技有限公司 农产品农残快速检测方法以及检测用层叠体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343282A (ja) * 2005-06-10 2006-12-21 Riken Keiki Co Ltd 硫化水素検知材
CN102109467A (zh) * 2010-12-08 2011-06-29 中国科学院半导体研究所 定量检测痕量罗丹明6g的方法
CN102277157A (zh) * 2011-05-30 2011-12-14 中国科学院苏州纳米技术与纳米仿生研究所 近红外硫化银量子点、其制备方法及其应用
CN102735677A (zh) * 2012-07-13 2012-10-17 湖南大学 一种具有普适性的表面增强拉曼光谱定量分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343282A (ja) * 2005-06-10 2006-12-21 Riken Keiki Co Ltd 硫化水素検知材
CN102109467A (zh) * 2010-12-08 2011-06-29 中国科学院半导体研究所 定量检测痕量罗丹明6g的方法
CN102277157A (zh) * 2011-05-30 2011-12-14 中国科学院苏州纳米技术与纳米仿生研究所 近红外硫化银量子点、其制备方法及其应用
CN102735677A (zh) * 2012-07-13 2012-10-17 湖南大学 一种具有普适性的表面增强拉曼光谱定量分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李青青等: "粉末状多孔材料表面的快速超灵敏表面增强拉曼检测", 《光谱学与光谱分析》, vol. 32, no. 10, 31 October 2012 (2012-10-31), pages 211 - 212 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597024A (zh) * 2014-12-01 2015-05-06 中检国研(北京)科技有限公司 一种用于果蔬中百草枯现场快速检测的拉曼光谱法
CN109799201A (zh) * 2018-12-29 2019-05-24 芯视界(北京)科技有限公司 农产品农残快速检测方法以及检测用层叠体

Also Published As

Publication number Publication date
CN103454261B (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
Yu et al. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants
Zhu et al. Understanding the selective detection of Fe3+ based on graphene quantum dots as fluorescent probes: the K sp of a metal hydroxide-assisted mechanism
Kamran et al. Characterization of valeric acid using substrate of silver nanoparticles with SERS
Du et al. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange
Costas-Mora et al. In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection
Ali et al. Development of dual function polyamine-functionalized carbon dots derived from one step green synthesis for quantitation of Cu 2+ and S 2− ions in complicated matrices with high selectivity
Lu et al. Ratiometric phosphorescent probe for thallium in serum, water, and soil samples based on long-lived, spectrally resolved, Mn-doped ZnSe quantum dots and carbon dots
Jana et al. Boron precursor-dependent evolution of differently emitting carbon dots
Liu et al. Disposable paper-based analytical device for visual speciation analysis of Ag (I) and silver nanoparticles (AgNPs)
CN103398998B (zh) 一种用于汞离子检测的拉曼探针及其制备方法
Shrivas et al. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe
Zheng et al. Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array
Ming et al. One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water
CN103604800B (zh) 一种测定k25铬基高温合金中钛钒钨锰硅的分析方法
CN103196880B (zh) 氢化物发生-原子荧光光谱法测定铁矿石中砷含量的方法
Liu et al. Design of smartphone platform by ratiometric fluorescent for visual detection of silver ions
Ma et al. Highly sensitive SERS probe for mercury (II) using cyclodextrin-protected silver nanoparticles functionalized with methimazole
Ren et al. Rapid synthesis of highly fluorescent nitrogen-doped graphene quantum dots for effective detection of ferric ions and as fluorescent ink
Ji et al. Recent advances in surface‐enhanced Raman scattering‐based sensors for the detection of inorganic ions: Sensing mechanism and beyond
CN102565026A (zh) 一种铝锰铁中硅含量的测定方法
Sasikumar et al. Colorimetric and visual detection of cyanide ions based on the morphological transformation of gold nanobipyramids into gold nanoparticles
Zhuang et al. A highly sensitive SERS-based platform for Zn (II) detection in cellular media
Chen et al. A fluorescent and colorimetric probe of carbyne nanocrystals coated Au nanoparticles for selective and sensitive detection of ferrous ions
Zhang et al. Selective, sensitive and label-free detection of Fe 3+ ion in tap water using highly fluorescent graphene quantum dots
CN101131340B (zh) 等离子光谱法测铝合金成分时制备铝合金溶液样品的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20131218

Assignee: GUANGXI KE SUI ENVIRONMENTAL TECHNOLOGY Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045094

Denomination of invention: A Method for Quantitative Determination of Nanoparticles Using Raman Spectroscopy

Granted publication date: 20150923

License type: Common License

Record date: 20231101

Application publication date: 20131218

Assignee: Guilin Qianzhuo Environmental Testing Technology Service Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045092

Denomination of invention: A Method for Quantitative Determination of Nanoparticles Using Raman Spectroscopy

Granted publication date: 20150923

License type: Common License

Record date: 20231101

EE01 Entry into force of recordation of patent licensing contract