CN103441977B - 基于Anti-Gray映射的4D-QPSK星座设计方法 - Google Patents
基于Anti-Gray映射的4D-QPSK星座设计方法 Download PDFInfo
- Publication number
- CN103441977B CN103441977B CN201310413548.4A CN201310413548A CN103441977B CN 103441977 B CN103441977 B CN 103441977B CN 201310413548 A CN201310413548 A CN 201310413548A CN 103441977 B CN103441977 B CN 103441977B
- Authority
- CN
- China
- Prior art keywords
- qpsk
- constellation
- gray
- bit identification
- coordinates logo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000013461 design Methods 0.000 title claims abstract description 10
- 238000013507 mapping Methods 0.000 claims description 24
- 238000010276 construction Methods 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
本发明公开了一种基于Anti‑Gray映射的4D‑QPSK星座设计方法,包括以下步骤:步骤S1,基于Anti‑Gray映射的2D‑QPSK星座,按照最小欧氏距离的汉明距离大于等于2的原则,产生Anti‑Gray映射的3D‑QPSK星座;步骤S2,修正3D的比特标识为4D的比特标识,增加3D坐标标识的最高位构造4D的坐标标识;步骤S3,根据构造的4D比特标识和4D坐标标识,按照汉明距离为1的星座点其欧式距离最大的原则,构造4D‑QPSK超立方体星座;步骤S4,输出4D比特标识与Anti‑Gray映射的4D‑QPSK星座坐标标识间的对应关系。
Description
技术领域
本发明涉及数字通信系统,尤其涉及一种基于Anti-Gray映射的4D-QPSK星座设计方法。
背景技术
数字通信系统,特别是无线通信系统的根本任务是利用有限带宽提供数字信息的高速、高效的无误传输。调制技术是实现无线通信系统根本任务的有效方法和重要手段。对典型的数字通信系统,数字调制技术主要包括星座映射技术和载波调制技术。所谓星座映射,就是将携带数字信息的二进制比特流映射成适合信道传输的符号。星座映射包含两个要素,即星座图和星座点映射方式。星座图代表星座映射输出符号的所有取值组成的集合,其中,星座图的每个点对应输出符号的一种取值。星座点映射方式代表输入比特组到星座点的特定映射关系,通常每个星座点与一个比特或多个比特组成的比特组一一对应。
目前最为常见的一维星座图主要是PAM(Pulse Amplitude Modulation,脉冲幅度调制);最为常见的二维星座图主要是QAM(Quadrature Amplitude Modulation,正交幅度调制)、PSK(Phase Shift Keying,相移键控)及APSK(Amplitude-Phase Shift Keying,幅度相位键控)。基于二维星座图的典型映射方式有:首轮迭代性能最佳的格雷(Gray)映射;具有最大分集度的Anti-Gray映射;衰落信道下16QAM星座的MSP(Modified Set-Partitioning,最优修正分集)映射;最大化最小欧式平方重量的MSEW(Maximum SquaredEuclidean Weitht,最大欧式平方重量)映射等。
为了进一步提高数字通信系统的可靠性,调制映射技术的研究主要集中在两个方面:非规则星座调制和多维映射。但非规则星座调制给调制器的实现带来困难,因而更多学者致力于多维映射的研究。所谓多维(multi-dimension)映射,即是将一组比特映射到一个符号矢量,该符号矢量中的每个元素是一个二维(2-dimension,2D)的复数。通常的二维映射是由输入的连续m个比特映射为一个二维的复数,而多维映射是将m×N个连续比特映射为具有N个元素的符号矢量,通过增加欧式距离以提高性能。
Simoens等提出了多维映射的思想,并推导了最佳映射的设计准则,给出了BPSK以及QPSK的最佳映射;Tran N.H.以更高的接收复杂度为代价,提出一种新的关于QPSK的多维超立方体映射。然而,已有的4D-QPSK星座都是基于Gray映射构造,Gray映射的特点是相邻星座点的汉明距离为1,在AWGN信道中能获得最优的渐进性能。但在实际的无线通信环境中,由于多径衰落、多普勒效应的影响,使得信息传输更易出错。此时对于星座图设计来说,应使最近欧式距离的星座点的汉明距离最大,使汉明距离为1的比特组具有最大的欧式距离。
发明内容
为了克服现有技术中存在的问题,本发明构造基于Anti-Gray映射的4D-QPSK星座,通过增强星座符号间的关联性,改善星座点间的欧氏距离特性,达到提高通信系统可靠性的目的。
本发明拟确定的基于Anti-Gray映射的4D-QPSK星座设计方法,如图1所示,包括以下步骤:
步骤S1,构造基于Anti-Gray映射的2D-QPSK星座,构造方法为:设定2D-QPSK星座的坐标标识,S1=[-1,-1],S2=[1,-1],S3=[1,1],S4=[-1,1],其中Si=[Si,1,Si,2],i=1,2,3,4为星座图中第i个顶点的坐标标识,对应笛卡尔坐标Si,1+jSi,2;则2D-QPSK星座的比特标识其中ai,1和ai,2分别是星座图中第i个顶点对应的前后两个比特值;按照最小欧氏距离的汉明距离大于等于2的原则,构造Anti-Gray映射的3D-QPSK星座,构造方法为:按照相邻星座点的汉明距离大于等于2的原则,构造基于Anti-Gray映射3D-QPSK星座的坐标标识为:X1=[-1,-1,-1],X2=[-1,-1,1],X3=[-1,1,-1],X4=[-1,1,1],X5=[1,-1,-1],X6=[1,-1,1],X7=[1,1,-1],X8=[1,1,1];对应的比特标识为:b1=(0,0,0),b2=(1,1,1),b3=(1,1,0),b4=(0,0,1),b5=(0,1,1),b6=(1,0,0),b7=(1,0,1),b8=(0,1,0);其中Xk=[Xk,1,Xk,2,Xk,3],k=1,…,8为星座图中第k个顶点的坐标标识,bk=(bk,1bk,2,bk,3),k=1,…,8为星座图中第k个顶点的比特标识;
步骤S2,修正3D的比特标识为4D的比特标识,表示为:ck=(ck,1,bk,1,bk,2,bk,3),k=1,…,8,其中ck,1是第k个顶点增加的最高比特位,ck,1取值0或1,必须满足相邻星座点的汉明距离大于等于3;增加3D坐标标识的最高位构造4D的坐标标识,构造方法为:Yk=[-1,Xk,1,Xk,2,Xk,3],k=1,…,8,其中Yk为星座图中第k个顶点的坐标标识;
步骤S3,根据构造的4D比特标识和4D坐标标识,按照汉明距离为1的星座点欧式距离最大的原则,构造4D-QPSK超立方体星座,构造方法包括以下步骤:第一步,构造集合其中Yk=[-1,Xk,1,Xk,2,Xk,3],ck=[ck,1,bk,1,bk,2,bk,3];第二步,构造集合 其中第三步,构造基于Anti-Gray映射的4D-QPSK超立方体星座
步骤S4,输出4D比特标识与基于Anti-Gray映射的4D-QPSK坐标标识间的对应关系,表示为:χ0=χ(0000)=[-1-j,-1-j],χ1=χ(0001)=[-1-j,1+j],χ2=χ(0010)=[1-j,-1-j],χ3=χ(0011)=[1-j,1+j],χ4=χ(0100)=[-1+j,-1+j],χ5=χ(0101)=[-1+j,1-j],χ6=χ(0110)=[1+j,-1+j],χ7=χ(0111)=[1+j,1-j],χ8=χ(1000)=[1+j,1+j],χ9=χ(1001)=[1+j,-1-j],χ10=χ(1010)=[-1+j,1+j],χ11=χ(1011)=[-1+j,-1-j],χ12=χ(1100)=[1-j,1-j],χ13=χ(1101)=[1-j,-1+j],χ14=χ(1110)=[-1-j,1-j],χ15=χ(1111)=[-1-j,-1+j];其中χd=χ(m)=[Q],d=0,…,15,m是4D的比特标识,Q是4D-QPSK超立方体的坐标标识。
关于本发明的优势与方法可通过下面的发明详述及附图得到进一步的了解。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是基于Anti-Gray映射的4D-QPSK星座设计方法的流程图;
图2是基于Anti-Gray映射的2D-QPSK星座图;
图3是基于Anti-Gray映射的3D-QPSK星座图;
图4是修正的4D比特标识和修正的4D坐标标识图;
图5是基于Anti-Gray映射的4D-QPSK超立方体星座图;
图6是二进制比特与4D-QPSK坐标标识间的映射流程图。
具体实施方式
下面结合附图对本发明的较佳实施例作详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围作出更为清楚明确的界定。
图1是示出了根据本发明的基于Anti-Gray映射的4D-QPSK星座设计方法的流程图。参照图1,根据本发明的基于Anti-Gray映射的4D-QPSK星座设计方法包括以下步骤:步骤S1,基于Anti-Gray映射的2D-QPSK星座,按照最小欧氏距离的汉明距离大于等于2的原则,产生Anti-Gray映射的3D-QPSK星座;步骤S2,修正3D的比特标识为4D的比特标识,增加3D坐标标识的最高位构造4D的坐标标识;步骤S3,根据构造的4D比特标识和4D坐标标识,按照汉明距离为1的星座点欧式距离最大的原则,构造4D-QPSK超立方体星座;步骤S4,输出4D比特标识与Anti-Gray映射的4D-QPSK星座坐标标识间的对应关系。
图2是示出了根据本发明的基于Anti-Gray映射的2D-QPSK星座。参照图2,根据本发明的基于Anti-Gray映射的2D-QPSK星座的坐标标识为:S1=[-1,-1],S2=[1,-1],S3=[1,1],S4=[-1,1],其中Si=[Si,1,Si,2],i=1,2,3,4为星座图中第i个顶点的坐标标识,对应笛卡尔坐标Si,1+jSi,2根据本发明的基于Anti-Gray映射的2D-QPSK星座的比特标识为:其中ai,1和ai,2分别是星座图中第i个顶点对应的前后两个比特值。
图3是示出了根据本发明的基于Anti-Gray映射的3D-QPSK星座。参照图3,根据本发明的基于Anti-Gray映射的3D-QPSK星座的坐标标识为:X1=[-1,-1,-1],X2=[-1,-1,1],X3=[-1,1,-1],X4=[-1,1,1],X5=[1,-1,-1],X6=[1,-1,1],X7=[1,1,-1],X8=[1,1,1];对应的比特标识为:b1=(0,0,0),b2=(1,1,1),b3=(1,1,0),b4=(0,0,1),b5=(0,1,1),b6=(1,0,0),b7=(1,0,1),b8=(0,1,0);其中Xk=[Xk,1,Xk,2,Xk,3],k=1,…,8为星座图中第k个顶点的坐标标识bk=(bk,1,bk,2,bk,3),k=1,…,8为星座图中第k个顶点的比特标识。
图4是示出了根据本发明的修正4D比特标识和修正4D坐标标识。参照图4,根据本发明的修正4D比特标识为:c1=(0,0,0,0),c2=(1,1,1,1),c3=(1,1,1,0),c4=(0,0,0,1),c5=(1,0,1,1),c6=(0,1,0,0),c7=(0,1,0,1),c8=(1,0,1,0);其中ck=(ck,1,bk,1,bk,2,bk,3),k=1,…,8,ck,1是星座图中第k个顶点增加的最高比特位,满足相邻星座点的汉明距离大于等于3;根据本发明的修正4D坐标标识为:Y1=[-1,-1,-1,-1],Y2=[-1,-1,-1,1],Y3=[-1,-1,1,-1],Y4=[-1,-1,1,1],Y5=[-1,1,-1,-1],Y6=[-1,1,-1,1],Y7=[-1,1,1,-1],Y8=[-1,1,1,1];Yk=[-1,Xk,1,Xk,2,Xk,3],k=1,…,8,其中Yk为星座图中第k个顶点的坐标标识。
图5是示出了根据本发明的基于Anti-Gray映射的4D-QPSK超立方体星座。参照图5,根据本发明的基于Anti-Gray映射的4D-QPSK超立方体星座的构造包括以下步骤:第一步,构造集合其中Yk=[-1,Xk,1,Xk,2,Xk,3],ck=[ck,1,bk,1,bk,2,bk,3];第二步,构造集合其中第三步,构造基于Anti-Gray映射的4D-QPSK超立方体星座则4D比特标识与4D-QPSK坐标标识间的映射关系表示为:χ0=χ(0000)=[-1-j,-1-j],χ1=χ(0001)=[-1-j,1+j],χ2=χ(0010)=[1-j,-1-j],χ3=χ(0011)=[1-j,1+j],χ4=χ(0100)=[-1+j,-1+j],χ5=χ(0101)=[-1+j,1-j],χ6=χ(0110)=[1+j,-1+j],χ7=χ(0111)=[1+j,1-j],χ8=χ(1000)=[1+j,1+j],χ9=χ(1001)=[1+j,-1-j],χ10=χ(1010)=[-1+j,1+j],χ11=χ(1011)=[-1+j,-1-j],χ12=χ(1100)=[1-j,1-j],χ13=χ(1101)=[1-j,-1+j],χ14=χ(1110)=[-1-j,1-j],χ15=χ(1111)=[-1-j,-1+j];其中χd=χ(m)=[Q1,Q2],d=0,…,15,m是4D的比特标识,Q是4D-QPSK超立方体的坐标标识。
图6是示出了根据本发明的二进制比特与4D-QPSK坐标标识间的映射流程图。参照图6,根据本发明的二进制比特与4D-QPSK坐标标识间的映射方法包括以下步骤:第一步,将输入的比特流进行串并转换,将串行的比特流转换为四路并行数据P4n,P4n+1,P4n+2,P4n+3,n=0,1,2,…输出;第二步,按照4D比特标识与4D-QPSK坐标标识间的映射关系,也即是公式χd=χ(m)=[Q],d=0,…,15中m与Q间的对应关系,使χ(m)=χ(P4nP4n+1P4n+2P4n+3),输出比特(P4nP4n+1P4n+2P4n+3)所对应的坐标[Q1,Q2];第三步,将输出的复数坐标进行串并转换,分别得到前2个比特(P4nP4n+1)映射后的复数[Q1]和后2个比特(P4n+2P4n+3)映射后的复数[Q2]。
以上所述,仅为本发明的具体实施方式之一,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。
Claims (7)
1.一种基于Anti-Gray映射的4D-QPSK星座设计方法,其特征在于,包括以下步骤:
步骤S1,基于Anti-Gray映射的2D-QPSK星座,按照最小欧氏距离的汉明距离大于等于2的原则,产生Anti-Gray映射的3D-QPSK星座;
步骤S2,修正3D的比特标识为4D的比特标识,增加3D坐标标识的最高位构造4D的坐标标识;
步骤S3,根据构造的4D比特标识和4D坐标标识,按照汉明距离为1的星座点欧式距离最大的原则,构造4D-QPSK超立方体星座;
步骤S4,输出4D比特标识与基于Anti-Gray映射的4D-QPSK星座坐标标识间的对应关系。
2.根据权利要求1所述的方法,其特征在于,所述步骤S1中基于Anti-Gray映射2D-QPSK星座的构造方法为:设定2D-QPSK星座的坐标标识,S1=[-1,-1],S2=[1,-1],S3=[1,1],S4=[-1,1],其中Si=[Si,1,Si,2],i=1,2,3,4为星座图中第i个顶点的坐标标识,对应笛卡尔坐标Si,1+jSi,2;则2D-QPSK星座的比特标识其中ai,1和ai,2分别是星座图中第i个顶点对应的前后两个比特值。
3.根据权利要求1所述的方法,其特征在于,所述步骤S1中基于Anti-Gray映射3D-QPSK星座的构造方法为:按照相邻星座点的汉明距离大于等于2的原则,构造基于Anti-Gray映射3D-QPSK星座的坐标标识为:X1=[-1,-1,-1],X2=[-1,-1,1],X3=[-1,1,-1],X4=[-1,1,1],X5=[1,-1,-1],X6=[1,-1,1],X7=[1,1,-1],X8=[1,1,1];对应的比特标识为:b1=(0,0,0),b2=(1,1,1),b3=(1,1,0),b4=(0,0,1),b5=(0,1,1),b6=(1,0,0),b7=(1,0,1),b8=(0,1,0);其中Xi=[Xk,1,Xk,2,Xk,3],k=1,…,8为星座图中第k个顶点的坐标标识,bk=(bk,1,bk,2,bk,3),k=1,…,8为星座图中第k个顶点的比特标识。
4.根据权利要求1所述的方法,其特征在于,所述步骤S2中修正的4D比特标识ck=ck, 1bk,1,bk,2,bk,3),k=1,…,8,其中ck,1是第k个顶点增加的最高比特位,ck,1取值0或1,必须满足相邻星座点的汉明距离大于等于3。
5.根据权利要求1所述的方法,其特征在于,所述步骤S2中4D坐标标识的构造方法为:Yk=[-1,Xk,1,Xk,2,Xk,3],k=1,…,8,其中Yk为星座图中第k个顶点的坐标标识。
6.根据权利要求1所述的方法,其特征在于,所述步骤S3中4D-QPSK超立方体星座的构造包括以下步骤:
第一步,构造集合其中Yk=[-1,Xk,1,Xk,2,Xk,3],ck=[Ck,1,bk,1,bk,2,bk,3];
第二步,构造集合 其中
第三步,构造基于Anti-Gray映射的4D-QPSK超立方体星座
7.根据权利要求1所述的方法,其特征在于,所述步骤S4中4D比特标识与4D-QPSK超立方体坐标标识间的映射关系为:χ0=χ(0000)=[-1-j,-1-j],χ1=χ(0001)=[-1-j,1+j],χ2=χ(0010)=[1-j,-1-j],χ3=χ(0011)=[1-j,1+j],χ4=χ(0100)=[-1+j,-1+j],χ5=χ(0101)=[-1+j,1-j],χ6=χ(0110)=[1+j,-1+j],χ7=χ(0111)=[1+j,1-j],χ8=χ(1000)=[1+j,1+j],χ9=χ(1001)=[1+j,-1-j],χ10=χ(1010)=[-1+j,1+j],χ11=χ(1011)=[-1+j,-1-j],χ12=χ(1100)=[1-j,1-j],χ13=χ(1101)=[1-j,-1+j],χ14=χ(1110)=[-1-j,1-j],χ15=χ(1111)=[-1-j,-1+j];其中χd=χ(m)=[Q],d=0,…,15,m是4D的比特标识,Q是4D-QPSK超立方体的坐标标识。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310413548.4A CN103441977B (zh) | 2013-09-12 | 2013-09-12 | 基于Anti-Gray映射的4D-QPSK星座设计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310413548.4A CN103441977B (zh) | 2013-09-12 | 2013-09-12 | 基于Anti-Gray映射的4D-QPSK星座设计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103441977A CN103441977A (zh) | 2013-12-11 |
CN103441977B true CN103441977B (zh) | 2016-09-28 |
Family
ID=49695643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310413548.4A Expired - Fee Related CN103441977B (zh) | 2013-09-12 | 2013-09-12 | 基于Anti-Gray映射的4D-QPSK星座设计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103441977B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108989826B (zh) * | 2017-06-05 | 2023-07-14 | 上海交通大学 | 视频资源的处理方法及装置 |
CN112910554B (zh) * | 2021-01-19 | 2021-10-01 | 广东工业大学 | 一种csk星座比特映射方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101453221A (zh) * | 2008-11-28 | 2009-06-10 | 西安电子科技大学 | 基于比特交织编码调制系统的映射器及其映射方法 |
CN101944976A (zh) * | 2010-10-11 | 2011-01-12 | 复旦大学 | 一种基于格雷映射的优化网格编码调制系统编码设计方法 |
CN102790747A (zh) * | 2012-08-09 | 2012-11-21 | 电子科技大学 | 一种空间调制系统映射方法 |
-
2013
- 2013-09-12 CN CN201310413548.4A patent/CN103441977B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101453221A (zh) * | 2008-11-28 | 2009-06-10 | 西安电子科技大学 | 基于比特交织编码调制系统的映射器及其映射方法 |
CN101944976A (zh) * | 2010-10-11 | 2011-01-12 | 复旦大学 | 一种基于格雷映射的优化网格编码调制系统编码设计方法 |
CN102790747A (zh) * | 2012-08-09 | 2012-11-21 | 电子科技大学 | 一种空间调制系统映射方法 |
Non-Patent Citations (2)
Title |
---|
BICM-ID 中一种新的8PSK 星座映射;田心记等;《计算机工程》;20121231;第38卷(第23期);正文第1-3页,表2,图3 * |
编码调制与星座映射相关技术研究;李琳;《中国优秀博士学位论文全文库信息科技辑》;20130110(第12期);正文第1-119页,图2-2、2-3、2-7、2-8,表2-1、2-2、2-3 * |
Also Published As
Publication number | Publication date |
---|---|
CN103441977A (zh) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107276960B (zh) | 一种scma优化码本设计方法 | |
CN100414861C (zh) | 无线通信网中的空时编码传输 | |
CN101674160B (zh) | 多输入多输出无线通信系统信号检测方法及装置 | |
CN104394116B (zh) | 降低ofdm系统峰值功率的交替优化pts发射系统及方法 | |
CN104394110B (zh) | 一种时域超奈奎斯特非正交传输导频设计方法 | |
CN105591717A (zh) | 用于载波索引调制的mimo-ofdm系统的低复杂度检测方法 | |
CN101411086A (zh) | 提供mimo接收器的装置、方法和计算机程序产品 | |
CN106254296A (zh) | 基于最大化星座点和距离的scma码本设计方法 | |
CN105306175A (zh) | 基于v-blast编码方式的mimo-scma系统上行链路构架方法 | |
CN102790747B (zh) | 一种空间调制系统映射方法 | |
CN101917355A (zh) | 一种信道估计方法及系统 | |
CN109861939B (zh) | 一种oqpsk频域均衡无线数据传输方法 | |
CN108173600A (zh) | 基于自适应非迭代聚类的Stokes空间相干光调制格式识别方法 | |
CN104243370A (zh) | 一种应用在多天线系统的时域信道估计方法 | |
CN103685132B (zh) | 基于三维星座图簇调制的二维Chirped OFDM通信方法 | |
CN103441977B (zh) | 基于Anti-Gray映射的4D-QPSK星座设计方法 | |
CN111865383A (zh) | 一种空间调制系统中空间星座设计系统 | |
CN110336614A (zh) | 一种适合于无线光通信的多层空间脉冲调制方法 | |
CN116886481A (zh) | 一种分层LoRa调制通信系统及方法 | |
CN106102045A (zh) | 一种采用分数阶傅里叶变换的保密通信方法 | |
Li et al. | Data-driven receiver for OTFS system with deep learning | |
CN102739576B (zh) | 基于复数空间的星座图的软比特数字解调方法及装置 | |
CN107222448A (zh) | 一种星座图优化方法及系统 | |
CN113572507B (zh) | 一种基于天线索引矢量拓展的空间调制方法及系统 | |
CN103095641A (zh) | 一种apsk星座映射及其解映射方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
DD01 | Delivery of document by public notice |
Addressee: Fang Weiwei Document name: Notification of Passing Preliminary Examination of the Application for Invention |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160928 Termination date: 20170912 |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
DD01 | Delivery of document by public notice |
Addressee: Communication University of China Document name: Notification of Termination of Patent Right |
|
DD01 | Delivery of document by public notice |