CN1034293A - 数-模转换器 - Google Patents

数-模转换器 Download PDF

Info

Publication number
CN1034293A
CN1034293A CN88108917A CN88108917A CN1034293A CN 1034293 A CN1034293 A CN 1034293A CN 88108917 A CN88108917 A CN 88108917A CN 88108917 A CN88108917 A CN 88108917A CN 1034293 A CN1034293 A CN 1034293A
Authority
CN
China
Prior art keywords
energy
cold
hole
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN88108917A
Other languages
English (en)
Other versions
CN1014289B (zh
Inventor
亨德利卡斯·约翰内斯·舒文纳尔斯
德克·伍特·约翰内斯·格罗恩内维尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of CN1034293A publication Critical patent/CN1034293A/zh
Publication of CN1014289B publication Critical patent/CN1014289B/zh
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
    • H03M1/066Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators
    • H03M1/747Simultaneous conversion using current sources as quantisation value generators with equal currents which are switched by unary decoded digital signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Instructional Devices (AREA)

Abstract

本发明的数-模转换器包括:一输入端子(1),一 输出端(2),一电流源电路(3),具有N个电流源(I1 至IN),用以在N个输出端(3.1至3.N)上产生电流 强度大致相等的N个电流;一组合电路(4),具有N 个耦合到电流源电路(3)的N个输出端上的输入端 (4.1至4.N)、一用以接收数字输入信号的输入端(6) 和一输出端(7)。要将在某一时间间隔期间(Ta)将 加到输入端(1)上的数字信号D转换时,将该时间间 隔再细分成至少两个子时间间隔(Td1,Td2)。

Description

本发明为一储存和利用冬夏温差获取能量的近似“永动机”的技术方案。
自古以来,无数人为发明一种能永无休止地、无偿为人类提供功和能的永动机化费了大量的辛劳,但由于一定时限内科技的相对落后而不能奏效,反而因无数的失败使永动机蒙上了“反动”、“违背自然规律”等不光彩的名誉,当然失败的原因很多无疑是违背自然规律,对科学技术进行了反动造成的,但是,只要善于利用自然规律,那么设计和建造那种一经发动就不需再对之人为地提供能量而能从中永久地取得功和能的“永动机”还是有路可通的,当然,此时已不再是那个违背自然规律的反动的永动机概念了。
本发明方案遵循自然规律,利用自然界因时间差、空间差而存在的温差,对其中因不同时间在同一空间产生的温差,尽可能保持差距地拉到同一时间,从而拮取这种温差之间的能量,在用一组设施使从这种温差中取得的能量能大于为保存和利用这种温差所消耗的能量时,就可达到从这种设施中永无休止地取得功和能。
本发明方案可从自然现象获得旁证:自然界中存在一种热洞和冷洞,冷热洞的形成由各种因素综合促成,如地形:热洞往往是洞口在下方的盲洞,冷洞则是洞口在上方的盲洞;地质:洞壁有良好的传热蓄热功能,否则单靠洞内的空气来蓄冷储热是不够的;地貌:洞壁的传热蓄热层外有良好的绝热层,否则,会因“熵”的较快增大而难成典形的冷热洞了。无明显洞口的冷热洞因有出露地表的“窗口”也能为人所知,而且自然界中往往还存在相距很近的冷热洞,甚至会有共用同一个“窗口”显示的,例如东北某地的一块所谓“神奇土地”地表能在夏天产生低温,天越热温度越低,而冬天则出现高温,这种神奇其实是一对冷热洞在作怪,是它们在共用同一个“窗口”向外显示它们的存在并获得运行的动力罢了,热洞的机制是天越热,它就越向洞内吸入热量,当然夏天忙于吸热而不会通过“窗口”向外放热了,而只能任由冷洞向外吹冷气了,冷洞也一样,天越冷越要吸冷,在冬天忙于储冷无空向“窗口”放出相对于地表并不冷的冷气了,而况按热力学第二定律遵照“熵”的概念,只要有温差就会有散发,冬天热洞当然有挤占“窗口”的优势且越冷越得劲,夏天也当然冷源的势能大,天越热势能也越大,因此,这种自然现象并无神奇之处,只是由于地表没找到可见的通道能进入洞中以至没有发现这对冷热洞的存在罢了,这块神奇土地的冬热夏冷为人提供了一种可供利用的能源,至少它可为制造相同的温度环境省下了能源,而且并不要人作出化费而能年复一年地运转下去。自然界就这样为本发明方案提供了一个现实的模式。
本发明以大地为对象开凿人工的冷洞和热洞,并用机械设施人为地向洞中输入冬寒夏暑,经一定时间的积累成长后,就可在夏天汲取冷洞的低温,冬天放出热洞的热能从而与当时的气温形成较大的温差,除直接利用这样高低温,以省下制造这种高低温的能耗外,用这个温差进行发电,并把其中的一部分用于储热蓄冷的消耗,在整个系统能达到输出的能量大于维持系统运转所需的能耗时就成了一个无休止地提供能源的“永动机”。
至现在,在同一时间同一有限空间内要产生能差必须有能源消耗放出能量才能形成,如各种燃烧的化学反应及物体势能变化等,这中间严格地遵照着“热力学第一定律”,因此在发明出象太阳那样的“造能机”以前,不利用时间差来设计永动机是很难实现的,而本发明则利用了物体热能的时间差,在本发明所述方案中当作取能源泉的跨时温差是到处存在的,当然,由于热力学第二定律的作用,不加控制时,其能量差会随时间经风雨等形式很快消失,要把这种能差在一定的空间内封存一部分下来,即尽量限制这个空间与其它空间之间“熵”的增大,采用冷热洞蓄藏是可行的。蓄热储冷的过程,当然是在遵循着“热力学第二定律”,并尽量在洞内设法加快“熵”的增大速度冷热收集、运储是在冬季把冷空气、冷水等含冷介质输入冷洞中,让其交换出洞中的热量,并把热量带出洞外,如此循环即可把冷洞的能级降低,而热洞中输入的含热介质可采用各种方法提高温度,以使热洞中储积较高的能级。冷热洞中能差的利用,除了就地以夏汲冷,冬取鹊姆绞绞褂猛猓梢杂弥魑虏罘⒌缁蛑圃煨滦腿剂希侔训缌腿剂鲜渌驮斗健7⒌缟枋┖腿剂系闹圃炜梢糜泄丶际趸虻却碌姆⒚鳌?
本发明对能量的收支可粗略分析如下,冷热洞一般适于建在一定深度的地表下,向洞中输入或取出冷热介质要消耗功能,如依介质为水作例子,洞开凿于50米深地下,在不考虑机械效率时,使一公斤水下洞进行热交换及提取一公斤水以放出热能,二次需耗功100公斤米也即等于234卡热能,如这一公斤水在洞中交出5℃的能差,即放入洞中或吸走洞中5000卡的热能,这样得到的能是支出能的二十倍以上,因此只要具有一定效率的储能和换能设备就可从中获取能量。
对本发明的基建投资效益亦可作如下分析,以开采矿物能源煤为例:一个年产十万吨,服务年限一百年的煤矿,在一百年内将生产一千万吨煤,可获得约6×1013千卡热能,其矿在100年内当然至少挖出1000万吨物体,现建造两个能有1000万吨物体参予储冷蓄热的冷热洞,在运行中,每年能从这对冷热洞中的储冷蓄热中取得20℃的能差,如以储能物的比热为1时,从1000万吨物体可得到2×1011千卡热能,也即运行300年即可获得与年产10万吨煤的煤矿在100年内取得的全部能量相等,如此规模的冷热井的基建投资虽然无从正确估价,但也不会超过此煤矿100年的开拓支出,而且问题在于:煤矿有挖光报废之日,而冷热洞却可永久使用,因此,从长远观点看,建造这种“永动机”设施也并无经济上的障碍。
当然,只要是方案,本身必然是低上谈兵。目前,对于矿物能源,风水势能,乃至核能,太阳光热等的开发利用已有很成熟或较成熟的经验,而对本方案却在各个环节上都存有或大或小的难题,这些难题不能在本方案中给于解决甚至排清点明,只能留待以后的发明来阐述。
本发明的实施方案拟定如下:在地表下适合的地层开掘相距不远的两个洞,每个洞有两个可控井口通向地表,洞内掘了布局合理的大小巷通以争取尽量多的蓄热层,由地面设施从井口输入冷热介质,介质在洞内循环进行热交换后由另一井口出洞,地面设施除输送介质的机械如风机、水泵等外并有温室冷荫等聚热致冷设施以获取优良介质。对冷热洞能差利用除了直接抽取用于空调等外,可按装温差发电装置获取电力,至于其他的利用这个能差的方法无法在此尽述。
在本发明中无法把实施方法的其体细节述说,因为很大程度上还须依赖试验和实践来探索,甚至在一定的时间内只能收获到失败,好在这也符合发明过程的通常规律。
本发明方案在解决好冷热洞、输汲冷热源及能差利用效率等问题后,可获得一个“永动机”式的供能设施,而且获得的能源是干净的,不会对环境产生污染;在气候不发生重大变化时其供能也是稳定的,更不会有枯竭的时候,而且,它与太阳的光热强弱无关,只要冬夏有一定的温差,就可使用本发明而无需虑及年平均温度的高低,因此,本发明要比真接利太阳的光和热适用范围广,而且只要冷热洞这个主要设施使用维护得好,除人为淘汰外,不会有报废的可能,反而会在惯性和成长下随年限越长效能越好,这样,本发明的技术方案用跨越时差的方法可把地球表面当作取之不尽的能源之库。

Claims (1)

1、一种把冬夏之温度高低所含的能量差当作能源并从中获取能量的技术方案,本发明的特征在于:把冬季的低温和夏季的高温分别储蓄到两个人工开凿的冷热洞中,使之产生并得到两洞之间或洞与地球表面之间较大的温差。使用温差发电等方法永久地获得能量,使整个系统成为一“永动机”式的清洁的能源供应站。
CN88108917A 1987-12-24 1988-12-21 数-模转换器 Expired CN1014289B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8703128A NL8703128A (nl) 1987-12-24 1987-12-24 Digitaal-analoog-omzetter.
NL8703128 1987-12-24

Publications (2)

Publication Number Publication Date
CN1034293A true CN1034293A (zh) 1989-07-26
CN1014289B CN1014289B (zh) 1991-10-09

Family

ID=19851148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88108917A Expired CN1014289B (zh) 1987-12-24 1988-12-21 数-模转换器

Country Status (7)

Country Link
US (1) US4935740A (zh)
EP (1) EP0322965B1 (zh)
JP (1) JPH01204527A (zh)
KR (1) KR890011227A (zh)
CN (1) CN1014289B (zh)
DE (1) DE3865191D1 (zh)
NL (1) NL8703128A (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8803627D0 (en) * 1988-02-17 1988-03-16 Data Conversion Systems Ltd Digital to analogue converter
US5021784A (en) * 1989-07-10 1991-06-04 U.S. Philips Corporation Calibrated current source with ripple reduction
EP0597123A4 (en) * 1992-06-01 1998-05-13 DIGITAL-ANALOG CONVERTER AND ANALOG-DIGITAL CONVERTER.
US5384546A (en) * 1993-11-08 1995-01-24 International Business Machine Corp. Time domain component multiplexor
JP3469326B2 (ja) * 1994-08-16 2003-11-25 バー−ブラウン・コーポレーション デジタル−アナログ変換器
EP0704978B1 (en) * 1994-09-30 2003-06-18 Kabushiki Kaisha Toshiba Selection device for selecting electric cells and apparatus using the same
US5640162A (en) * 1994-10-04 1997-06-17 Brooktree Corporation Digital-to-analog converter with binary coded inputs to produce a plurality of outputs in the form of thermometer code
US5568145A (en) * 1994-10-19 1996-10-22 Analog Devices, Inc. MOS current source layout technique to minimize deviation
US5646619A (en) * 1995-04-26 1997-07-08 Lucent Technologies Inc. Self-calibrating high speed D/A converter
JP2897714B2 (ja) * 1996-03-29 1999-05-31 日本電気株式会社 アナログ集積回路
US5760726A (en) * 1996-08-23 1998-06-02 Motorola, Inc. Digital-to-analog converter with dynamic matching and bit splitting
US5969514A (en) * 1997-11-24 1999-10-19 National Semiconductor Corporation Digital feedback power supply
US6329941B1 (en) * 1999-05-27 2001-12-11 Stmicroelectronics, Inc. Digital-to-analog converting device and method
DE19930113B4 (de) * 1999-06-30 2006-09-14 Infineon Technologies Ag Vorrichtung und Verfahren zum Filtern eines einen digitalen Datenstrom repräsentierenden Signals
JP4311511B2 (ja) 1999-10-25 2009-08-12 日本バーブラウン株式会社 デジタル−アナログ変換の方法および装置
EP1142122B1 (en) * 1999-10-27 2006-09-27 Koninklijke Philips Electronics N.V. A digital to analog converter
US7280060B1 (en) 2000-05-23 2007-10-09 Marvell International Ltd. Communication driver
AU2002323522A1 (en) * 2001-08-29 2003-03-18 3M Innovative Properties Company Optical devices using shaped optical fibers and methods for making optical devices with shaped optical fibers
WO2003052940A2 (en) * 2001-12-18 2003-06-26 Koninklijke Philips Electronics N.V. Digital to analogue converter
US7042378B2 (en) * 2002-01-30 2006-05-09 Koninklijke Philips Electronics N.V. Circuit with a digital to analog converter
US6621438B1 (en) * 2002-04-30 2003-09-16 Motorola, Inc. Digital-to-analog conversion with current path exchange during clock phases
JP4793294B2 (ja) 2007-03-16 2011-10-12 ヤマハ株式会社 デジタル入力型d級増幅器
US9238548B2 (en) 2013-09-25 2016-01-19 Rubbermaid Incorporated Receptacle with spring hinge and forward lean
CN110971232A (zh) * 2018-09-28 2020-04-07 瑞昱半导体股份有限公司 数字模拟转换器装置与电流控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7405441A (nl) * 1974-04-23 1975-10-27 Philips Nv Nauwkeurige stroombronschakeling.
US3940760A (en) * 1975-03-21 1976-02-24 Analog Devices, Inc. Digital-to-analog converter with current source transistors operated accurately at different current densities
NL7604570A (nl) * 1976-04-29 1977-11-01 Philips Nv Stroomverdeelschakeling voor het realiseren van een aantal stromen die onderling zeer nauwkeurig een bepaalde grootteverhouding vertonen.
NL8003948A (nl) * 1980-07-09 1982-02-01 Philips Nv Digitaal-analoog omzetter.
NL8300466A (nl) * 1983-02-08 1984-09-03 Philips Nv Stroombronschakeling.
JPS61240716A (ja) * 1985-04-17 1986-10-27 Mitsubishi Electric Corp ディジタルアナログコンバ−タ
US4644325A (en) * 1985-10-21 1987-02-17 Motorla, Inc. Low voltage, single power supply operated digital analog converter
DE3771408D1 (de) * 1986-07-21 1991-08-22 Itt Ind Gmbh Deutsche Monolithisch integrierter digital/analog-wandler.
US4701694A (en) * 1986-09-08 1987-10-20 Tektronix, Inc. Digitally selectable, multiple current source proportional to a reference current

Also Published As

Publication number Publication date
DE3865191D1 (de) 1991-10-31
EP0322965B1 (en) 1991-09-25
NL8703128A (nl) 1989-07-17
CN1014289B (zh) 1991-10-09
KR890011227A (ko) 1989-08-14
US4935740A (en) 1990-06-19
JPH01204527A (ja) 1989-08-17
EP0322965A1 (en) 1989-07-05

Similar Documents

Publication Publication Date Title
CN1034293A (zh) 数-模转换器
Jilan Circulation dynamics of the China Seas north of 18◦ N
DONG et al. Speeding up industrialized development of geothermal resources in China--country update report 2010-2014
CN104412875A (zh) 循环资源与循环能源的集成装置
CN104315631B (zh) 一种自动调控式养殖系统
CN110761961A (zh) 干热岩地热能开采利用系统及开采利用方法
Zheng et al. Process and prospects of industrialized development of geothermal resources in China–country update report for 2000–2004
CN116104729A (zh) 一种盐穴压缩氢气储能与采卤取热耦合系统及方法
CN204476673U (zh) 盐层溶腔地热发电系统
CN107148854A (zh) 一种沙棘防沙系统及设置方法
CN107087452A (zh) 一种利用太阳能进行盐碱地改良的装置
CN113340143A (zh) 一种温室地下蓄热系统
CN207092034U (zh) 一种抽水蓄能电站系统
CN206149910U (zh) 一种轻型、隔热的金叶佛甲草模块
Akbarzadeh et al. Solar ponds
CN214007539U (zh) 一种盐碱地改良太阳能光伏抽水水泵系统
CN2508184Y (zh) 一种地源(水源)热泵空调装置
Olausson Norwegian Sea in an ice age model
Fujibe Diurnal modulation of the movement of surface cold fronts in central Honshu: Examples in the warm season
Maguire Infrastructural Recursions: Volcanic Landscapes, Instability and Energy Production
Chappell et al. The Multi-Purpose Geothermal Test and Experimental Activities at Raft River, Idaho
Manikandan et al. A review on the various environmental imapcts of renewable energy technologies
Riva Climate control in a glass greenhouse using energy saving technologies
RAGNARS et al. GUDMUNDUR PÁLMASON
Rinehart Practical uses of geothermal fluids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee