CN103427331B - 垂直腔表面发射激光器的驱动器 - Google Patents

垂直腔表面发射激光器的驱动器 Download PDF

Info

Publication number
CN103427331B
CN103427331B CN201310374491.1A CN201310374491A CN103427331B CN 103427331 B CN103427331 B CN 103427331B CN 201310374491 A CN201310374491 A CN 201310374491A CN 103427331 B CN103427331 B CN 103427331B
Authority
CN
China
Prior art keywords
preemphasis
rising edge
signal
nmos pass
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310374491.1A
Other languages
English (en)
Other versions
CN103427331A (zh
Inventor
贾护军
李泳锦
李晓彦
邹姣
王志燕
成涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310374491.1A priority Critical patent/CN103427331B/zh
Publication of CN103427331A publication Critical patent/CN103427331A/zh
Application granted granted Critical
Publication of CN103427331B publication Critical patent/CN103427331B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种用于高速垂直腔表面发射激光器的驱动器。其包括信号预处理器、调制脉冲产生电路、上升沿预加重电路和下降沿预加重电路,信号预处理器输出三组差分电压信号分别与调制脉冲产生电路、上升沿预加重电路和下降沿预加重电路对应连接;调制脉冲产生电路,将差分同步数据电压信号转换成初始调制电流;下降沿预加重电路,将差分下降沿电压信号转化为下降沿预加重电流;上升沿预加重电路,将差分上升沿电压信号转化为上升沿预加重电流;所述三种电流直接耦合成最终输出电流,驱动垂直腔表面发射激光器工作。本发明在输入信号下降沿和上升沿独立产生可调节的加重电流脉冲,充分抑制了激光器在高频下光波波形的衰减,适于高速片间光互联系统。

Description

垂直腔表面发射激光器的驱动器
技术领域
本发明属于集成电路技术领域,特别涉及一种驱动器,用于对垂直腔表面发射激光器进行驱动。
背景技术
在高速低功耗光互连系统中,由于垂直腔表面发射激光器有着较小的阈值电流并可做成二维阵列,它非常适用于多路并行传输系统。基于这个原因,垂直腔表面发射激光器是光互连系统的核心部件。但是,由于组装系统中存在寄生电容与寄生电感,随着数据传输速率的增加,将会产生严重的光波衰减。光波的波形与激光器的瞬态功率有直接关系,而激光器的瞬态功率决定于驱动激光器的电流强度。因而对于高频条件下激光器的光波衰减问题,用于垂直腔表面发射激光器的驱动器的良好设计成为解决该问题的关键。
传统的垂直腔表面发射激光器的驱动器,未采用预加重电路,如图1所示,包括输入缓冲器Amp,由Ma,Mb构成的差分电路,调制电流源ISM,偏置电流源Ip。该驱动器中的输入缓冲器Amp将差分数据输入信号Data和Data_rev只进行信号初始放大以增加驱动能力,产生的两个差分信号分别连接到差分电路的两个NMOS管Ma和Mb的栅极,差分电路将输入差分电压信号转化为调制电流信号,最后该调制电流信号与偏置电流直接耦合,驱动垂直腔表面发射激光器。显然该传统驱动器并未根据垂直腔表面发射激光器的功率电流特性对输出的大电流信号进行任何优化。实际工程演示,该结构在高频率的工作条件下,光波的衰减较为严重,为了带宽要求,而不得不减小消光比,这对光接收系统的灵敏度提出了较为严苛的要求,进而带动了整体光互连系统的技术难度与成本。
根据电互连的经验,一些研发人员提出了将电互连系统中的传统预加重技术整合到垂直腔表面发射激光器的驱动器中,即在上述结构中在驱动器与激光器之间引入有限冲激响应滤波器,滤掉在上升沿和下降沿时期的高频信号,如图2所示。该方案虽然一定程度上可以抑制垂直腔表面发射激光器的光波波形的衰减,但由于传统技术中有限冲激响应滤波器是一个线性系统,而垂直腔表面发射激光器的响应是非线性的,即上升沿和下降沿所需要的加重信号是不对称的,因而该方案也不能充分抑制光互连系统中光波波形的衰减,且当消光比设的足够大以获得充分的信噪比时,这一问题变得特别严重。
发明内容
本发明的目的是提供一种高速垂直腔表面发射激光器的驱动器,该驱动器能够分别独立控制上升沿与下降沿的预加重脉冲信号,实现抑制垂直腔表面发射激光器的非线性响应特性的效果,有效抑制光互连系统中的波形衰减。
为实现上述目的,本发明的的驱动器,包括信号预处理器1和与该信号预处理器输出端相连的调制脉冲产生电路2,调制脉冲产生电路2,用于将输入的差分同步数据电压信号VM1和VM2转换成内含偏置电流分量的初始调制电流IM,其特征在于:
信号预处理器1的输出端还连接有下降沿预加重电路3和上升沿预加重电路4;
所述的下降沿预加重电路3,用于将输入的差分下降沿电压信号VFE1和VFE2转化为下降沿预加重电流IFE
所述的上升沿预加重电路4,用于将输入的差分上升沿电压信号VRE1和VRE2转化为上升沿预加重电流IRE
所述的初始调制电流IM,下降沿预加重电流IFE和上升沿预加重电流IRE这三个输出电流直接耦合产生最终的输出电流Iout,以驱动垂直腔表面发射激光器工作。
作为优选,上述驱动器的信号预处理器1,包括第一D类触发器FF1、第二D类触发器FF2、第三D类触发器FF3、第四D类触发器FF4、第一双输入与门A1和第二双输入与门A2;
所述的第一D类触发器FF1,其时钟输入端Clk1与外部的时钟信号CLK相连接,其数据输入端d1与外部的数据信号Data相连接,其同向输出端Q1端与第二D类触发器FF2的数据输入端d2和第二双输入与门A2的第一输入端a2相连接,其反向输出端端与第一双输入与门A1的第一输入端a1相连接;
所述的第二D类触发器FF2,其时钟输入端Clk2与外部的时钟信号CLK相连接,其同向输出端Q2连接到第一双输入与门A1的第二输入端b1,其反向输出端连接到第二双输入与门A2的第二输入端b2,同时其同向输出Q2端和反向输出端分别输出差分同步数据电压信号VM1和VM2
所述的第一双输入与门A1的输出端c1与第三D类触发器FF3的数据输入端d3相连接;
所述的第三D类触发器FF3,其时钟输入端Clk3与外部的时钟信号CLK相连接,其同向输出端Q4和反向输出端分别输出差分下降沿电压信号VFE1和VFE2
所述的第二双输入与门A2的输出端与第四D类触发器FF4的数据输入端d4相连接;
所述的第四D类触发器FF4,其时钟输入端Clk4与外部的时钟信号CLK相连接,其同向输出端Q4和反向输出端端分别输出差分上升沿电压信号VRE1和VRE2
作为优选,上述驱动器的调制脉冲产生电路2,包括第一NMOS晶体管M1、第二NMOS晶体管M2、可变调制电流源ISM和偏置电流源IP
所述的第一NMOS晶体管M1的栅极与信号预处理器输出的第一差分同步数据信号VM1相连接,其源极与可变调制电流源ISM的正极相连接,其漏极连接电源电压Vdd;
所述的可变调制电流源ISM的负极连接地信号gnd;
所述的第二NMOS晶体管M2的栅极与第二差分同步数据信号VM2相连接,其源极与可变调制电流源ISM的正极相连接,其漏极与偏置电流源IP的正极相连接;
所述的可变电流源IP的负极连接地信号gnd,其正极连接到所述的调制脉冲产生电路2的输出端,输出初始调制电流IM
作为优选,上述驱动器的下降沿预加重电路3,包括第一可调节延迟器D1,第二可调节延迟器D2,下降沿预加重两级差分电路和一个下降沿预加重电流镜;
所述的第一可调节延迟器D1,对信号预处理器输出的差分下降沿电压信号VFE1和VFE2延迟后,输出第一可调节延迟器差分电压信号VD11和VD12,同时送给第二可调节延迟器D2和下降沿预加重两级差分电路作为输入信号;
所述的第二可调节延迟器D2,对第一可调节延迟器差分电压信号VD11和VD12延迟后,输出第二可调节延迟器差分电压信号VD21和VD22,送给下降沿预加重两级差分电路的作为输入信号;
所述的下降沿预加重两级差分电路,将第一可调节延迟器差分电压信号VD11和VD12与第二可调节延迟器差分电压信号VD21和VD22转化为初始下降沿预加重电流IFED,作为下降沿预加重电流镜的输入;
所述的下降沿预加重电流镜,将初始下降沿预加重电流IFED等比例复制,输出下降沿预加重电流IFE
作为优选,上述驱动器的上升沿预加重电路4,包括第三可调节延迟器D3,第四可调节延迟器D4,上升沿预加重两级差分电路和上升沿预加重两级电流镜;
所述的第三可调节延迟器D3,对信号预处理器输出的差分上升沿电压信号VRE1和VRE2延迟后,输出第三可调节延迟器差分电压信号VD31和VD32,同时送给上升沿预加重两级差分电路和第四可调节延迟期D4作为输入信号;
所述的第四可调节延迟器D4,对第三可调节延迟器差分电压信号VD31和VD32延迟后,输出第四可调节延迟器差分电压信号VD41和VD42,送给上升沿预加重两级差分电路作为输入信号;
所述的上升沿预加重两级差分电路,将第一可调节延迟器差分电压信号VD31和VD32与第二可调节延迟器差分电压信号VD41和VD42转化为初始上升沿预加重电流IRED,作为下降沿预加重电流镜的输入;
所述的上升沿预加重两级电流镜,将上升沿预加重电流IRED进行比例复制,产生上升沿预加重电流IRE
本发明具有如下优点:
本发明的驱动器由于通过在信号下降沿和上升沿独立产生加重信号加重驱动电流,充分补偿光波波形的衰减,有效抑制了垂直腔表面发射激光器的非线性。
本发明由于在下降沿预加重电路和上升沿预加重电路中引进了可调节的延迟器,故可以产生可调节脉冲宽度的和可调节脉冲产生时间的预加重电流脉冲信号,能灵活调节输出电流的波形,进而对光波信号进行理想的优化。
本发明由于在下降沿预加重电路和上升沿预加重电路中引进了可调节电流源,故加重强度具有可调性,即使激光器的响应特性由于工艺原因产生偏差,本发明依然可以通过调节加重强度让激光器产生理想的光波信号输出。
附图说明
图1为未采用预加重电路的垂直腔表面发射激光器的驱动器电路原理图;
图2为采用传统预加重电路的垂直腔表面发射激光器的驱动器电路原理图;
图3为本发明的总体结构框图;
图4为本发明中的信号预处理器电路原理图;
图5为本发明中的调制脉冲产生电路原理图;
图6为本发明中的下降沿预加重电路原理图;
图7为本发明中的上升沿预加重电路原理图。
具体实施方式
参照图3,本发明的垂直腔表面发射激光器的驱动器,包括信号预处理器1、调制脉冲产生电路2、上升沿预加重电路3和下降沿预加重电路4。脉冲产生电路2、下降沿预加重电路3和上升沿预加重电路4分别与信号预处理器1的3组输出端对应相连接;该调制脉冲产生电路2,将其输入的差分同步数据电压信号VM1和VM2转换成内含偏置电流分量的初始调制电流IM;该下降沿预加重电路3,在差分下降沿电压信号VFE1和VFE2分别为高电平和低电平时,将其输入的差分下降沿电压信号VFE1和VFE2转化为下降沿预加重电流IFE;该上升沿预加重电路4,在差分上升沿电压信号VRE1和VRE2分别为高电平和低电平时,将输入的差分上升沿电压信号VRE1和VRE2转化为上升沿预加重电流IRE。初始调制电流IM,下降沿预加重电流IFE和上升沿预加重电流IRE这三个输出电流,直接耦合产生最终输出电流:Iout=IM+IFE+IRE,以驱动垂直腔表面发射激光器工作。
参照图4,本发明中的信号预处理器1,包括第一D类触发器FF1、第二D类触发器FF2、第三D类触发器FF3、第四D类触发器FF4、第一双输入与门A1和第二双输入与门A2;
所述的第一D类触发器FF1,其时钟输入端Clk1与外部的时钟信号CLK相连接,其数据输入端d1与外部的数据信号Data相连接,其同向输出端Q1端与第二D类触发器FF2的数据输入端d2和第二双输入与门A2的第一输入端a2相连接,其反向输出端端与第一双输入与门A1的第一输入端a1相连接。
所述的第二D类触发器FF2,其时钟输入端Clk2与外部的时钟信号CLK相连接,其同向输出端Q2连接到第一双输入与门A1的第二输入端b1,其反向输出端连接到第二双输入与门A2的第二输入端b2,同时其同向输出Q2端和反向输出端分别输出差分同步数据电压信号VM1和VM2
所述的第一双输入与门A1的输出端与第三D类触发器FF3的数据输入端d3相连接;
所述的第三D类触发器FF3,其时钟输入端Clk3与外部的时钟信号CLK相连接,其同向输出端Q4和反向输出端分别输出差分下降沿电压信号VFE1和VFE2
所述的第二双输入与门A2的输出端与第四D类触发器FF4的数据输入端d4相连接;
所述的第四D类触发器FF4,其时钟输入端Clk4与外部的时钟信号CLK相连接,其同向输出端Q4和反向输出端分别输出差分上升沿电压信号VRE1和VRE2
该信号预处理器1检测上升沿和下降沿的工作原理如下:
外部的数据信号Data在下降沿情况下有“1、0”形式的数据列,其中数据“1”被第二D类触发器FF2锁存,数据“0”被第一D类触发器FF1锁存,此时第一D类触发器FF1的反向输出端输出为“1”,第二D类触发器FF2的同向输出端Q2和反向输出端分别输出“1”和“0”,即差分同步数据电压信号VM1和VM2分别为高电平和低电平,第一双输入与门A1的输出为“1”;在经过一个时钟周期后,第二D类触发器FF2将数据“0”锁存,其同向输出端Q2端和反向输出端分别输出为“0”和“1”,即差分同步数据电压信号VM1和VM2分别为低电平和高电平,在这两个时钟周期下的差分同步数据电压信号VM1和VM2的变化会触发调制脉冲产生电路2产生具有下降沿波形的初始调制电流IM;第三D类触发器FF3,将第一与门A1的输出值“1”锁存,其同向输出端Q3输出“1”,其反向输出端输出“0”,此时差分下降沿预加重电压信号的第一差分信号VFE1变为高电平,差分下降沿预加重电压信号的第二差分信号VFE2变为低电平,这种状态的差分下降沿预加重电压信号VFE1和VFE2触发下降沿预加重电路3的输出下降沿预加重电流IFE产生电流脉冲。
外部的数据信号Data在上升沿情况下有“0、1”形式的数据列,其中数据“0”被第二D类触发器FF2锁存,数据“1”被第一D类触发器FF1锁存,此时第一D类触发器FF1的同向输出端Q1输出为“1”,第二D类触发器FF2的同向输出端Q2和反向输出端分别输出“0”和“1”,即差分同步数据电压信号VM1和VM2分别为低电平和高电平,第二双输入与门A2的输出变为“1”;在经过一个时钟周期后,第二D类触发器FF2将数据“1”被锁存,其同向输出端Q2和反向输出端分别输出为“1”和“0”,即差分同步数据电压信号VM1和VM2分别为高电平和低电平,在这两个时钟周期下的差分同步数据电压信号VM1和VM2的变化会触发调制脉冲产生电路2产生具有上升沿波形的初始调制电流IM;第四D类触发器FF4,将第二与门A2的输出值“1”锁存,其同向输出端Q4输出“1”,其反向输出端输出“0”,此时差分上升沿预加重电压信号的第一差分信号VRE1变为高电平,差分上升沿预加重电压信号的第二差分信号VRE2变为低电平,这种状态的差分上升沿预加重电压信号VRE1和VRE2触发下降沿预加重电路3的输出上升沿预加重电流IRE产生电流脉冲。
参照图5,本发明中的调制脉冲产生电路2,包括第一NMOS晶体管M1、第二NMOS晶体管M2、可变调制电流源ISM和偏置电流源IP;其中第一NMOS晶体管M1和第二NMOS晶体管M2构成差分电路,将输入的差分同步数据电压信号VM1和VM2转化为调制电流,该调制电流的波形与外部的数据信号Data相对应,幅度为可变调制电流源提供的电流大小,该调制电流与偏置电流源IP提供的偏置电流直接耦合,形成初始调制电流IM
所述的第一NMOS晶体管M1的栅极与信号预处理器输出的第一差分同步数据信号VM1相连接,其源极与可变调制电流源ISM的正极相连接,其漏极连接电源电压Vdd;
所述的可变调制电流源ISM的负极连接地信号gnd;
所述的第二NMOS晶体管M2的栅极与信号预处理器输出的第二差分同步数据信号VM2相连接,其源极与可变调制电流源ISM的正极相连接,其漏极与偏置电流源IP的正极相连接;
所述的偏置电流源IP的负极连接地信号gnd,其正极连接到所述的调制脉冲产生电路2的输出端,输出初始调制电流IM。该偏置电流源提供偏置电流,保障垂直腔表面发射激光器正常工作。
参照图6,本发明中的下降沿预加重电路3,包括第一可调节延迟器D1、第二可调节延迟器D2、下降沿预加重两级差分电路和下降沿预加重电流镜:
所述的第一可调节延迟器D1,对信号预处理器输出的差分下降沿电压信号VFE1和VFE2延迟后,输出第一可调节延迟器差分电压信号VD11和VD12,同时送给第二可调节延迟器D2和下降沿预加重两级差分电路作为输入信号;
所述的第二可调节延迟器D2,对第一可调节延迟器差分电压信号VD11和VD12延迟后,输出第二可调节延迟器差分电压信号VD21和VD22,送给下降沿预加重两级差分电路的作为输入信号;
所述的下降沿预加重两级差分电路,将第一可调节延迟器差分电压信号VD11和VD12与第二可调节延迟器差分电压信号VD21和VD22转化为初始下降沿预加重电流IFED,作为下降沿预加重电流镜的输入,它包括:第三NMOS晶体管M3、第四NMOS晶体管M4、第五NMOS晶体管M5、第六NMOS晶体管M6以及可变下降沿电流源ISFE;该第三NMOS晶体管M3,其漏极连接电源电压Vdd,其栅极连接到第二可调节延迟器差分电压信号的第一差分电压信号VD21,其源级与可变下降沿电流源ISFE的正极相连接;该第四NMOS晶体管M4,其漏极与第五NMOS晶体管M5和第六NMOS晶体管M6的源极相连接,其栅极与第二可调节延迟器差分电压信号的第二差分电压信号VD22连接,其源极与可变电流源ISFE的正极相连接,该晶体管在相对于数据下降沿时刻,经过第一可调节延迟器D1的延迟时间T1和第二可调节延迟器D2的延迟时间T2,由导通变为关闭;该下降沿可变电流源ISFE,其负极连接地信号gnd;该第五NMOS晶体管M5,其栅极与第一可调节延迟器差分电压信号的第二差分信号VD12相连接,其漏极连接所述的电源电压Vdd;该第六NMOS晶体管M6,,其栅极与第一可调节延迟器差分电压信号的第一差分电压信号VD11相连接,该晶体管在相对于数据下降沿时刻,经过第一可调节延迟器D1的延迟时间T1,由关闭达到导通,其漏极在该晶体管和第四NMOS晶体管M4都导通时,产生初始下降沿预加重电流脉冲IFED,作为下降沿预加重电流镜的输入信号;第三NMOS晶体管M3与第四NMOS晶体管M4构成下降沿预加重第一级差分电路,第五NMOS晶体管M5与第六NMOS晶体管构成下降沿预加重第二级差分电路;
所述的下降沿预加重电流镜,将初始下降沿预加重电流IFED等比例复制,输出下降沿预加重电流IFE,它包括第一PMOS晶体管P1和第二PMOS晶体管P2:该第一PMOS晶体管P1,其栅极与其漏极和第二PMOS晶体管P2的栅极相连接,其源极连接电源电压Vdd,其漏极与第六NMOS晶体管M6的漏极电流相连接,以接收初始下降沿预加重电流IFED;该第二PMOS晶体管P2,其源极连接到电源电压Vdd,其漏极输出下降沿预加重电流IFE
下降沿预加重电路的工作原理为:
当差分下降沿信号VFE1和VFE2分别为高电平和低电平时,该对差分下降沿信号首先经过第一可调节延迟器D1的延迟时间T1,使下降沿预加重第二级差分电路的第六NMOS管M6导通,与下降沿预加重第一级差分电路的第四NMOS管M4形成通路,此时,第一PMOS管P1流过可变下降沿电流源ISFE提供的电流,第二PMOS管P2等比例复制第一PMOS管P1电流,下降沿预加重电流IFE开始形成电流脉冲;该对差分下降沿信号再经过第二可调节延迟器D2的延迟时间T2,使第四NMOS管M4关闭,下降沿预加重电流IFE的电流脉冲停止;
如上所述的,由于可变下降沿电流源ISFE提供电流的大小是可以调节的,因而产生的下降沿预加重电流IFE的电流脉冲大小也是可以调节的。下降沿预加重电流IFE的电流脉冲开始时间为上升沿后第一可调节延迟器的延迟时间T1,脉冲宽度为第二可调节延迟器D2的延迟时间T2,由于可调节延迟器的延迟时间是可以调节的,因而下降沿预加重电流IFE的脉冲产生时间和脉冲宽度都是可以调节的。
参照图7,本发明中的上升沿预加重电路4,包括第三可调节延迟器D3、第四可调节延迟器D4、上升沿预加重两级差分电路和上升沿预加重两级电流镜:
所述的第三可调节延迟器D3,对信号预处理器输出的差分上升沿电压信号VRE1和VRE2延迟后,输出第三可调节延迟器差分电压信号VD31和VD32,同时送给上升沿预加重两级差分电路和第四可调节延迟期D4作为输入信号;
所述的第四可调节延迟器D4,对第三可调节延迟器差分电压信号VD31和VD32延迟后,输出第四可调节延迟器差分电压信号VD41和VD42,送给上升沿预加重两级差分电路作为输入信号;
所述的上升沿预加重两级差分电路,将第三可调节延迟器差分电压信号VD31和VD32与第四可调节延迟器差分电压信号VD41和VD42转化为初始上升沿预加重电流IRED,作为下降沿预加重电流镜的输入,它包括第六NMOS晶体管M6、第七NMOS晶体管M7、第八NMOS晶体管M8、第九NMOS晶体管M9、第十NMOS晶体管M10以及可变上升沿电流源ISRE:该第七NMOS晶体管M7,其漏极连接电源电压Vdd,其栅极连接第四可调节延迟器差分电压信号的第一差分电压信号VD41,其源极与可变上升沿电流源ISRE的正极相连接;该可变上升沿电流源ISRE,其负极连接地信号gnd;该第八NMOS晶体管M8,其栅极连接第四可调节延迟器差分电压信号的第二差分电压信号VD42,其源极与可变电流源ISRE的正极相连接,其漏极同时与第九NMOS晶体管M9和第十NMOS晶体管M10的源极相连接,该晶体管在相对于数据上升沿时刻,经过第三可调节延迟器D3的延迟时间T3和第四可调节延迟器D4的延迟时间T4,由导通变为关闭;该第九NMOS晶体管M9,其栅极连接第三可调节延迟器差分电压信号的第二差分信号VD32,其漏极连接所述的电源电压Vdd;该第十NMOS晶体管M10,其栅极连接第三可调节延迟器差分电压信号的第一差分信号VD31,该晶体管在相对于数据上升沿时刻,经过第三可调节延迟器D3的延迟时间T3,由关闭变为导通,其漏极在该晶体管和第八NMOS晶体管M8都导通时,产生初始上升沿预加重电流IRED,作为上升沿预加重电流镜的输入信号;该第七NMOS晶体管M7与第八NMOS晶体管M8构成上升沿预加重第一级差分电路,该第九NMOS晶体管M9与第十NMOS晶体管M10构成上升沿预加重第二级差分电路;
所述的上升沿预加重两级电流镜,将初始上升沿预加重电流IRED进行等比例复制,产生上升沿预加重电流IRE,它包括第三PMOS晶体管P3、第四PMOS晶体管P4、第十一NMOS晶体管M11以及第十二NMOS晶体管M12:该第三PMOS晶体管P3,其漏极同时与第十NMOS晶体管M10的漏极和第四PMOS晶体管P4的栅极相连接,其栅极与其漏极相连接,其源极连接到电源电压Vdd;该第四PMOS晶体管P4,其源极连接到电源电压Vdd,其漏极连接到第十一NMOS晶体管M11的漏极;该第十一NMOS晶体管M11,其漏极连接到第十二NMOS晶体管M12的栅极,其栅极与其漏极相连接,其源极连接到地信号gnd;该第十二NMOS晶体管M12,其源极连接到地信号gnd,其漏端电流是初始下降沿预加重电流IRED等比例复制,输出上升沿预加重电流IRE;第三PMOS晶体管P3与第四PMOS晶体管构成上升沿预加重第一级电流镜,第十一NMOS晶体管M11与第十二NMOS晶体管M12构成上升沿预加重第二级电流镜。
上升沿预加重电路的工作原理为:
当信号预处理器输出的差分上升沿信号VRE1和VRE2分别为高电平和低电平时,该对差分上升沿信号首先经过第三可调节延迟器D3的延迟时间T3,使上升沿预加重第二级差分电路的第十NMOS管M10导通,与上升沿沿预加重第一级差分电路的第八NMOS管M8形成通路,此时,第三PMOS管P3流过可变上升沿电流源ISRE提供的电流,第四PMOS管P4等比例复制第三PMOS管P3电流,第十一NMOS管M11和第十二NMOS管M12等比例复制第四PMOS管P4的电流,上升沿预加重电流IRE开始形成电流脉冲;然后该对差分上升沿信号经过第四可调节延迟器D4的延迟时间T4,使第八NMOS管M8关闭,上升沿预加重电流IRE的电流脉冲停止。
如上所述的,由于可变上升沿电流源ISRE提供电流的大小是可以调节的,因而产生的上升沿预加重电流IRE的脉冲电流大小是可以调节的;上升沿预加重电流IRE的电流脉冲开始时间为上升沿后第三可调节延迟器D3的延迟时间T3,脉冲宽度为第四可调节延迟器D4的延迟时间T4,由于可调节延迟器的延迟时间是可以调节的,因而上升沿预加重电流IRE的脉冲产生时间和脉冲宽度都是可以调节的。
以上所述的是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述的原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种垂直腔表面发射激光器的驱动器,包括信号预处理器(1)和与该信号预处理器输出端相连的调制脉冲产生电路(2),调制脉冲产生电路(2),用于将输入的差分同步数据电压信号VM1和VM2转换成内含偏置电流分量的初始调制电流IM,其特征在于:
信号预处理器(1)的输出端还连接有下降沿预加重电路(3)和上升沿预加重电路(4);
所述的下降沿预加重电路(3),用于将输入的差分下降沿电压信号VFE1和VFE2转化为下降沿预加重电流IFE
所述的上升沿预加重电路(4),用于将输入的差分上升沿电压信号VRE1和VRE2转化为上升沿预加重电流IRE
所述的初始调制电流IM,下降沿预加重电流IFE和上升沿预加重电流IRE这三个输出电流直接耦合产生最终输出电流Iout,以驱动垂直腔表面发射激光器工作。
2.根据权利要求1所述的驱动器,其特征在于:所述的信号预处理器(1),包括第一D类触发器FF1、第二D类触发器FF2、第三D类触发器FF3、第四D类触发器FF4、第一双输入与门A1和第二双输入与门A2;
所述的第一D类触发器FF1,其时钟输入端Clk1与外部的时钟信号CLK相连接,其数据输入端d1与外部的数据信号Data相连接,其同向输出端Q1端与第二D类触发器FF2的数据输入端d2和第二双输入与门A2的第一输入端a2相连接,其反向输出端端与第一双输入与门A1的第一输入端a1相连接;
所述的第二D类触发器FF2,其时钟输入端Clk2与外部的时钟信号CLK相连接,其同向输出端Q2连接到第一双输入与门A1的第二输入端b1,其反向输出端连接到第二双输入与门A2的第二输入端b2,同时其同向输出Q2端和反向输出端分别输出差分同步数据电压信号VM1和VM2
所述的第一双输入与门A1的输出端与第三D类触发器FF3的数据输入端d3相连接;
所述的第三D类触发器FF3,其时钟输入端Clk3与外部的时钟信号CLK相连接,其同向输出端Q3和反向输出端分别输出差分下降沿电压信号VFE1和VFE2
所述的第二双输入与门A2的输出端与第四D类触发器FF4的数据输入端d4相连接;
所述的第四D类触发器FF4,其时钟输入端Clk4与外部的时钟信号CLK相连接,其同向输出端Q4和反向输出端分别输出差分上升沿电压信号VRE1和VRE2
3.根据权利要求1所述的驱动器,其特征在于:调制脉冲产生电路(2)包括第一NMOS晶体管M1、第二NMOS晶体管M2、可变调制电流源ISM和偏置电流源IP
所述的第一NMOS晶体管M1的栅极与信号预处理器输出的第一差分同步数据电压信号VM1相连接,其源极与可变调制电流源ISM的正极相连接,其漏极连接电源电压Vdd;
所述的可变调制电流源ISM的负极连接地信号gnd;
所述的第二NMOS晶体管M2的栅极与信号预处理器输出的第二差分同步数据电压信号VM2相连接,其源极与可变调制电流源ISM的正极相连接,其漏极与偏置电流源IP的正极相连接;
所述的可变电流源IP的负极连接地信号gnd,其正极连接到所述的调制脉冲产生电路(2)的输出端,输出初始调制电流IM
4.根据权利要求1所述的驱动器,其特征在于:下降沿预加重电路(3),包括第一可调节延迟器D1、第二可调节延迟器D2、下降沿预加重两级差分电路和下降沿预加重电流镜;
所述的第一可调节延迟器D1,对信号预处理器输出的差分下降沿电压信号VFE1和VFE2延迟后,输出第一可调节延迟器差分电压信号VD11和VD12,同时送给第二可调节延迟器D2和下降沿预加重两级差分电路作为输入信号;
所述的第二可调节延迟器D2,对第一可调节延迟器差分电压信号VD11和VD12延迟后,输出第二可调节延迟器差分电压信号VD21和VD22,送给下降沿预加重两级差分电路的作为输入信号,
所述的下降沿预加重两级差分电路,将第一可调节延迟器差分电压信号VD11和VD12与第二可调节延迟器差分电压信号VD21和VD22转化为初始下降沿预加重电流IFED,作为下降沿预加重电流镜的输入信号;
所述的下降沿预加重电流镜,将初始下降沿预加重电流IFED等比例复制,输出下降沿预加重电流IFE
5.根据权利要求4所述的驱动器,其特征在于:下降沿预加重两级差分电路,包括:第三NMOS晶体管M3、第四NMOS晶体管M4、第五NMOS晶体管M5、第六NMOS晶体管M6以及可变下降沿电流源ISFE
所述的第三NMOS晶体管M3,其漏极连接电源电压Vdd,其栅极连接到第二可调节延迟器差分电压信号的第一差分电压信号VD21,其源极与可变下降沿电流源ISFE的正极相连接,这个晶体管与第四NMOS晶体管构成下降沿预加重第一级差分电路;
所述的第四NMOS晶体管M4,其漏极与第五NMOS晶体管M5和第六NMOS晶体管M6的源极相连接,其栅极与第二可调节延迟器差分电压信号的第二差分电压信号VD22相连接,其源极与可变下降沿电流源ISFE的正极相连接,该晶体管在相对于数据下降沿时刻,经过第一可调节延迟器D1的延迟时间T1和第二可调节延迟器D2的延迟时间T2,由导通变为关闭;
所述的可变下降沿电流源ISFE,其负极连接地信号gnd;
所述的第五NMOS晶体管M5,其栅极与第一可调节延迟器差分电压信号的第二差分电压信号VD12相连接,其漏极连接所述的电源电压Vdd,该晶体管与第六NMOS晶体管构成下降沿预加重第二级差分电路;
所述的第六NMOS晶体管M6,其栅极与第一可调节延迟器差分电压信号的第一差分电压信号VD11相连接,该晶体管在相对于数据下降沿时刻,经过第一可调节延迟器D1的延迟时间T1,由关闭达到导通,其漏极在该晶体管和第四NMOS晶体管M4都导通时,产生初始下降沿预加重电流IFED,作为下降沿预加重电流镜的输入信号。
6.根据权利要求4所述的驱动器,其特征在于:下降沿预加重电流镜,包括第一PMOS晶体管P1和第二PMOS晶体管P2
所述的第一PMOS晶体管P1,其栅极与其漏极和第二PMOS晶体管P2的栅极相连接,其源极连接电源电压Vdd,其漏极与第六NMOS晶体管M6的漏极电流相连接,以接收初始下降沿预加重电流IFED
所述的第二PMOS晶体管P2,其源极连接到电源电压Vdd,其漏极输出下降沿预加重电流IFE
7.根据权利要求1所述的驱动器,其特征在于:上升沿预加重电路(4),包括第三可调节延迟器D3、第四可调节延迟器D4、上升沿预加重两级差分电路和上升沿预加重两级电流镜;
所述的第三可调节延迟器D3,对信号预处理器输出的差分上升沿电压信号VRE1和VRE2延迟后,输出第三可调节延迟器差分电压信号VD31和VD32,同时送给上升沿预加重两级差分电路和第四可调节延迟期D4作为输入信号;
所述的第四可调节延迟器D4,对第三可调节延迟器差分电压信号VD31和VD32延迟后,输出第四可调节延迟器差分电压信号VD41和VD42,送给上升沿预加重两级差分电路作为输入信号;
所述的上升沿预加重两级差分电路,将第一可调节延迟器差分电压信号VD31和VD32与第二可调节延迟器差分电压信号VD41和VD42转化为初始上升沿预加重电流IRED,作为上升沿预加重电流镜的输入;
所述的上升沿预加重两级电流镜,将初始上升沿预加重电流IRED进行等比例复制,产生上升沿预加重电流IRE
8.根据权利要求7所述的驱动器,其特征在于:上升沿预加重两级差分电路,包括第六NMOS晶体管M6、第七NMOS晶体管M7、第八NMOS晶体管M8、第九NMOS晶体管M9、第十NMOS晶体管M10以及可变上升沿电流源ISRE
所述的第七NMOS晶体管M7,其漏极连接电源电压Vdd,其栅极连接第四可调节延迟器差分电压信号的第一差分电压信号VD41,其源极与可变上升沿电流源ISRE的正极相连接,这个晶体管与第八NMOS晶体管M8构成上升沿预加重第一级差分电路;
所述的可变上升沿电流源ISRE,其负极连接地信号gnd;
所述的第八NMOS晶体管M8,其栅极连接第四可调节延迟器差分电压信号的第二差分电压信号VD42,其源极与可变上升沿电流源ISRE的正极相连接,其漏极同时与第九NMOS晶体管M9的源极和第十NMOS晶体管M10的源极相连接,该晶体管在相对于数据上升沿时刻,经过第三可调节延迟器D3的延迟时间T3和第四可调节延迟器D4的延迟时间T4,由导通变为关闭;
所述的第九NMOS晶体管M9,其栅极连接第三可调节延迟器差分电压信号的第二差分信号VD32,其漏极连接所述的电源电压Vdd,与第十NMOS晶体管M10构成上升沿预加重第二级差分电路;
所述的第十NMOS晶体管M10,其栅极连接第三可调节延迟器差分电压信号的第一差分信号VD31,该晶体管在相对于数据上升沿时刻,经过第三可调节延迟器D3的延迟时间T3,由关闭变为导通,其漏极在该晶体管和第八NMOS晶体管M8都导通时,产生初始上升沿预加重电流IRED,作为上升沿预加重电流镜的输入信号。
9.根据权利要求7所述的驱动器,其特征在于:上升沿预加重两级电流镜,包括第三PMOS晶体管P3、第四PMOS晶体管P4、第十一NMOS晶体管M11以及第十二NMOS晶体管M12
所述的第三PMOS晶体管P3,其漏极同时与第十NMOS晶体管M10的漏极和第四PMOS晶体管P4的栅极相连接,其栅极与其漏极相连接,其源极连接到电源电压Vdd,其与第四PMOS晶体管P4构成上升沿预加重第一级电流镜;
所述的第四PMOS晶体管P4,其源极连接到电源电压Vdd,其漏极连接到第十一NMOS晶体管M11的漏极;
所述的第十一NMOS晶体管M11,其漏极连接到第十二NMOS晶体管M12的栅极,其栅极与其漏极相连接,其源极连接到地信号gnd,其与第十二NMOS晶体管M12构成上升沿预加重第二级电流镜;
所述的第十二NMOS晶体管M12,其源极连接到地信号gnd,其漏端电流是初始下降沿预加重电流IRED等比例复制,输出上升沿预加重电流IRE
CN201310374491.1A 2013-08-23 2013-08-23 垂直腔表面发射激光器的驱动器 Expired - Fee Related CN103427331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310374491.1A CN103427331B (zh) 2013-08-23 2013-08-23 垂直腔表面发射激光器的驱动器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310374491.1A CN103427331B (zh) 2013-08-23 2013-08-23 垂直腔表面发射激光器的驱动器

Publications (2)

Publication Number Publication Date
CN103427331A CN103427331A (zh) 2013-12-04
CN103427331B true CN103427331B (zh) 2016-04-13

Family

ID=49651717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310374491.1A Expired - Fee Related CN103427331B (zh) 2013-08-23 2013-08-23 垂直腔表面发射激光器的驱动器

Country Status (1)

Country Link
CN (1) CN103427331B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452424A (zh) * 2016-08-30 2017-02-22 西安空间无线电技术研究所 一种具有预加重的差分驱动器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369137B2 (ja) * 2014-05-30 2018-08-08 ソニー株式会社 送信装置、受信装置、および通信システム
CN103684331B (zh) * 2013-12-22 2016-09-28 复旦大学 基于前馈均衡和脉冲均衡技术的25Gbps VCSEL驱动电路
CN110086082B (zh) * 2019-04-09 2020-08-25 华中师范大学 一种电容耦合预加重的vcsel激光器高速驱动电路
CN114079223B (zh) * 2022-01-18 2022-04-26 长芯盛(武汉)科技有限公司 用于对驱动电流进行预加重处理的驱动装置及方法
CN114094436B (zh) * 2022-01-19 2022-05-17 长芯盛(武汉)科技有限公司 用于对驱动电流进行处理的驱动装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261081A (en) * 1990-07-26 1993-11-09 Ncr Corporation Sequence control apparatus for producing output signals in synchronous with a consistent delay from rising or falling edge of clock input signal
JPH08335390A (ja) * 1995-06-08 1996-12-17 Mitsubishi Electric Corp ダイナミック型半導体記憶装置
US7280574B1 (en) * 2002-05-15 2007-10-09 Cypress Semiconductor Corp. Circuit for driving a laser diode and method
KR101024817B1 (ko) * 2008-11-12 2011-03-24 주식회사 동부하이텍 차동 고대역 강조 구동장치
KR101290080B1 (ko) * 2011-01-28 2013-07-26 주식회사 실리콘웍스 프리엠퍼시스 회로 및 이를 구비한 차동 전류 신호전송 시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452424A (zh) * 2016-08-30 2017-02-22 西安空间无线电技术研究所 一种具有预加重的差分驱动器
CN106452424B (zh) * 2016-08-30 2019-04-09 西安空间无线电技术研究所 一种具有预加重的差分驱动器

Also Published As

Publication number Publication date
CN103427331A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
CN103427331B (zh) 垂直腔表面发射激光器的驱动器
US7868804B2 (en) High speed driver equalization
Tsunoda et al. 8.9 A 40Gb/s VCSEL over-driving IC with group-delay-tunable pre-emphasis for optical interconnection
CN105049025A (zh) 低电压差分信号驱动电路
CN103973246A (zh) 一种用于光接收机的低噪声跨阻放大器
CN105897251A (zh) 一种数字信号隔离器及其方法
CN204481788U (zh) 一种可抑制输出共模波动的lvds驱动电路
CN104135272A (zh) 节省功耗的预加重lvds驱动电路
CN103178441A (zh) 垂直腔面发光激光器(vcsel)驱动电路
CN106785832A (zh) 脉冲光纤激光器
US20130163995A1 (en) Optical transmitter/receiver circuit device and receiver circuit
CN104767117A (zh) 一种高速激光器驱动电路
CN110086082B (zh) 一种电容耦合预加重的vcsel激光器高速驱动电路
US20110248750A1 (en) High-bandwidth on-chip communication
CN103905185A (zh) 一种适用于连续变量量子密钥分发的脉冲发生器
EP3429081A1 (en) High-speed, high-swing driver circuit suitable for use in silicon optical modulator
CN102064468B (zh) 一种低电压自适应光通信激光驱动器电路
CN107210761A (zh) 串行化发射机
CN103457154B (zh) 带预加重的集成光通信激光驱动器
CN106211412B (zh) 在pwm 关闭时间期间维持led 驱动器工作点
CN106712947A (zh) 一种基于量子密钥分配系统的驱动电路
CN103684331B (zh) 基于前馈均衡和脉冲均衡技术的25Gbps VCSEL驱动电路
CN102769458B (zh) 一种低功耗驱动电路
CN205283380U (zh) 一种宽占空比的mosfet隔离驱动电路
CN105703750B (zh) 一种具有转换时间控制的mlvds驱动电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20210823

CF01 Termination of patent right due to non-payment of annual fee