CN103423836A - 车辆空调系统过热度控制方法及车辆空调系统 - Google Patents

车辆空调系统过热度控制方法及车辆空调系统 Download PDF

Info

Publication number
CN103423836A
CN103423836A CN2013103039545A CN201310303954A CN103423836A CN 103423836 A CN103423836 A CN 103423836A CN 2013103039545 A CN2013103039545 A CN 2013103039545A CN 201310303954 A CN201310303954 A CN 201310303954A CN 103423836 A CN103423836 A CN 103423836A
Authority
CN
China
Prior art keywords
superheat
expansion valve
degree
vehicle air
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103039545A
Other languages
English (en)
Other versions
CN103423836B (zh
Inventor
唐立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanhua Holding Group Co Ltd
Original Assignee
Hangzhou Sanhua Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Sanhua Research Institute Co Ltd filed Critical Hangzhou Sanhua Research Institute Co Ltd
Priority to CN201310303954.5A priority Critical patent/CN103423836B/zh
Publication of CN103423836A publication Critical patent/CN103423836A/zh
Application granted granted Critical
Publication of CN103423836B publication Critical patent/CN103423836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

本发明提供一种车辆空调系统过热度控制方法及车辆空调系统,其中,所述车辆空调系统过热度控制方法包括:实时获取实际过热度、预设过热度以及影响实际过热度变化的前反馈信息;根据获取的实际过热度、预设过热度以及前反馈信息实时调整电子膨胀阀的开度,以控制车辆空调系统的过热度。本发明的车辆空调系统过热度控制方法及车辆空调系统,采用电子膨胀阀作为节流元件,除了采用实际过热度作为输入参数来调节电子膨胀阀的开度之外,还通过压缩机的转速变化量、和/或蒸发器风机的转速变化量等前反馈信息来控制电子膨胀阀的开度,具有响应速度快、控制过热度更平稳、出风温度更稳定、提高舒适度等优点。

Description

车辆空调系统过热度控制方法及车辆空调系统
本申请为申请日为2012年04月24日、申请号为201210122508.x、发明名称为《车辆空调系统过热度控制方法及车辆空调系统》的专利申请的分案申请。
技术领域
本发明涉及一种车辆空调系统过热度控制方法及车辆空调系统,尤其涉及一种通过压缩机和/或蒸发器风机的前反馈信息、以及实际过热度、预设过热度来控制电子膨胀阀的开度的车辆空调系统过热度控制方法及车辆空调系统,属于汽车空调技术领域。
背景技术
汽车空调系统主要包括压缩机、冷凝器、节流元件和蒸发器,从压缩机出来的高温高压制冷剂气体,经冷凝器冷凝后变为制冷剂液体,制冷剂液体经节流元件节流降压后进入蒸发器,在蒸发器内与蒸发器外的空气进行热交换,变为制冷剂气体又回到压缩机,从而完成一个制冷循环,而经蒸发器冷却后的空气进入车室,若车室内的温度低于或高于车室内设定温度,则通过控制调节节流元件的开度控制过热度。
传统的发动机汽车空调系统的压缩机和发动机直接使用皮带相连,无法控制压缩机的转速,随着节能环保的混合动力和电动汽车的逐渐普及,越来越多的车型采用电动压缩机取代传统的皮带轮驱动压缩机作为空调制冷循环的动力。而现有的汽车空调系统主要使用热力膨胀阀作为节流元件,热力膨胀阀在应用于电动压缩机系统时,存在以下问题:
由于热力膨胀阀阀针的动作是由阀上温包对应饱和压力和管路内压力差值驱动,完全由机械力决定,所以无法快速正确应对压缩机或者蒸发器风机的工况快速变化;无法根据系统各参数决策相应开度,过热度控制不够稳定,而影响出风温度的舒适性;目前的新能源车多数需要空调系统不只用于冷却车厢,还需要冷却电池和变频器,这种双蒸发器的空调系统使用热力膨胀阀时,由于热力膨胀阀在系统运行时无法关死,使得空调系统在只有蒸发器或换热器工作时,另一侧仍有流量通过,影响效率,同时,大量液体聚集在未工作一侧的低压管路内,导致系统充注量提高,系统需使用相对较大的集液器,提高成本。
在采用电动压缩机的空调系统中使用电子膨胀阀取代热力膨胀阀作为节流元件,具有如下优势:
电子膨胀阀可以根据空调系统中的各参数进行调节,并根据不同工况即时调整相应控制策略,达到提高制冷系统效率、节能环保的目的;电子膨胀阀的控制过热度相比热力膨胀阀更为平稳,从而使出风温度更为稳定,提高舒适度。
目前的家用商用空调上是采用电子膨胀阀作为节流元件,由于家用商用空调工况较稳定,制冷系统负荷变化很小,其通常是仅使用过热度作为PID输入参数来控制电子膨胀阀的开度,以控制制冷量。
然而,汽车空调与家用商用空调不同,汽车空调工况变化非常快,单纯使用过热度调节电子膨胀阀开度会存在响应速度慢、容易过调等问题。
发明内容
为了解决上述现有技术中所存在的问题,本发明提供了一种车辆空调系统过热度控制方法及车辆空调系统,采用电子膨胀阀作为节流元件,除了采用实际过热度作为输入参数来调节电子膨胀阀的开度之外,还通过影响实际过热度变化的前反馈信息来控制电子膨胀阀的开度,响应速度快、控制过热度更平稳。
本发明所提供的技术方案为:
一种车辆空调系统过热度控制方法,包括:
实时获取实际过热度、预设过热度以及影响实际过热度变化的前反馈信息;
根据获取的实际过热度、预设过热度以及前反馈信息实时调整电子膨胀阀的开度,以控制车辆空调系统的过热度。
进一步的,所述前反馈信息包括:
压缩机的转速或排量变化量;和/或,所述蒸发器风机的转速变化量。
进一步的,所述“根据实际过热度、预设过热度以及前反馈信息实时调整电子膨胀阀的开度,以控制车辆空调系统的过热度”的具体控制方法为:
比较获取的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值获取对应的第一电子膨胀阀开度调节量;
根据压缩机的转速或排量变化信息、和/或所述蒸发器风机的转速变化信息获取对应的第二电子膨胀阀开度调节量;以及,
根据第一电子膨胀阀开度调节量和第二电子膨胀阀开度调节量对电子膨胀阀的开度进行调整。
进一步的,所述第一电子膨胀阀开度调节量Vout1通过以下计算得到:
V out 1 = K p × e + K d × de dt + K i × ∫ n t edt ,
式中,e为实际过热度和预设过热度的过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;
第二电子膨胀阀开度调节量Vout2通过以下计算得到:
V out 2 = K CS × dCS dt , 或者 V out 2 = K CS × dCS dt + K BS × dBS dt , 或者 V out 2 = K BS × dBS dt ,
式中,KCS为压缩机反馈系数,CS为压缩机转速或排量变化量,BS为蒸发器风机转速变化量,KBS为蒸发器风机反馈系数;
以及,在根据第一电子膨胀阀开度调节量Vout1和第二电子膨胀阀开度调节量Vout2对电子膨胀阀的开度进行调整时,将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后输出调节开度的控制信号至电子膨胀阀的控制端。
进一步的,所述第二电子膨胀阀开度调节量小于等于所述电子膨胀阀的开度的最大变化速率。
进一步的,所述的车辆空调系统过热度控制方法还包括:
获取电子膨胀阀的开度,并根据获取的实际过热度、预设过热度以及电子膨胀阀的开度判断电子膨胀阀是否处于故障状态;
当判断结果为电子膨胀阀处于故障状态时,输出控制信号至执行控制机构,执行控制机构控制调整该车辆空调系统中影响实际过热度变化的设备的参数,以调整车辆空调系统的过热度,其中,所述车辆空调系统中影响实际过热度变化的设备的参数包括压缩机的转速或排量C1、和/或蒸发器风机的转速C2
进一步的,在判断结果为电子膨胀阀处于故障状态的前提下,
当实际过热度大于第一预设过热度,输出控制信号至执行控制机构,执行控制机构控制降低压缩机转速或排量C1、或者降低蒸发器风机转速C2、或者关闭压缩机;
当实际过热度小于第二预设过热度,输出控制信号至执行控制机构,执行控制机构控制提高压缩机的转速或排量C1、或者提高蒸发器风机的转速C2、或者关闭压缩机;
当实际过热度大于等于第二预设过热度、且小于等于第一预设过热度时,输出控制信号至执行控制机构,执行控制机构控制压缩机的转速或排量C1以及蒸发器风机的转速C2保持不变。
本发明还提供了一种车辆空调系统,包括压缩机组和节流元件,所述压缩机组包括压缩机、冷凝器、冷凝器风机、蒸发器和蒸发器风机,所述节流元件包括电子膨胀阀;所述车辆空调系统还包括:
第二获取模块,用于实时获取实际过热度、以及实时获取影响所述实际过热度变化的前反馈信息;
第二控制器,用于存储预设过热度以及接收实际过热度和前反馈信息,并根据实际过热度、预设过热度以及前反馈信息实时调整所述电子膨胀阀的开度。
进一步的,所述前反馈信息包括:
所述压缩机的转速或排量变化量;和/或,所述蒸发器风机的转速变化量。
进一步的,所述第二控制器与电子膨胀阀通过车辆CAN总线、或LIN总线进行通讯;所述第二获取模块通过车辆CAN总线、或LIN总线与所述第二控制器进行通讯。
进一步的,所述第二控制器包括:
PID控制模块,用于存储预设过热度,并比较接收的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值获取对应的第一电子膨胀阀开度调节量;
前反馈控制模块,用于根据接收的压缩机的转速或排量变化量、和/或所述蒸发器风机的转速变化量获取对应的第二电子膨胀阀开度调节量;
执行控制模块,用于根据所述第一电子膨胀阀开度调节量和所述第二电子膨胀阀开度调节量来实际控制调整所述电子膨胀阀的开度。
进一步的,所述PID控制模块内通过以下计算来获取第一电子膨胀阀开度调节量Vout1:
V out 1 = K p × e + K d × de dt + K i × ∫ n t edt ,
式中,e为过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;
所述前反馈控制模块内通过以下计算来获取第二电子膨胀阀输出值Vout2:
V out 2 = K CS × dCS dt , 或者 V out 2 = K CS × dCS dt + K BS × dBS dt , 或者 V out 2 = K BS × dBS dt ,
式中,KCS为压缩机反馈系数,CS为压缩机转速或排量变化量,BS为蒸发器风机转速变化量,KBS为蒸发器风机反馈系数;
所述执行控制模块内通过将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后输出调节开度的控制信号至电子膨胀阀的控制端。
进一步的,所述车辆空调系统还包括:
第一获取模块,用于实时获取电子膨胀阀的开度;
第一控制器,用于根据获取的实际过热度、预设过热度以及电子膨胀阀的开度,判断电子膨胀阀是否处于故障状态,当判断结果为电子膨胀阀处于故障状态时,则根据获取的实际过热度生成第一控制信号;
执行控制机构,用于接收第一控制器发送的第一控制信号,并根据所述第一控制信号控制调整该车辆空调系统中影响实际过热度变化的设备的参数,其中,所述车辆空调系统中影响实际过热度变化的设备的参数包括压缩机的转速或排量C1、和/或蒸发器风机的转速C2
本发明的有益效果为:本发明的车辆空调系统过热度控制方法及车辆空调系统,采用电子膨胀阀作为节流元件,根据汽车空调工况变化快、压缩机转速和蒸发器风机转速经常调整等特点,除了采用实际过热度作为输入参数来调节电子膨胀阀的开度之外,还通过压缩机的转速变化量、和/或蒸发器风机的转速变化量等前反馈信息来控制电子膨胀阀的开度,具有响应速度快、控制过热度更平稳、出风温度更稳定、提高舒适度等优点。
附图说明
图1表示本发明车辆空调系统过热度控制方法的流程框图;
图2表示本发明车辆空调系统过热度控制方法第一种实施例的流程框图;
图3表示本发明车辆空调系统过热度控制方法与现有技术相比得到的过热度与控制时间关系图;
图4表示本发明车辆空调系统过热度控制方法第四种实施例的流程框图;
图5表示本发明车辆空调系统过热度控制方法第四种实施例中故障处理过程的流程框图;
图6表示本发明车辆空调系统过热度控制方法第四种实施例中故障诊断过程的流程框图;
图7表示本发明的车辆空调系统第一种实施例的结构框图;
图8表示本发明的车辆空调系统第二种实施例的结构框图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
现有技术中,采用电子膨胀阀作为节流元件的家用及商用空调系统中,电子膨胀阀的开度仅通过实际过热度作为PID输入参数进行控制,存在响应速度慢、容易过调、系统效率低以及压缩机液击等问题。为了解决上述技术问题,本发明的方法中采用前反馈控制策略来对汽车空调系统的电子膨胀阀的开度进行控制,即:除了采用实际过热度作为PID输入参数来控制电子膨胀阀的开度之外,还根据实时获取的前反馈信息来控制电子膨胀阀的开度,响应速度快、控制过热度更平稳。
在此,首先对前反馈进行下说明:
前反馈是指系统的控制输出不再单纯和被控对象参数的变化相关,还与影响被控对象参数变化的扰动因素有关,例如:电子膨胀阀的开度控制不光和实际过热度的变化有关,还与影响实际过热度变化、并在工况发生变化时比实际过热度更为及时地作出反应的车辆空调系统中的其他参数有关,因此,通过前反馈控制策略可使系统在工况发生变化时,但还没有对被控对象(实际过热度)产生影响前就进行调节,来达到更好的控制品质。
请参见图1,结合以上说明,本发明车辆空调系统过热度控制方法,其包括以下步骤:
S1.实时获取实际过热度、预设过热度、以及影响实际过热度变化的前反馈信息;
S2.根据获取的实际过热度、预设过热度、以及前反馈信息,实时调整电子膨胀阀的开度,以控制车辆空调系统的过热度。
下面说明在车辆空调系统中影响实际过热度变化的前反馈信息可以包括哪些:
通常,车辆空调系统主要包括压缩机、冷凝器、节流元件和蒸发器,当车辆空调系统处于一稳定工况的情况下,压缩机的转速(对于排量压缩机来说为压缩机的排量)、蒸发器风机的转速、车辆外界温度、车内温度以及电子膨胀阀的开度均处于稳定状态。某一时刻,外界环境对车辆空调系统施加一扰动时,例如:车子从树荫或隧道中开到太阳下等情况,工况发生变化,导致车内温度突然升高,则蒸发器温度升高,蒸发压力上升,为了达到设定的出风温度,压缩机的转速则逐渐提高(对于变排量压缩机来说,压缩机的排量加大),蒸发器风机转速逐渐提高,在此情况下,若电子膨胀阀开度保持不变,则会出现蒸发压力下降、但制冷量上升不多的情况,在现象上则表现为实际过热度过高。简单的讲,在工况发生变化时,压缩机的转速(排量)提高,蒸发器风机转速提高,会使实际过热度提高,反之亦然,而为了使制冷系统有更大的流量,需要电子膨胀阀开度持续加大,使得实际过热度回到设定值。
由上述的整个过程中可知,工况发生变化后,蒸发器风机的转速、压缩机转速或排量在提高一段时间(一般为5~10秒,根据用于获取实际过热度的温度传感器和压力传感器的灵敏度而定)后,用于获取实际过热度的温度传感器和压力传感器才能获知实际过热度提高,进而开始调节电子膨胀阀的开度。
因此,本发明中前反馈信息优选为:压缩机的转速(对于变排量压缩机为压缩机的排量)变化信息、和/或蒸发器风机的转速变化信息。
当然,根据上述整个过程,并结合空调系统的工作原理可知,前反馈信息还可以包括:冷凝器风机的转速。
请参见图2,图2为本发明的方法第一种实施例的流程图。
如图2所示,前反馈信息为压缩机的转速变化量时,该车辆空调系统过热度控制方法具体步骤如下:
S11.实时获取实际过热度、预设过热度以及压缩机的转速变化信息;
S21.比较获取的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值获取对应的第一电子膨胀阀开度调节量Vout1;具体地说,通过实际过热度对电子膨胀阀开度进行控制时,与家用空调的电子膨胀阀的PID控制原理相同,则第一电子膨胀阀开度调节量Vout1可根据以下计算得到:
V out 1 = K p × e + K d × de dt + K i × ∫ n t edt ,
式中,e为实际过热度与预设过热度的过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;其中,比例系数Kp、微分系数Kd和积分系数Ki是根据实验调试得到的系数。
S22.根据获取的压缩机的转速变化信息,获取对应的第二电子膨胀阀开度调节量Vout2;具体地说,通过压缩机的转速变化信息对电子膨胀阀的开度进行调整时,其控制原理类似微分环节,压缩机的转速随着时间变化有相应函数CS(t),某一时刻t0的输出值为
Figure BDA00003520512500082
则第二电子膨胀阀开度调节量Vout2可以通过以下计算得到:
式中,KCS为压缩机反馈系数,CS为压缩机的转速变化量;其中,压缩机反馈系数KCS是根据实验调试得到的系数。
S23.将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后,输出调节开度的控制信号至电子膨胀阀的控制端,以控制电子膨胀阀的开度,即电子膨胀阀开度调节量Vout可以通过以下计算得到:
V out = K p × e + K d × de dt + K i × ∫ n t edt + K CS × dCS dt , 式中,e为实际过热度和预设过热度的过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数,KCS为压缩机反馈系数,CS为压缩机转速变化量。
此外,对于上述步骤S21中比例系数Kp、微分系数Kd和积分系数Ki、上述步骤S22的压缩机反馈系数KCS可以根据实验调试获得。
需要说明的是,压缩机为变排量压缩机时,上述控制方法中,压缩机的转速变化量相应地即为压缩机的排量变化量。
以下提供了本发明的方法的第二种实施例,与第一种实施例不同的是,本实施例中前反馈信息为蒸发器风机的转速变化信息,具体步骤如下:
S11’.实时获取实际过热度、预设过热度以及蒸发器风机的转速变化信息;
S21’.比较获取的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值获取对应的第一电子膨胀阀开度调节量Vout1;具体地说,第一电子膨胀阀开度调节量Vout1可以根据以下计算得到:
V out 1 = K p × e + K d × de dt + K i × ∫ n t edt , 式中,e为实际过热度和预设过热度的过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;其中,比例系数Kp、微分系数Kd和积分系数Ki是根据实验调试得到的系数。
S22’.根据获取的蒸发器风机的转速变化信息,获取对应的第二电子膨胀阀开度调节量Vout2;具体地说,第二电子膨胀阀开度调节量Vout2可以通过以下计算得到:
Figure BDA00003520512500093
式中,BS为蒸发器风机转速变化量,KBS为蒸发器风机反馈系数;其中,蒸发器风机反馈系数KBS是根据实验调试得到的系数。
S23’.将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后,输出调节开度的控制信号至电子膨胀阀的控制端,以控制电子膨胀阀的开度,即电子膨胀阀开度调节量Vout可以通过以下计算得到:
V out = K p × e + K d × de dt + K i × ∫ n t edt + K BS × dBS dt .
其中,上述步骤中,比例系数Kp、微分系数Kd和积分系数Ki、蒸发器风机反馈系数KBS可以通过实验调试方法得到。
以下提供本发明的第三种实施例,其与第一、第二种实施例不同的是,前反馈信息包括蒸发器风机的转速变化信息和压缩机风机的转速变化信息,具体控制步骤如下:
S11’’.实时获取实际过热度、预设过热度、蒸发器风机的转速变化信息、以及压缩机的转速变化信息;
S21’’.比较获取的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值,获取对应的第一电子膨胀阀开度调节量Vout1;
具体地说,第一电子膨胀阀开度调节量Vout1可以根据以下计算得到:
V out 1 = K p × e + K d × de dt + K i × ∫ n t edt , 式中,e为实际过热度和预设过热度的过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;其中,比例系数Kp、微分系数Kd和积分系数Ki是根据实验调试得到的系数。
S22’’.根据获取的蒸发器风机的转速变化信息,获取对应的第二电子膨胀阀开度调节量Vout2;
具体地说,第二电子膨胀阀开度调节量Vout2可以通过以下计算得到:
Figure BDA00003520512500103
式中,KCS为压缩机反馈系数,CS为压缩机转速变化量,其中,BS为蒸发器风机转速变化量,KBS为蒸发器风机反馈系数;压缩机反馈系数KCS、蒸发器风机反馈系数KBS是根据实验调试得到的系数。
S23’’.将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后,输出调节开度的控制信号至电子膨胀阀的控制端,以控制电子膨胀阀的开度,即电子膨胀阀开度调节量Vout可以通过以下计算得到:
V out = K p × e + K d × de dt + K i × ∫ n t edt + K CS × dCS dt + K BS × dBS dt .
其中,上述步骤中,比例系数Kp、微分系数Kd、积分系数Ki以及压缩机反馈系数KCS、蒸发器风机反馈系数KBS同样可以通过实验调试方法得到。
以下举一具体例子说明本发明的方法的工作过程:
当汽车在行进过程中,从隧道进入阳光曝晒下,导致车内温度突然升高,进而使蒸发器温度升高,蒸发压力上升,根据设定的出风温度,压缩机的转速提高,控制器立刻获取压缩机的转速变化信息,并立刻对电子膨胀阀的开度进行预调节;压缩机的转速提高,会使得实际过热度提高,控制器获取实际过热度,过热度差值e发生变化,而对电子膨胀阀开度再进行调节;从而,电子膨胀阀开度开大,给系统带来更多的制冷剂流量,制冷量逐渐提高,则车厢内的温度逐渐下降,回到预设过热度附近,扰动被消除,压缩机的转速也不再提高,趋于某一转速,电子膨胀阀开度也不再开大,逐渐趋于某一开度。
上述过程中,压缩机的转速发生变化后立刻控制调节电子膨胀阀的开度,与获得实际过热度信号后再调节电子膨胀阀的开度相比,响应速度大为提高,系统波动也更小。
同样的,当蒸发器的风机速度提高,使得蒸发器的换热效率提高,使制冷剂温度上升,同样使实际过热度提高,在蒸发器风机的转速发生变化后立即调节电子膨胀阀的开度,与压力传感器和温度传感器获得实际过热度信号后再调节电子膨胀阀的开度相比,响应速度大为提高,且系统波动更小。
图3表示,仅采用实际过热度控制电子膨胀阀开度的控制方法作为对照方法,与本发明中的方法相比较,而得到的系统的过热度与控制时间关系图,其其中,a曲线表示本发明的方法的过热度与控制时间关系曲线,b曲线表示对照方法的过热度与控制时间关系曲线。
由图3中的a曲线和b曲线可知,本发明的方法控制过热度时,实际过热度的波动幅度小,且控制时间短,而采用对照方向控制过热度时,实际过热度的波动幅度大,且控制时间长。也就是说,本发明的方法中采用前反馈控制策略能够在系统压缩机或者风机转速发生变化时,立即获得扰动的大小、变化方向,从而提前对实际过热度的变化发生预计,相比传统的控制方法等待系统实际过热度发生变化再进行相应控制,系统波动更小,实际过热度回到预设过热度值所需时间更短。
另外,需要说明的是,电子膨胀阀的阀针动作方式与热力膨胀阀不同,其是采用步进电机驱动阀针沿螺纹转动,每转动一周就可以使阀针上升或者下降一个螺距,来达到移动阀针控制其开度的目的。由于步进电机的转速受到线包、控制器性能的制约,一般无法达到热力膨胀阀的移动速度。假设步进电机的速度为80pps,阀线包整个行程为480步,则电子膨胀阀需要6秒钟从全关状态开至全开状态。
因此,为了优化系统对过热度的控制,则压缩机和蒸发器风机的转速变化速率不能过快,以免导致电子膨胀阀的开度变化速率无法跟上,使车辆空调系统的过热度失调。
因此,第二电子膨胀阀开度调节量应不超过电子膨胀阀的开度的最大变化速率,也就是说,压缩机的转速或蒸发器的风机转速变化时,其变化速度对应的反馈值不超过电子膨胀阀动作速度,则压缩机的转速或排量的最大变化速率计算方法为:
Figure BDA00003520512500121
其中,
Figure BDA00003520512500122
为电子膨胀阀的开度的最大变化速率。
同理,蒸发器风机转速的最大变化速率为:
Figure BDA00003520512500123
其中,
Figure BDA00003520512500124
为电子膨胀阀的开度的最大变化速率。
此外,还需要说明的是,本发明的方法中可以采用压力传感器获取压缩机的转速或蒸发器风机的转速,车辆空调系统在长时间停止运行后,第一次启动初期,系统还没有进行稳定运行工况,由于压力传感器的反应速度快于温度传感器,压力较温度会更快下降,因此显示过热度会在运行初期急剧上升,有可能计算得到的电子膨胀阀的开度大于实际所需要的开度,导致系统流量过大,压缩机电流过大而过载。因此,在压缩机停机超过5分钟的情况下,重新启动时速度不大于最大转速的50%,持续15s,然后恢复正常控制。
以上对压缩机的转速和蒸发器风机的转速变化速度的限制、以及系统在开机时对压缩机的限制,可以更好的保护车辆空调系统,提高控制精度。
另外,现有技术中当电子膨胀阀出现堵转故障,卡在某处无法动作时,或者当电子膨胀阀出现故障无法开至某一区间时,目前的车辆空调系统不能做出相应的故障处理对策,会使得空调系统造成损害。针对上述缺陷,本发明车辆空调系统过热度控制方法,在上述三种实施方案的基础上进行了进一步的优化。请参见图4,图4示出了本发明第四实施例的流程框图,在本实施例中,本发明的控制方法在通过前反馈控制策略控制过热度的同时,还进行电子膨胀阀故障处理,具体包括以下步骤:
S01.实时获取电子膨胀阀的开度、实际过热度以及预设过热度;
S02.根据实际过热度、预设过热度以及电子膨胀阀的开度判断电子膨胀阀是否处于故障状态,在过热度控制过程中实时针对电子膨胀阀进行有效的故障诊断;
S03.当判断结果为电子膨胀阀处于故障状态时,输出控制信号至执行控制机构;
S04.执行控制机构控制调整该车辆空调系统中影响实际过热度变化的设备的参数,以调整车辆空调系统的过热度。
其中,车辆空调系统中影响实际过热度变化的设备的参数包括压缩机的转速或排量C1、和/或蒸发器风机的转速C2
在上述步骤S03、S04中,当判断结果为电子膨胀阀处于故障状态时,如图5所示,具体控制步骤如下:
S031、判断实际过热度是否小于第二预设过热度,若是,则执行步骤S041,否则,执行步骤S032;
S032、判断实际过热度是否大于第一预设过热度,若是,则执行步骤S042,否则,执行步骤S043;
S041、提高压缩机的转速或排量C1,或者,提高蒸发器风机的转速C2,或者,关闭压缩机;
S042、降低压缩机转速或排量C1,或者,降低蒸发器风机转速C2,或者,关闭压缩机;
S043、压缩机的转速或排量C1以及蒸发器风机的转速C2不进行调整。
其中,在上述步骤中,可根据实际情况对第一预设过热度、第二预设过热度进行设定,当预设过热度为范围值时,则第二预设过热度大于第一预设过热度,当预设过热度为具体值时,则第一预设过热度等于第二预设过热度。
如图5所示,在上述步骤S031中,实际过热度小于预设过热度时,具体控制步骤如下:
S0311、判断低压是否低于低压报警值,若是,则执行步骤S0314;否则,执行步骤S0312;
S0312、判断高压是否高于高压报警值,若是,则执行步骤S0314,否则,执行步骤S0313;
S0313、判断压缩机转速或排量C1是否处于最高值C1max3,若是,则执行步骤S0314,否则,执行步骤S0411;
S0314、判断蒸发器风机的转速C2是否处于最大值C2max4,若是,则执行步骤S0413,否则,执行S0412;
S0411、提高压缩机转速或排量C1
S0412、提高蒸发器风机转速C2
S0413、关闭压缩机。
在上述步骤中,Δ3≥0、Δ4≥0,且Δ3、Δ4的值可根据实际情况进行设置,以保证压缩机和蒸发器风机安全运行。
如图5所示,在上述步骤S032中,实际过热度小于预设过热度时,具体控制步骤如下:
S0321、判断压缩机的转速或排量C1是否处于最小值C1min1,若是,则执行步骤S0322,否则,执行步骤S0421;
S0322、判断蒸发器风机的转速C2是否处于最小值C2min2,若是,则执行步骤S0423,否者,执行步骤S0422;
S0421、降低压缩机的转速或排量C1
S0422、降低蒸发器风机的转速C2
S0423、关闭压缩机。
在上述步骤中,Δ1≥0、Δ2≥0,且Δ1、Δ2的值可根据实际情况进行设置,以保证压缩机和蒸发器风机安全运行。
下面举例说明上述故障处理过程。假设在电子膨胀阀开度为50%时出现堵转的情况,而此时系统需要的流量小于电子膨胀阀开度所能提供的流量,则出现实际过热度小于预设过热度的情况,因此,首先判断系统低压是否低于报警值、是否高压高于报警值,如果出现这两种情况,则不能通过提高压缩机转速(或排量)来控制过热度,因为提高压缩机的转速(或排量)会进一步降低低压和提高高压,则只能通过提高蒸发器风机的转速来使过热度提高;如果不是,因为蒸发器风机的转速的改变会影响车厢内舒适度,应优先提高压缩机的转速(或排量)来提高过热度。
另外,在进行故障处理过程中,如果电子膨胀阀堵转时当前的开度大于实际需要的开度,则车辆空调系统产生的制冷量会大于实际需要,多余冷量可通过加热芯的热量中和;当电子膨胀阀堵转时当前的开度小于实际需要开度,则车辆空调系统产生的制冷量会低于需要制冷量,系统继续进行故障处理过程。
本发明的方法中的故障处理过程,当电子膨胀阀出现故障时,可以通过调整压缩机和蒸发器风机转速,使系统在保持合理过热度下,继续以正常性能或者降低性能的方式运行,使车厢里仍然能够有制冷效果,电池仍然能够得到冷却,而不至于对系统造成损害。
其中,这里的压缩机尤其是指可变频电动压缩机。
另外,在本实施例中,如图6所示,步骤S02是根据实际过热度与预设的过热度之间的关系以及电子膨胀阀的开度精准地进行故障诊断的过程,故障状态的判断处理过程如下:
S01.获取电子膨胀阀的开度、实际过热度及预设的过热度;
S021.判断预设的过热度-实际过热度是否大于第一定值w1,若是,则执行步骤S022;若否,则执行步骤S025;
S022.判断电子膨胀阀的开度是否达到最小值,若是,则执行步骤S023;若否,则执行步骤S025;
S023.阀出错次数n加1;
S024.判断第一时间长度t1内累计出错次数n是否大于或等于预设次数N;若是,则确定当前电子膨胀阀处于故障状态;
S03.根据该判断结果输出控制信号至执行机构。
其中,步骤S024中,若以第一时间长度t1为周期累计电子膨胀阀的出错次数n小于预设次数N,则判断所述电子膨胀阀当前处于正常状态,执行步骤S05,即相应报错属于外部因素影响,过程参数累计出错次数n清零,并进入下一故障诊断周期。
也就是说,当预设的过热度大于实际过热度时,阀执行开度减小趋势的动作以提高实际过热度达到预设的过热度。显然,上述步骤S021、S022可在预设的过热度大于实际过热度第一定值w1,而此时阀的开度已经达到最小值,则判定过热度控制出错。
反之,当实际过热度大于预设的过热度时,阀执行开度增大趋势的动作以降低实际过热度从而达到预设的过热度。同样,当预设的过热度大于实际过热度第二定值w2,而此时阀的开度已经达到最大值时,则判定过热度控制出错。如图2所示,具体按照以下步骤进行:
S025.判断实际过热度-预设的过热度是否大于第二定值w2,若是,则执行步骤S026;若否,执行步骤S05,即相应报错属于外部因素影响,过程参数累计出错次数n清零,并进入下一故障诊断周期。
S026.判断电子膨胀阀的开度是否达到最大值,若是,则执行步骤S023,阀出错次数n加1;两种出错次数n在第一时间长度t1内累计次数大于或等于预设次数N,则执行步骤S03,根据该判断结果输出控制信号至执行机构。若否,执行步骤S05。
此外,汽车需要在制冷系统设计的极限工况范围内工作,例如,工作在车室外温度超出该车制冷系统设计的极限温度等特殊工况。受上述特殊工况的影响,制冷系统的工作参数往往会出现前述报错现象,显然,各种极限工况范围外的外界因素干扰,将直接影响本方案所述控制方法当中故障诊断的精准度。为此,可以在步骤S01之前增加关于是否处理极限工况范围内的判断步骤S0。具体如图6所示。
S0.判断电子膨胀阀是否处于极限工况范围。若否,则执行步骤S01进行故障诊断;若是,则进入下一故障诊断周期,即停止执行后续故障诊断步骤,以避免非常态下报错的问题出现。
如图7所示,本发明还提供了一种车辆空调系统,包括压缩机组和节流元件,所述压缩机组包括压缩机、冷凝器、冷凝器风机、蒸发器和蒸发器风机,其中,节流元件采用电子膨胀阀,该车辆空调系统还包括:
第二获取模块1,用于实时获取实际过热度、以及实时获取影响实际过热度变化的前反馈信息;
第二控制器2,用于存储预设过热度以及接收实际过热度和前反馈信息,并根据实际过热度、预设过热度以及前反馈信息实时调整电子膨胀阀的开度。
本发明的车辆空调系统通过实际过热度和前反馈信息对电子膨胀阀开度进行控制,与现有技术相比,能够在系统发生扰动时,立即获得扰动的大小、变化方向,从而提前对过热度的变化发生预计,相比传统的采用等待系统过热度发生变化再进行相应控制的空调系统,系统波动更小,过热度回到控制点所需时间更短。
优选的,第二获取模块1获取的前反馈信息包括:压缩机的转速或排量变化量;和/或,蒸发器风机的转速变化量。
其中,第二获取模块1包括用于获取压缩机转速(排量)变化信息和/或蒸发器风机转速变化信息的采集模块、以及用于获取蒸发器进出口温度的温度传感器,其中,采集模块可以选择转速传感器或者压力传感器等。
本实施例中,优选的,第二控制器2与电子膨胀阀通过车辆CAN总线、或LIN总线进行通讯;第二获取模块1通过车辆CAN总线、或LIN总线与第二控制器2进行通讯。
如图7所示,第二控制器2包括:
PID控制模块21,用于存储预设过热度,并比较接收的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值获取对应的第一电子膨胀阀开度调节量;
前反馈控制模块22,用于根据接收的压缩机的转速或排量变化量、和/或所述蒸发器风机的转速变化量获取对应的第二电子膨胀阀开度调节量;以及,
执行控制模块23,用于根据所述第一电子膨胀阀开度调节量和所述第二电子膨胀阀开度调节量来实际控制调整所述电子膨胀阀的开度。
其中,PID控制模块21内通过以下计算来获取第一电子膨胀阀开度调节量Vout1:
Figure BDA00003520512500181
式中,e为过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;
所述前反馈控制模块22内通过以下计算来获取第二电子膨胀阀输出值Vout2:
V out 2 = K CS × dCS dt , 或者 V out 2 = K CS × dCS dt + K BS × dBS dt , 或者 V out 2 = K BS × dBS dt ,
式中,KCS为压缩机反馈系数,CS为压缩机转速或排量变化量,BS为蒸发器风机转速变化量,KBS为蒸发器风机反馈系数;
所述执行控制模块23内通过将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后输出调节开度的控制信号至电子膨胀阀的控制端。
本实施例中,如图8所示,车辆空调系统还包括:
第一获取模块3,用于实时获取电子膨胀阀的开度;
第一控制器4,用于根据获取的实际过热度、预设过热度以及电子膨胀阀的开度,判断电子膨胀阀是否处于故障状态,当判断结果为电子膨胀阀处于故障状态时,则根据获取的实际过热度生成第一控制信号;
执行控制机构5,用于接收第一控制器4发送的第一控制信号,并根据第一控制信号控制调整该车辆空调系统中影响实际过热度变化的设备的参数,其中,车辆空调系统中影响实际过热度变化的设备的参数包括压缩机的转速或排量C1、和/或蒸发器风机的转速C2
本实施例中,第一获取模块3通过车辆CAN总线、或LIN总线与第二控制器2进行通讯;第一控制器4与电子膨胀阀均通过车辆CAN总线、或LIN总线进行通讯。
本实施例中,优选的,执行控制机构5为车载控制器ECU。
其中,第一控制器4包括:
判断模块41,用于根据实际过热度、预设过热度以及电子膨胀阀的开度判断电子膨胀阀是否处于故障状态,并在判断结果为电子膨胀阀处于故障状态时,生成第一控制命令;
第一控制模块42,用于接收判断模块41发送的第一控制命令,并在实际过热度大于第一预设过热度时,控制执行控制机构5执行降低压缩机转速或排量C1、或者降低蒸发器风机转速C2、或者关闭压缩机的命令;
第二控制模块43,用于接收判断模块41发送的第一控制命令,并在实际过热度小于第二预设过热度时,控制执行控制机构5执行提高压缩机的转速或排量C1、或者提高蒸发器风机的转速C2、或者关闭压缩机的命令;
第三控制模块44,用于接收判断模块41发送的第一控制命令,并在实际过热度大于等于第二预设过热度、且小于等于第一预设过热度时,控制执行控制机构5执行保持压缩机的转速或排量C1、或者提高蒸发器风机的转速C2不变的命令。
其中,第一控制模块42包括:
第一命令模块421,用于在压缩机的转速或排量C1大于最小值C1min1时,控制执行控制机构5执行降低压缩机转速或排量C1的命令;
第二命令模块422,用于在压缩机的转速或排量C1达到最小值C1min1、且蒸发器风机的转速C2大于最小值C2min2时,控制执行控制机构5执行降低蒸发器风机转速C2的命令;
第三命令模块423,用于在压缩机的转速或排量C1达到最小值C1min1,且蒸发器风机的转速C2达到最小值C2min2时,控制执行控制机构5执行关闭压缩机的命令;
其中,第二控制模块43包括:
第四命令模块431,用于在车辆空调系统低压高于低压报警值、高压低于高压报警值、且压缩机的转速或排量C1小于最大值C1max3时,控制执行控制机构5执行提高压缩机的转速或排量C1的命令;
第五命令模块432,用于在车辆空调系统低压低于低压报警值或高压高于高压报警值、且蒸发器风机的转速C2小于最大值C2max4时,控制执行控制机构5执行提高蒸发器风机的转速C2的命令;
第六命令模块433,用于在车辆空调系统低压低于低压报警值或高压高于高压报警值、且蒸发器风机的转速C2达到最大值C2max4时,控制执行控制机构5执行关闭压缩机的命令。
本实施例中,第一控制器4与第二控制器2可以集成在一个芯片上。
另外,需要说明的是,第一控制器4内还具有用于硬件故障诊断的硬件诊断模块,用于对驱动电流、电压进行检测,获知开路、短路、失步等故障信息。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (13)

1.一种车辆空调系统过热度控制方法,其特征在于,包括:
实时获取实际过热度、预设过热度以及影响实际过热度变化的前反馈信息;
根据获取的实际过热度、预设过热度以及前反馈信息实时调整电子膨胀阀的开度,以控制车辆空调系统的过热度。
2.根据权利要求1所述的车辆空调系统过热度控制方法,其特征在于,所述前反馈信息包括:
压缩机的转速或排量变化量;和/或,所述蒸发器风机的转速变化量。
3.根据权利要求2所述的车辆空调系统过热度控制方法,其特征在于,所述“根据实际过热度、预设过热度以及前反馈信息实时调整电子膨胀阀的开度,以控制车辆空调系统的过热度”包括:
比较获取的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值获取对应的第一电子膨胀阀开度调节量;
根据压缩机的转速或排量变化信息、和/或所述蒸发器风机的转速变化信息获取对应的第二电子膨胀阀开度调节量;以及,
根据第一电子膨胀阀开度调节量和第二电子膨胀阀开度调节量对电子膨胀阀的开度进行调整。
4.根据权利要求3所述的车辆空调系统过热度控制方法,其特征在于,所述第一电子膨胀阀开度调节量Vout1通过以下计算得到:
V out 1 = K p × e + K d × de dt + K i × ∫ n t edt ,
式中,e为实际过热度和预设过热度的过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;
第二电子膨胀阀开度调节量Vout2通过以下计算得到:
V out 2 = K CS × dCS dt , 或、 V out 2 = K CS × dCS dt + K BS × dBS dt , V out 2 = K BS × dBS dt ,
式中,KCS为压缩机反馈系数,CS为压缩机转速或排量变化量,BS为蒸发器风机转速变化量,KBS为蒸发器风机反馈系数;
以及,
在根据第一电子膨胀阀开度调节量Vout1和第二电子膨胀阀开度调节量Vout2对电子膨胀阀的开度进行调整时,将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后输出调节开度的控制信号至电子膨胀阀的控制端。
5.根据权利要求4所述的车辆空调系统过热度控制方法,其特征在于:所述第二电子膨胀阀开度调节量小于等于所述电子膨胀阀的开度的最大变化速率。
6.根据权利要求1至5任一项所述的车辆空调系统过热度控制方法,其特征在于,所述的方法还包括:
获取电子膨胀阀的开度,并根据获取的实际过热度、预设过热度以及电子膨胀阀的开度判断电子膨胀阀是否处于故障状态;
当判断结果为电子膨胀阀处于故障状态时,输出控制信号至执行控制机构,执行控制机构控制调整该车辆空调系统中影响实际过热度变化的设备的参数,以调整车辆空调系统的过热度,其中,所述车辆空调系统中影响实际过热度变化的设备的参数包括压缩机的转速或排量C1、和/或蒸发器风机的转速C2
7.根据权利要求6所述的车辆空调系统过热度控制方法,其特征在于,在判断结果为电子膨胀阀处于故障状态的前提下,
当实际过热度大于第一预设过热度,输出控制信号至执行控制机构,执行控制机构控制降低压缩机转速或排量C1、或者降低蒸发器风机转速C2、或者关闭压缩机;
当实际过热度小于第二预设过热度,输出控制信号至执行控制机构,执行控制机构控制提高压缩机的转速或排量C1、或者提高蒸发器风机的转速C2、或者关闭压缩机;以及,
当实际过热度大于等于第二预设过热度、且小于等于第一预设过热度时,输出控制信号至执行控制机构,执行控制机构控制压缩机的转速或排量C1以及蒸发器风机的转速C2保持不变。
8.一种车辆空调系统,其特征在于,包括压缩机组和节流元件,所述压缩机组包括压缩机、冷凝器、蒸发器和蒸发器风机,其特征在于,所述节流元件包括电子膨胀阀;
所述车辆空调系统还包括:
第二获取模块,用于实时获取实际过热度、以及实时获取影响所述实际过热度变化的前反馈信息;
第二控制器,用于存储预设过热度以及接收实际过热度和前反馈信息,并根据实际过热度、预设过热度以及前反馈信息实时调整所述电子膨胀阀的开度。
9.根据权利要求8所述的车辆空调系统,其特征在于,所述前反馈信息包括:
所述压缩机的转速或排量变化量;和/或,所述蒸发器风机的转速变化量。
10.根据权利要求9所述的车辆空调系统,其特征在于:所述第二控制器与电子膨胀阀通过车辆CAN总线、或LIN总线进行通讯;所述第二获取模块通过车辆CAN总线、或LIN总线与所述第二控制器进行通讯。
11.根据权利要求10所述的车辆空调系统,其特征在于,所述第二控制器包括:
PID控制模块,用于存储预设过热度,并比较接收的实际过热度与预设过热度,得到一过热度差值,并根据所述过热度差值获取对应的第一电子膨胀阀开度调节量;
前反馈控制模块,用于根据接收的压缩机的转速或排量变化量、和/或所述蒸发器风机的转速变化量获取对应的第二电子膨胀阀开度调节量;以及,
执行控制模块,用于根据所述第一电子膨胀阀开度调节量和所述第二电子膨胀阀开度调节量来实际控制调整所述电子膨胀阀的开度。
12.根据权利要求11所述的车辆空调系统,其特征在于,所述PID控制模块内通过以下计算来获取第一电子膨胀阀开度调节量Vout1:
V out 1 = K p × e + K d × de dt + K i × ∫ n t edt ,
式中,e为过热度差值,Kp为比例系数,Kd为微分系数,Ki为积分系数;
所述前反馈控制模块内通过以下计算来获取第二电子膨胀阀输出值Vout2:
V out 2 = K CS × dCS dt , 或者 V out 2 = K CS × dCS dt + K BS × dBS dt , 或者 V out 2 = K BS × dBS dt ,
式中,KCS为压缩机反馈系数,CS为压缩机转速或排量变化量,BS为蒸发器风机转速变化量,KBS为蒸发器风机反馈系数;
所述执行控制模块内通过将第一电子膨胀阀开度调节量Vout1与第二电子膨胀阀开度调节量Vout2累加后输出调节开度的控制信号至电子膨胀阀的控制端。
13.根据权利要求8至12任一项所述的车辆空调系统,其特征在于,所述车辆空调系统还包括:
第一获取模块,用于实时获取电子膨胀阀的开度;
第一控制器,用于根据获取的实际过热度、预设过热度以及电子膨胀阀的开度,判断电子膨胀阀是否处于故障状态,当判断结果为电子膨胀阀处于故障状态时,则根据获取的实际过热度生成第一控制信号;
执行控制机构,用于接收第一控制器发送的第一控制信号,并根据所述第一控制信号控制调整该车辆空调系统中影响实际过热度变化的设备的参数,其中,所述车辆空调系统中影响实际过热度变化的设备的参数包括压缩机的转速或排量C1、和/或蒸发器风机的转速C2
CN201310303954.5A 2012-04-24 2012-04-24 车辆空调系统过热度控制方法及车辆空调系统 Active CN103423836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310303954.5A CN103423836B (zh) 2012-04-24 2012-04-24 车辆空调系统过热度控制方法及车辆空调系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310303954.5A CN103423836B (zh) 2012-04-24 2012-04-24 车辆空调系统过热度控制方法及车辆空调系统
CN201210122508.X 2012-04-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201210122508.X Division 2012-04-24 2012-04-24

Publications (2)

Publication Number Publication Date
CN103423836A true CN103423836A (zh) 2013-12-04
CN103423836B CN103423836B (zh) 2018-03-13

Family

ID=49648965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310303954.5A Active CN103423836B (zh) 2012-04-24 2012-04-24 车辆空调系统过热度控制方法及车辆空调系统

Country Status (1)

Country Link
CN (1) CN103423836B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104930772A (zh) * 2015-05-14 2015-09-23 珠海格力电器股份有限公司 电子膨胀阀初始开度的控制方法、装置和空调系统
CN105299744A (zh) * 2014-06-23 2016-02-03 青岛海尔空调电子有限公司 一种离子风室内机、离子风空调系统及控制方法
CN106052215A (zh) * 2016-07-04 2016-10-26 青岛海尔空调器有限总公司 空调室外机电子膨胀阀的控制方法
CN106152646A (zh) * 2016-07-04 2016-11-23 青岛海尔空调器有限总公司 控制空调电子膨胀阀的方法
CN106225361A (zh) * 2016-07-18 2016-12-14 广东志高空调有限公司 一种电子膨胀阀的开度控制方法、装置和变频制冷系统
CN106482411A (zh) * 2015-08-31 2017-03-08 青岛海尔空调电子有限公司 一种多联机空调压缩机防液击控制方法
CN106839546A (zh) * 2017-01-24 2017-06-13 深圳市冰润冷链科技有限公司 变容量调节热力学逆循环系统过热度控制方法
CN107606830A (zh) * 2017-09-05 2018-01-19 浙江正理生能科技有限公司 一种电子膨胀阀调节方法
CN107709066A (zh) * 2015-06-25 2018-02-16 三电汽车空调系统株式会社 车辆用空调装置
CN108312805A (zh) * 2018-01-04 2018-07-24 英格索兰(中国)工业设备制造有限公司 空调机组的控制方法及其控制装置
CN109219726A (zh) * 2016-06-09 2019-01-15 三菱电机株式会社 制冷循环装置
CN109689404A (zh) * 2016-09-07 2019-04-26 株式会社电装 车辆用空调装置
CN110017634A (zh) * 2018-01-08 2019-07-16 杭州先途电子有限公司 一种电子膨胀阀的控制方法
CN110481270A (zh) * 2019-08-27 2019-11-22 江苏阿尔特空调实业有限责任公司 电动客车空调节流控制方法、装置及空调系统
CN110878994A (zh) * 2018-09-06 2020-03-13 广州汽车集团股份有限公司 电子膨胀阀控制方法、装置、控制器及动力电池冷却系统
CN111442570A (zh) * 2020-03-13 2020-07-24 青岛经济技术开发区海尔热水器有限公司 太空能系统的控制方法、装置、设备及存储介质
CN112665246A (zh) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 电子膨胀阀的调控方法、装置及热泵设备
CN113291128A (zh) * 2021-04-29 2021-08-24 东风柳州汽车有限公司 一种集成式动力电池冷却系统、冷却控制方法及电动汽车
CN113858910A (zh) * 2021-08-26 2021-12-31 智马达汽车有限公司 一种电池板式换热器的电子膨胀阀开度控制方法和系统
CN114963547A (zh) * 2021-05-25 2022-08-30 青岛海尔新能源电器有限公司 热水器控制方法、装置、设备及存储介质
CN115045852A (zh) * 2021-03-09 2022-09-13 山东朗进科技股份有限公司 一种轨道车辆空调风阀的控制方法及控制系统
WO2022199239A1 (zh) * 2021-03-25 2022-09-29 青岛海尔空调器有限总公司 车载顶置式空调器及其控制方法、车辆
CN115264745A (zh) * 2022-06-29 2022-11-01 北京小米移动软件有限公司 一种确定空调出风温度的方法、装置及存储介质
CN115264745B (zh) * 2022-06-29 2024-04-23 北京小米移动软件有限公司 一种确定空调出风温度的方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477355A (zh) * 2003-07-10 2004-02-25 上海交通大学 轿车空调蒸发器制冷剂流量控制系统
CN1811306A (zh) * 2006-02-22 2006-08-02 天津大学 燃气机热泵的容量自动调节与控制方法
JP2006284074A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷却装置の制御装置
CN101476791A (zh) * 2008-01-02 2009-07-08 Lg电子株式会社 空调系统
CN101852523A (zh) * 2009-03-31 2010-10-06 海尔集团公司 制冷循环系统的过热度控制方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477355A (zh) * 2003-07-10 2004-02-25 上海交通大学 轿车空调蒸发器制冷剂流量控制系统
JP2006284074A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷却装置の制御装置
CN1811306A (zh) * 2006-02-22 2006-08-02 天津大学 燃气机热泵的容量自动调节与控制方法
CN101476791A (zh) * 2008-01-02 2009-07-08 Lg电子株式会社 空调系统
CN101852523A (zh) * 2009-03-31 2010-10-06 海尔集团公司 制冷循环系统的过热度控制方法和系统

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299744A (zh) * 2014-06-23 2016-02-03 青岛海尔空调电子有限公司 一种离子风室内机、离子风空调系统及控制方法
CN104930772A (zh) * 2015-05-14 2015-09-23 珠海格力电器股份有限公司 电子膨胀阀初始开度的控制方法、装置和空调系统
CN107709066B (zh) * 2015-06-25 2020-11-13 三电汽车空调系统株式会社 车辆用空调装置
CN107709066A (zh) * 2015-06-25 2018-02-16 三电汽车空调系统株式会社 车辆用空调装置
CN106482411A (zh) * 2015-08-31 2017-03-08 青岛海尔空调电子有限公司 一种多联机空调压缩机防液击控制方法
CN109219726A (zh) * 2016-06-09 2019-01-15 三菱电机株式会社 制冷循环装置
CN109219726B (zh) * 2016-06-09 2021-04-02 三菱电机株式会社 制冷循环装置
CN106052215B (zh) * 2016-07-04 2019-07-23 青岛海尔空调器有限总公司 空调室外机电子膨胀阀的控制方法
CN106052215A (zh) * 2016-07-04 2016-10-26 青岛海尔空调器有限总公司 空调室外机电子膨胀阀的控制方法
CN106152646A (zh) * 2016-07-04 2016-11-23 青岛海尔空调器有限总公司 控制空调电子膨胀阀的方法
CN106152646B (zh) * 2016-07-04 2019-04-19 青岛海尔空调器有限总公司 控制空调电子膨胀阀的方法
CN106225361A (zh) * 2016-07-18 2016-12-14 广东志高空调有限公司 一种电子膨胀阀的开度控制方法、装置和变频制冷系统
CN109689404A (zh) * 2016-09-07 2019-04-26 株式会社电装 车辆用空调装置
CN106839546B (zh) * 2017-01-24 2019-09-03 深圳市冰润冷链科技有限公司 变容量调节热力学逆循环系统过热度控制方法
CN106839546A (zh) * 2017-01-24 2017-06-13 深圳市冰润冷链科技有限公司 变容量调节热力学逆循环系统过热度控制方法
CN107606830A (zh) * 2017-09-05 2018-01-19 浙江正理生能科技有限公司 一种电子膨胀阀调节方法
CN107606830B (zh) * 2017-09-05 2020-05-12 浙江正理生能科技有限公司 一种电子膨胀阀调节方法
CN108312805A (zh) * 2018-01-04 2018-07-24 英格索兰(中国)工业设备制造有限公司 空调机组的控制方法及其控制装置
CN110017634A (zh) * 2018-01-08 2019-07-16 杭州先途电子有限公司 一种电子膨胀阀的控制方法
CN110017634B (zh) * 2018-01-08 2021-04-13 杭州先途电子有限公司 一种电子膨胀阀的控制方法
CN110878994A (zh) * 2018-09-06 2020-03-13 广州汽车集团股份有限公司 电子膨胀阀控制方法、装置、控制器及动力电池冷却系统
CN110878994B (zh) * 2018-09-06 2021-03-23 广州汽车集团股份有限公司 电子膨胀阀控制方法、装置、控制器及动力电池冷却系统
CN110481270A (zh) * 2019-08-27 2019-11-22 江苏阿尔特空调实业有限责任公司 电动客车空调节流控制方法、装置及空调系统
CN111442570A (zh) * 2020-03-13 2020-07-24 青岛经济技术开发区海尔热水器有限公司 太空能系统的控制方法、装置、设备及存储介质
CN112665246A (zh) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 电子膨胀阀的调控方法、装置及热泵设备
CN115045852A (zh) * 2021-03-09 2022-09-13 山东朗进科技股份有限公司 一种轨道车辆空调风阀的控制方法及控制系统
WO2022199239A1 (zh) * 2021-03-25 2022-09-29 青岛海尔空调器有限总公司 车载顶置式空调器及其控制方法、车辆
CN113291128A (zh) * 2021-04-29 2021-08-24 东风柳州汽车有限公司 一种集成式动力电池冷却系统、冷却控制方法及电动汽车
CN113291128B (zh) * 2021-04-29 2022-05-03 东风柳州汽车有限公司 一种集成式动力电池冷却系统、冷却控制方法及电动汽车
CN114963547A (zh) * 2021-05-25 2022-08-30 青岛海尔新能源电器有限公司 热水器控制方法、装置、设备及存储介质
CN114963547B (zh) * 2021-05-25 2023-12-12 青岛海尔新能源电器有限公司 热水器控制方法、装置、设备及存储介质
CN113858910A (zh) * 2021-08-26 2021-12-31 智马达汽车有限公司 一种电池板式换热器的电子膨胀阀开度控制方法和系统
CN113858910B (zh) * 2021-08-26 2023-08-29 浙江智马达智能科技有限公司 一种电池板式换热器的电子膨胀阀开度控制方法和系统
CN115264745A (zh) * 2022-06-29 2022-11-01 北京小米移动软件有限公司 一种确定空调出风温度的方法、装置及存储介质
CN115264745B (zh) * 2022-06-29 2024-04-23 北京小米移动软件有限公司 一种确定空调出风温度的方法、装置及存储介质

Also Published As

Publication number Publication date
CN103423836B (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
CN103423836A (zh) 车辆空调系统过热度控制方法及车辆空调系统
CN103423835A (zh) 车辆空调系统的控制方法及车辆空调系统
KR101919846B1 (ko) 차량 공기 조화 시스템의 과열도를 제어하기 위한 방법 및 차량 공기 조화 시스템
EP3023716B1 (en) Method for controlling vehicle air-conditioning system, and vehicle air-conditioning system
CN110849007B (zh) 一种冷媒量自动调节控制方法、装置及空调器
CN103245154A (zh) 一种汽车空调系统电子膨胀阀的控制方法
CN111376692B (zh) 一种车辆、多支路温度调节液冷电源系统及其控制方法
CN109927504B (zh) 用于车舱和电池的控制方法
EP2014491A1 (en) Control apparatus for vehicle air conditioner
CN111271836B (zh) 一种控制方法、装置、空调器及计算机可读存储介质
CN108116183B (zh) 一种热管理系统的控制方法
KR101316230B1 (ko) 액티브 에어플랩의 제어방법
CN103836768A (zh) 一种汽车空调定排量压缩机的控制方法
CN103033005A (zh) 一种汽车空调系统电子膨胀阀的控制方法
WO2017086343A1 (ja) 車両用空調装置の冷凍サイクル及びこれを搭載した車両
CN109373634A (zh) 一种回油控制方法、装置及空调器
CN105546890B (zh) 空调能量输出调节方法及空调
CN204141789U (zh) 一种汽车空调控制系统
CN103033008B (zh) 一种汽车空调系统电子膨胀阀的控制方法
CN109595739A (zh) 一种带电子膨胀阀的空调及其控制方法
KR20230105069A (ko) 차량용 히트펌프 시스템 제어방법
CN108312805A (zh) 空调机组的控制方法及其控制装置
CN116390863A (zh) 具有唯一的低压侧的传感器装置的、用于机动车的具有热泵功能的制冷设备
CN103033007B (zh) 一种汽车空调系统电子膨胀阀的控制方法
Dou Common Fault Diagnosis and Elimination of Automobile Air-Conditioning Refrigeration System: based on Smart Sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210714

Address after: 312500 xialiquan village, Qixing street, Xinchang County, Shaoxing City, Zhejiang Province

Patentee after: SANHUA HOLDING GROUP Co.,Ltd.

Address before: No.289, No.12 street, Xiasha Economic Development Zone, Hangzhou City, Zhejiang Province, 310018

Patentee before: Hangzhou Sanhua Research Institute Co.,Ltd.