CN103418985A - 一种具有随形冷却水路注塑模具的复合制造方法及其设备 - Google Patents

一种具有随形冷却水路注塑模具的复合制造方法及其设备 Download PDF

Info

Publication number
CN103418985A
CN103418985A CN2013103252616A CN201310325261A CN103418985A CN 103418985 A CN103418985 A CN 103418985A CN 2013103252616 A CN2013103252616 A CN 2013103252616A CN 201310325261 A CN201310325261 A CN 201310325261A CN 103418985 A CN103418985 A CN 103418985A
Authority
CN
China
Prior art keywords
laser
powder
mould
moulding
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103252616A
Other languages
English (en)
Other versions
CN103418985B (zh
Inventor
王迪
杨永强
刘睿诚
宋长辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201310325261.6A priority Critical patent/CN103418985B/zh
Publication of CN103418985A publication Critical patent/CN103418985A/zh
Application granted granted Critical
Publication of CN103418985B publication Critical patent/CN103418985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种具有随形冷却水路注塑模具的复合制造方法及其设备,包括光束聚焦系统、近波长同轴视觉定位系统、粉末铺设系统、气体保护系统;气体保护系统,包括密封成型室、连接在密封成型室一侧的保护气装置,以及连接在密封成型室另一侧的粉尘净化装置;这是一种结合了激光选区熔化技术和精密切削加工的复合加工方法,既保留了激光选区熔化柔性加工的优点,又发挥了高速切削加工精度好的特长。在选区激光熔化加工过程中,对每一层进行激光表面重熔处理,提高模具的致密度和表面质量;采用变密度快速制造工艺,提高制造效率。可以一次性一体化地加工完成具有内部异型冷却水路和复杂内腔结构的精密模具零件。

Description

一种具有随形冷却水路注塑模具的复合制造方法及其设备
技术领域
本发明涉及激光选区熔化技术,尤其涉及一种具有随形冷却水路注塑模具的复合制造方法及其设备。 
背景技术
注塑模具是一种生产塑胶制品的工具,它是将树脂材料射入金属模型后得到具有一定形状的制品的装置。模具上还有使冷却液体(温水或油)通过的冷却通道和加热器等装置。生产过程中将已成为熔体的材料注入到主流道,经分流道、浇口射入模腔内。经过冷却阶段后打开模具,模具中的顶出装置把顶出杆顶出,将制品推出。 
目前用于加工注塑模具的技术包括铣刨磨和线切割等传统机加工技术。传统方法加工的注塑模具由于受到加工方法的限制,在模具制造过程中只能将模具分为不同的部分分别加工,最后再将其组装起来,因此成型效率很低。而且传统制造方法无法成型复杂内腔结构,因此模具的冷却通道都是结构简单的直通道,对零件的冷却效果较差,成型时间较长。 
切削加工是指用切削工具(包括刀具、磨具和磨料)把坯料或工件上多余的材料切除,使工件获得规定的几何形状、尺寸和表面质量的加工方法。切削加工是机械制造中最主要的加工方法,由于它加工出的零件能达到很高的精度和很低的表面粗糙度,因此切削加工技术被广泛应用在金属零件制造领域中。 
但是该种方法无法成型多孔结构、内腔结构等复杂形状零件,因此切削加工无法完成随形模具的制造。 
激光选区熔化(SLM技术)是一种目前较为先进的激光快速成型技术,它的基本原理是先在计算机上设计出零件的三维实体模型,然后通过专用软 件对该三维模型进行切片分层,得到各截面的轮廓数据,将这些数据导入快速成型设备,设备将按照这些轮廓数据,控制激光束选择性地熔化各层的金属粉末材料,逐步堆叠成三维金属零件。 
SLM制造金属零件的优势在于: 
(1)个性化:适合各种复杂形状的零件,尤其适合带有非线性曲面的或者内部有复杂异型结构(如空腔)、用传统方法无法制造的个性化工件; 
(2)快速制造:直接制成终端金属零件,省掉中间过渡环节; 
(3)精度高:使用具有高功率密度的激光器,以光斑很小的激光束照射金属粉末,使得加工出来的个性化金属零件具有很高的尺寸精度(达0.1mm)以及好的表面粗糙度(Ra10-50μm); 
(4)致密度高:在选区内熔化金属制造出来的零件具有冶金结合的实体,相对致密度接近100%,力学性能甚至超过铸造件; 
(5)材料种类多:由于激光光斑直径很小,因此能以较低的功率熔化高熔点的金属,使得用单一成分的金属粉末来制造零件成为可能,而且可供选用的金属粉末种类也得到拓展。 
虽然激光选区熔化技术具有很多的优点,但是其成型的零件跟传统机加工零件相比,表面质量较差。成型复杂形状的时候需要添加支撑,而加工随形模具的内腔冷却水路时,不能添加支撑。因此使用激光选区熔化技术加工随形模具也很困难,过程中会出现较多缺陷,无法加工出满足尺寸精度和表面粗糙度要求的模具。 
发明内容
本发明的目的在于提供一种具有随形冷却水路注塑模具的复合制造方法及其设备,在加工过程中交替使用切削加工和激光选区熔化,充分发挥两种制造技术的优势。 
本发明通过下述技术方案实现: 
一种具有随形冷却水路注塑模具的复合制造设备,包括光束聚焦系统、 近波长同轴视觉定位系统、粉末铺设系统、气体保护系统; 
所述光束聚焦系统,包括依次光路连接的光纤激光器、扩束镜、扫描振镜和F-θ组合透镜; 
所述近波长同轴视觉定位系统,包括切削加工系统、镀膜反射镜片、工业CCD和用于给待加工零件照明的照明装置;所述镀膜反射镜片设置在扩束镜与扫描振镜之间的光路中;所述工业CCD设置在镀膜反射镜片的上方; 
所述粉末铺设系统,包括成型缸、铺粉刮板、粉末缸、设置在成型缸和粉末缸底部的升降活塞、控制系统,升降活塞连接控制系统; 
所述气体保护系统,包括密封成型室、连接在密封成型室一侧的保护气装置,以及连接在密封成型室另一侧的粉尘净化装置; 
所述光纤激光器与控制系统连接; 
所述切削加工系统设置在密封成型室内。 
所述切削加工系统包括主轴、铣刀夹具和立铣刀组成,其中主轴中的电动机带动铣刀夹具旋转,立铣刀安装在铣刀夹具的环槽中,铣刀夹具内部具有润滑油路。 
采用上述复合制造设备制造具有随形冷却水路注塑模具的方法,步骤如下: 
第一步:用三维软件设计出模具的3D造型,然后利用magics软件进行摆放位置和切片操作,最后利用路径规划软件确定每一层的扫描路径; 
然后针对不同的金属粉末材料,选择合适的基板,将基板安装在成型缸中;然后使用铺粉刮板,将粉末缸内的金属粉末铺展成20微米至60微米厚度的薄层; 
第二步:采用激光选区熔化方法进行加工;控制系统按照设置好的扫描 路径控制扫描振镜偏转,扫描振镜指引激光束在成型缸上的金属粉末薄层上移动,将金属粉末熔化形成金属实体; 
扫描完一层的轮廓之后,继续进行粉末铺设;在选区激光熔化加工过程中,对每一层都进行激光表面重熔处理;在整个加工过程中采用变密度加工方法,调节关键参数来改变致密度,在模具内部需要排气地方获得预先设计的致密度,使得模具的注塑过程中产生的烟气容易排出; 
本步骤和上述第一步应反复进行,当叠层厚度达到0.15mm~0.3mm时,启动切削加工系统,转为切削加工; 
所述激光表面重熔处理是指,在每层扫描结束后,将该层扫描线偏转90°后,以相对SLM快的速度和大的间距对表面进行重熔。每一道重熔的扫描线,垂直扫过SLM层的扫描线,重新熔化SLM扫描线顶峰,并填平相邻或多道扫描线之间的沟壑,使扫描层表层趋于平滑致密,令下一层铺粉均匀降低扫描时产生微孔的可能性; 
所述变密度加工方法是指,将待加工的模具分为壳体区及内部填充区两个成型区域,壳体区采用致密态成型,内部填充区采用非致密态成型;通过调整参数控制对固体基础的熔化量,实现非致密态组织与致密态组织的切换; 
第三步:进行精密切削加工;在每一次切削加工开始前,照明装置发射经过扩束后的激光,照射到待加工模具的表面;照明激光依次经过F-θ组合透镜、扫描振镜和呈45°度角的镀膜反射镜片发射到工业CCD中;工业CCD获取一帧待加工模具上表面的图像,该图像经过量化处理后变为数字图像发送到控制系统中;由控制系统对摄取的待加工模具的图像进行处理和特征量识别,定位出切削加工的基准点位置;立铣刀在同轴视觉定位系统的指令下,实现精确定位;在主轴的带动下切削待加工模具的轮廓;激光选区熔化加工 模具过程中会出现一些缺陷,比如表面粗糙,出现球化,悬垂面出现翘曲和粉末粘附现象,此时利用立铣刀切削待加工模具的轮廓,去除激光选区熔化阶段产生的缺陷,得到符合要求的待加工模具表面质量和尺寸精度; 
第四步:反复进行上述三个步骤,最后得到具有符合质量及精度要求的随形冷却水路注塑模具。 
在上述随形冷却水路注塑模具的加工成型过程中,需要对密封成型室进行惰性气体保护,充满氩气或氮气; 
在随形冷却水路注塑模具的加工过程中,保护气装置向密封成型室内不断通入氮气或氩气。 
本发明与现有的技术相比具有以下优点: 
1、可方便地制作随形冷却水路注塑模具。采用激光熔化和切削加工系统相结合的复合加工,不需要分割制造,也不需要组装和调整,一体化成型;可在内部形成三维冷却水路,内部冷却水路贴着注塑模具型腔的形状,可实现快速冷却,避免注塑件的缺陷。 
2、与传统模具制作方法相比,工期缩短,成本降低。以往因深孔、深加强筋等需要分割设计的芯摸,如今也可以一体化设计。另外,由于无需进行电火花加工,模具制作时间也大幅缩短。 
3、复合加工既保留了柔性加工的优点,又发挥了高速切削加工精度好的特长。其特点在于可以一次性并且一体化地加工完成具有内部异型水路和排气功能,表面形状复杂的精密模具零件。其加工尺寸精度可达±0.005mm以下,热处理后的材质硬度可达Hrc40以上,足以符合精密注塑模具的量产水平要求,大大地拓展了快速成型技术在注塑模具制造行业中的应用可能性。 
附图说明
图1为本发明具有随形冷却水路注塑模具的复合制造设备的结构示意图。 
图2为本发明切削加工系统结构示意图。 
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述。 
实施例 
如图1、图2所示。本发明具有随形冷却水路注塑模具的复合制造设备,包括光束聚焦系统、近波长同轴视觉定位系统、粉末铺设系统、气体保护系统; 
所述光束聚焦系统,包括依次光路连接的光纤激光器1、扩束镜3、扫描振镜6和F-θ组合透镜7; 
所述近波长同轴视觉定位系统,包括切削加工系统、镀膜反射镜片5、工业CCD4和用于给待加工零件照明的照明装置9;所述镀膜反射镜片5设置在扩束镜3与扫描振镜6之间的光路中;所述工业CCD4设置在镀膜反射镜片5的上方; 
所述粉末铺设系统,包括成型缸15、铺粉刮板13、粉末缸16、设置在成型缸15和粉末缸16底部的升降活塞17、控制系统18,升降活塞17连接控制系统18; 
所述气体保护系统,包括密封成型室、连接在密封成型室一侧的保护气装置8,以及连接在密封成型室另一侧的粉尘净化装置19; 
所述光纤激光器1与控制系统18连接; 
所述切削加工系统设置在密封成型室内。 
所述切削加工系统包括主轴11、铣刀夹具21和立铣刀12,其中主轴11中的电动机20带动铣刀夹具21旋转,立铣刀12安装在铣刀夹具21的环槽22中,铣刀夹具21内部具有润滑油路23; 
所述光纤激光器1采用输出功率200W,光束2的质量因子M2<1.1,波长1090nm的光纤激光器,采用连续模式,光束直径内能量呈现高斯分布。所述扫描振镜6包括X、Y轴镜片及电机,响应速度<1微秒。 
所述照明装置9采用扩束后的激光照明,照明光源的出光平面斜交于成型缸加工平面。采用与光纤激光器1的激光波长相近的照明激光。照明光是人眼不可见激光,但工业CCD4感光范围能达到红外波段,故能起到照明作用。 
光束2光波长1090nm,照明光波长1070nm,采用临近波长的激光器和照明光源,可以降低工业CCD4图像传感器识别出的加工平面位置和实际激光作用位置的误差,提高工业CCD4同轴定位精度。 
所述工业CCD4可选用日本生产的TG2Z1816—FCS型CCD摄像头,其主要优点是体积小、灵敏度高及分辨率高等。主要技术指标如下:镜头焦距为1.8~3.6mm;镜头像面为4.9mm×3.7mm;有效像素为510(水平)×492(垂直);目标距离为0.2~1m;其中镀膜反射镜片5呈45°角摆放,通过镀膜实现照明光45°全反,光束2的45°全透。 
所述主轴20采用日本松浦高速高刚性主轴,最高转速达到35000转/min,采用油气润滑。立铣刀12采用1/10锥度专用BT20,精度可达到+0.015~0.02mm。 
采用上述复合制造设备制造具有随形冷却水路注塑模具的方法,可通过如下步骤予以实现: 
第一步:用三维软件设计出模具的3D造型,然后利用magics软件进行摆放位置和切片操作,最后利用路径规划软件确定每一层的扫描路径; 
然后针对不同的金属粉末材料,选择合适的基板,将基板安装在成型缸 15中;安装过程中为了保证基板的水平,需要利用水平仪进行调平。然后使用预压紧式柔性的铺粉刮板13,将粉末缸16内的金属粉末14铺展成20微米至60微米厚度的薄层; 
第二步:采用激光选区熔化方法进行加工;控制系统18按照设置好的扫描路径控制扫描振镜6偏转,扫描振镜6指引激光束2在成型缸15上的金属粉末薄层上移动,将金属粉末熔化形成金属实体; 
扫描完一层的轮廓之后,继续进行粉末铺设;在选区激光熔化加工过程中,为了保证模具内部致密度,提高强度,也一定程度上提高表面精度,对每一层都进行激光表面重熔处理;在整个加工过程中采用变密度加工方法,灵活调节关键参数来改变致密度,在模具内部需要排气地方获得预先设计的致密度,使得模具的注塑过程中产生的烟气容易排出; 
本步骤和上述第一步应反复进行,当叠层厚度达到0.15mm~0.3mm时,启动切削加工系统,转为切削加工;SLM加工层数与切屑加工的时间点可以根据注塑模具的精度要求进行灵活设置。 
所述激光表面重熔处理是指,在每层扫描结束后,将该层扫描线偏转90°后,以相对SLM(激光选区熔化)快的速度和大的间距对表面进行重熔。每一道重熔的扫描线,垂直扫过SLM层的扫描线,重新熔化SLM扫描线顶峰,并填平相邻或多道扫描线之间的沟壑,使扫描层表层趋于平滑致密,令下一层铺粉均匀降低扫描时产生微孔的可能性; 
所述变密度加工方法是指,将待加工的模具分为壳体区及内部填充区两个成型区域,壳体区采用致密态成型,内部填充区采用非致密态成型;通过调整参数控制对固体基础的熔化量,实现非致密态组织与致密态组织的切换; 
第三步:进行精密切削加工;在每一次切削加工开始前,照明装置9发 射经过扩束后的激光,照射到待加工模具10的表面;照明激光依次经过F-θ组合透镜7、扫描振镜6和呈45°度角的镀膜反射镜片5发射到工业CCD4中;工业CCD4获取一帧待加工模具10上表面的图像,该图像经过量化处理后变为数字图像发送到控制系统18中;由控制系统18对摄取的待加工模具10的图像进行处理和特征量识别,定位出切削加工的基准点位置;立铣刀12在同轴视觉定位系统的指令下,实现精确定位;在高速旋转的主轴11的带动下高速精密切削待加工模具10的轮廓;激光选区熔化加工模具10过程中会出现一些缺陷,比如表面粗糙,出现球化,悬垂面出现翘曲和粉末粘附现象,此时利用立铣刀12切削待加工模具10的轮廓,去除激光选区熔化阶段产生的缺陷,得到符合要求的待加工模具10表面质量和尺寸精度; 
第四步:反复进行上述三个步骤,最后得到具有符合质量及精度要求的随形冷却水路注塑模具。尺寸精度可达±0.005mm以下,热处理后的材质硬度可达Hrc50以上。 
在上述随形冷却水路注塑模具的加工成型过程中,需要对密封成型室进行惰性气体保护,充满氩气或氮气; 
在随形冷却水路注塑模具的加工过程中,保护气装置8向密封成型室内不断通入氮气或氩气;对其进行保护,防止发生氧化。为了保持成型室内空气的纯净,并防止金属粉末中出现杂质,采用粉尘净化装置19吸收加工过程中产生的烟尘。 
如上所述便可较好的实现本发明。 
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。 

Claims (4)

1.一种具有随形冷却水路注塑模具的复合制造设备,其特征在于,包括光束聚焦系统、近波长同轴视觉定位系统、粉末铺设系统、气体保护系统;
所述光束聚焦系统,包括依次光路连接的光纤激光器、扩束镜、扫描振镜和F-θ组合透镜;
所述近波长同轴视觉定位系统,包括切削加工系统、镀膜反射镜片、工业CCD和用于给待加工零件照明的照明装置;所述镀膜反射镜片设置在扩束镜与扫描振镜之间的光路中;所述工业CCD设置在镀膜反射镜片的上方;
所述粉末铺设系统,包括成型缸、铺粉刮板、粉末缸、设置在成型缸和粉末缸底部的升降活塞、控制系统,升降活塞连接控制系统;
所述气体保护系统,包括密封成型室、连接在密封成型室一侧的保护气装置,以及连接在密封成型室另一侧的粉尘净化装置;
所述光纤激光器与控制系统连接;
所述切削加工系统设置在密封成型室内。
2.根据权利要求1所述的具有随形冷却水路注塑模具的复合制造设备,其特征在于,所述切削加工系统包括主轴、铣刀夹具和立铣刀,其中主轴中的电动机带动铣刀夹具旋转,立铣刀安装在铣刀夹具的环槽中,铣刀夹具内部具有润滑油路。
3.采用权利要求1或2所述复合制造设备制造具有随形冷却水路注塑模具的方法,其特征在于如下步骤:
第一步:用三维软件设计出模具的3D造型,然后利用magics软件进行摆放位置和切片操作,最后利用路径规划软件确定每一层的扫描路径;
然后针对不同的金属粉末材料,选择合适的基板,将基板安装在成型缸中;然后使用铺粉刮板,将粉末缸内的金属粉末铺展成20微米至60微米厚度的薄层;
第二步:采用激光选区熔化方法进行加工;控制系统按照设置好的扫描路径控制扫描振镜偏转,扫描振镜指引激光束在成型缸上的金属粉末薄层上移动,将金属粉末熔化形成金属实体;
扫描完一层的轮廓之后,继续进行粉末铺设;在选区激光熔化加工过程中,对每一层都进行激光表面重熔处理;在整个加工过程中采用变密度加工方法,调节关键参数来改变致密度,在模具内部需要排气地方获得预先设计的致密度,使得模具的注塑过程中产生的烟气容易排出;
本步骤和上述第一步应反复进行,当叠层厚度达到0.15mm~0.3mm时,启动切削加工系统,转为切削加工;
所述激光表面重熔处理是指,在每层扫描结束后,将该层扫描线偏转90°后,以相对SLM快的速度和大的间距对表面进行重熔,每一道重熔的扫描线,垂直扫过SLM层的扫描线,重新熔化SLM扫描线顶峰,并填平相邻或多道扫描线之间的沟壑,使扫描层表层趋于平滑致密,令下一层铺粉均匀降低扫描时产生微孔的可能性;
所述变密度加工方法是指,将待加工的模具分为壳体区及内部填充区两个成型区域,壳体区采用致密态成型,内部填充区采用非致密态成型;通过调整参数控制对固体基础的熔化量,实现非致密态组织与致密态组织的切换;
第三步:进行精密切削加工;在每一次切削加工开始前,照明装置发射经过扩束后的激光,照射到待加工模具的表面;照明激光依次经过F-θ组合透镜、扫描振镜和呈45°度角的镀膜反射镜片发射到工业CCD中;工业CCD获取一帧待加工模具上表面的图像,该图像经过量化处理后变为数字图像发送到控制系统中;由控制系统对摄取的待加工模具的图像进行处理和特征量识别,定位出切削加工的基准点位置;立铣刀在同轴视觉定位系统的指令下,实现精确定位;在主轴的带动下切削待加工模具的轮廓;激光选区熔化成型模具过程中会出现一些缺陷,比如表面粗糙,出现球化,悬垂面出现翘曲和粉末粘附现象,此时利用立铣刀切削待加工模具的轮廓,去除激光选区熔化阶段产生的缺陷,得到符合要求的模具表面质量和尺寸精度;
第四步:反复进行上述三个步骤,最后得到具有符合质量及精度要求的随形冷却水路注塑模具。
4.根据权利要求3所述的方法,其特征在于:
在上述随形冷却水路注塑模具的加工成型过程中,需要对密封成型室进行惰性气体保护,充满氩气或氮气;
在随形冷却水路注塑模具的加工过程中,保护气装置向密封成型室内不断通入氮气或氩气。
CN201310325261.6A 2013-07-30 2013-07-30 一种复合制造设备制造具有随形冷却水路注塑模具的方法 Active CN103418985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310325261.6A CN103418985B (zh) 2013-07-30 2013-07-30 一种复合制造设备制造具有随形冷却水路注塑模具的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310325261.6A CN103418985B (zh) 2013-07-30 2013-07-30 一种复合制造设备制造具有随形冷却水路注塑模具的方法

Publications (2)

Publication Number Publication Date
CN103418985A true CN103418985A (zh) 2013-12-04
CN103418985B CN103418985B (zh) 2016-09-21

Family

ID=49644629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310325261.6A Active CN103418985B (zh) 2013-07-30 2013-07-30 一种复合制造设备制造具有随形冷却水路注塑模具的方法

Country Status (1)

Country Link
CN (1) CN103418985B (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862043A (zh) * 2014-03-05 2014-06-18 西安交通大学 提高非磁性金属粉末激光选区烧结成形质量的装置
CN103952698A (zh) * 2014-05-09 2014-07-30 张百成 一种选择性激光熔化铺粉与气氛循环保护一体化装置
CN104493163A (zh) * 2014-12-30 2015-04-08 无锡银邦精密制造科技有限公司 一种便于清粉处理的注塑模具整体模仁的3d打印加工方法
CN104550954A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种3d打印复合铣削的金属件成形方法
CN104741609A (zh) * 2015-03-31 2015-07-01 深圳市圆梦精密技术研究院 电子束熔融及切削复合3d打印设备
CN105798561A (zh) * 2014-12-30 2016-07-27 香港生产力促进局 一种具有随形控温管道的模具及其制作方法
CN106041083A (zh) * 2016-07-28 2016-10-26 湖南华曙高科技有限责任公司 用于制造三维物体的扫描系统、方法及三维物体制造设备
CN106513996A (zh) * 2016-12-30 2017-03-22 中国科学院宁波材料技术与工程研究所 全激光复合增材制造方法和装置
CN106694880A (zh) * 2016-12-13 2017-05-24 南通金源智能技术有限公司 一种铜合金异形孔冷却模具的制造方法
CN106825566A (zh) * 2017-01-11 2017-06-13 华南理工大学 一种激光选区熔化成型马氏体时效钢模具的方法
CN107363259A (zh) * 2016-03-23 2017-11-21 沙迪克株式会社 层叠造型装置
CN107999755A (zh) * 2017-12-29 2018-05-08 广东汉邦激光科技有限公司 模具的3d打印装置及打印方法
CN108176856A (zh) * 2017-12-29 2018-06-19 广东汉邦激光科技有限公司 硬质合金零件的3d打印装置及打印方法
CN108372304A (zh) * 2018-02-11 2018-08-07 苏州江源精密机械有限公司 一种3d加工方法及3d加工设备
CN108372305A (zh) * 2018-03-20 2018-08-07 华中科技大学 一种具有疏水作用的随形冷却流道及其制造方法
CN108480821A (zh) * 2018-03-27 2018-09-04 福州大学 一种圆形截面随形冷却流道的电弧增材制造方法
CN108687347A (zh) * 2018-07-13 2018-10-23 吉林大学 一种slm3d打印机
CN110505931A (zh) * 2017-02-10 2019-11-26 戴弗根特技术有限公司 3d打印的模具和用于制作该模具的方法
CN110523982A (zh) * 2019-09-04 2019-12-03 武汉轻工大学 一种复合材料增材制造的方法
CN110773738A (zh) * 2019-11-26 2020-02-11 南京理工大学 基于多边形几何特征识别的激光扫描路径分区域规划方法
CN111001803A (zh) * 2019-12-06 2020-04-14 深圳大学 一种具有随形冷却水路的透气模具及其制造方法
CN111036905A (zh) * 2019-12-18 2020-04-21 同济大学 利用逐层多次激光重熔提高致密度并避免孔洞缺陷的方法
CN111590074A (zh) * 2020-04-30 2020-08-28 汕头大学 基于金属3d打印多孔结构随形冷却水路的制造方法
CN111687415A (zh) * 2014-11-14 2020-09-22 株式会社尼康 造型装置及造型方法
CN112091210A (zh) * 2019-06-17 2020-12-18 广东汉邦激光科技有限公司 3d激光成型装置及3d激光成型方法
CN112276084A (zh) * 2020-10-28 2021-01-29 上海艾斯拓扑管理中心(有限合伙) 一种用于增材制造的透气模具钢成形工艺方法
CN112643057A (zh) * 2020-12-15 2021-04-13 南京前知智能科技有限公司 一种吹除飞溅金属颗粒和烟尘的装置及其控制方法
CN114535607A (zh) * 2022-02-23 2022-05-27 浙江工业大学 一种用于扫描振镜的激光增材制造各向同性的扫描方法
CN115138859A (zh) * 2022-08-17 2022-10-04 南京农业大学 一种一体化成形的金刚石砂轮及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236523A1 (de) * 2002-08-09 2004-02-19 Behr Gmbh & Co. Werkzeug mit einer formgebenden Oberfläche und Verfahren zur Herstellung eines Werkzeugs
CN101130196A (zh) * 2007-06-27 2008-02-27 江苏大学 一种微器件的微塑性成形方法和装置
CN101642810A (zh) * 2008-08-05 2010-02-10 松下电工株式会社 制造叠层体的设备
CN101653827A (zh) * 2008-08-22 2010-02-24 松下电工株式会社 制造三维形状物品的方法和装置及三维形状物品
CN101670437A (zh) * 2009-07-20 2010-03-17 黑龙江科技学院 一种带有随形冷却管道的模具制造方法
CN203509463U (zh) * 2013-07-30 2014-04-02 华南理工大学 一种具有随形冷却水路注塑模具的复合制造设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236523A1 (de) * 2002-08-09 2004-02-19 Behr Gmbh & Co. Werkzeug mit einer formgebenden Oberfläche und Verfahren zur Herstellung eines Werkzeugs
CN101130196A (zh) * 2007-06-27 2008-02-27 江苏大学 一种微器件的微塑性成形方法和装置
CN101642810A (zh) * 2008-08-05 2010-02-10 松下电工株式会社 制造叠层体的设备
CN101653827A (zh) * 2008-08-22 2010-02-24 松下电工株式会社 制造三维形状物品的方法和装置及三维形状物品
CN101670437A (zh) * 2009-07-20 2010-03-17 黑龙江科技学院 一种带有随形冷却管道的模具制造方法
CN203509463U (zh) * 2013-07-30 2014-04-02 华南理工大学 一种具有随形冷却水路注塑模具的复合制造设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伍志刚: "随形冷却注塑模的设计与制造关键技术研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》, no. 5, 15 May 2009 (2009-05-15), pages 32 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862043A (zh) * 2014-03-05 2014-06-18 西安交通大学 提高非磁性金属粉末激光选区烧结成形质量的装置
CN103862043B (zh) * 2014-03-05 2015-12-09 西安交通大学 提高非磁性金属粉末激光选区烧结成形质量的装置
CN103952698B (zh) * 2014-05-09 2016-02-24 张百成 一种选择性激光熔化铺粉与气氛循环保护一体化装置
CN103952698A (zh) * 2014-05-09 2014-07-30 张百成 一种选择性激光熔化铺粉与气氛循环保护一体化装置
CN111687415A (zh) * 2014-11-14 2020-09-22 株式会社尼康 造型装置及造型方法
CN104550954A (zh) * 2014-12-19 2015-04-29 机械科学研究总院先进制造技术研究中心 一种3d打印复合铣削的金属件成形方法
CN105798561B (zh) * 2014-12-30 2019-02-05 香港生产力促进局 一种具有随形控温管道的模具及其制作方法
CN104493163A (zh) * 2014-12-30 2015-04-08 无锡银邦精密制造科技有限公司 一种便于清粉处理的注塑模具整体模仁的3d打印加工方法
CN105798561A (zh) * 2014-12-30 2016-07-27 香港生产力促进局 一种具有随形控温管道的模具及其制作方法
CN104741609A (zh) * 2015-03-31 2015-07-01 深圳市圆梦精密技术研究院 电子束熔融及切削复合3d打印设备
CN107363259A (zh) * 2016-03-23 2017-11-21 沙迪克株式会社 层叠造型装置
CN107363259B (zh) * 2016-03-23 2020-07-10 株式会社沙迪克 层叠造型装置
CN106041083A (zh) * 2016-07-28 2016-10-26 湖南华曙高科技有限责任公司 用于制造三维物体的扫描系统、方法及三维物体制造设备
CN106041083B (zh) * 2016-07-28 2018-02-13 湖南华曙高科技有限责任公司 用于制造三维物体的扫描系统、方法及三维物体制造设备
CN106694880A (zh) * 2016-12-13 2017-05-24 南通金源智能技术有限公司 一种铜合金异形孔冷却模具的制造方法
CN106513996B (zh) * 2016-12-30 2019-02-15 中国科学院宁波材料技术与工程研究所 全激光复合增材制造方法和装置
WO2018120360A1 (zh) * 2016-12-30 2018-07-05 中国科学院宁波材料技术与工程研究所 全激光复合增材制造方法和装置
US11541480B2 (en) 2016-12-30 2023-01-03 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Method and device for manufacturing all-laser composite additive
CN106513996A (zh) * 2016-12-30 2017-03-22 中国科学院宁波材料技术与工程研究所 全激光复合增材制造方法和装置
CN106825566A (zh) * 2017-01-11 2017-06-13 华南理工大学 一种激光选区熔化成型马氏体时效钢模具的方法
CN110505931A (zh) * 2017-02-10 2019-11-26 戴弗根特技术有限公司 3d打印的模具和用于制作该模具的方法
CN108176856A (zh) * 2017-12-29 2018-06-19 广东汉邦激光科技有限公司 硬质合金零件的3d打印装置及打印方法
CN107999755A (zh) * 2017-12-29 2018-05-08 广东汉邦激光科技有限公司 模具的3d打印装置及打印方法
CN108372304A (zh) * 2018-02-11 2018-08-07 苏州江源精密机械有限公司 一种3d加工方法及3d加工设备
CN108372304B (zh) * 2018-02-11 2020-09-29 苏州大学 一种3d加工方法及3d加工设备
CN108372305A (zh) * 2018-03-20 2018-08-07 华中科技大学 一种具有疏水作用的随形冷却流道及其制造方法
CN108480821A (zh) * 2018-03-27 2018-09-04 福州大学 一种圆形截面随形冷却流道的电弧增材制造方法
CN108480821B (zh) * 2018-03-27 2019-10-15 福州大学 一种圆形截面随形冷却流道的电弧增材制造方法
CN108687347A (zh) * 2018-07-13 2018-10-23 吉林大学 一种slm3d打印机
CN112091210A (zh) * 2019-06-17 2020-12-18 广东汉邦激光科技有限公司 3d激光成型装置及3d激光成型方法
CN110523982B (zh) * 2019-09-04 2022-06-24 武汉轻工大学 一种复合材料增材制造的方法
CN110523982A (zh) * 2019-09-04 2019-12-03 武汉轻工大学 一种复合材料增材制造的方法
CN110773738A (zh) * 2019-11-26 2020-02-11 南京理工大学 基于多边形几何特征识别的激光扫描路径分区域规划方法
CN110773738B (zh) * 2019-11-26 2020-11-03 南京理工大学 基于多边形几何特征识别的激光扫描路径分区域规划方法
CN111001803A (zh) * 2019-12-06 2020-04-14 深圳大学 一种具有随形冷却水路的透气模具及其制造方法
CN111001803B (zh) * 2019-12-06 2022-04-26 深圳大学 一种具有随形冷却水路的透气模具及其制造方法
CN111036905A (zh) * 2019-12-18 2020-04-21 同济大学 利用逐层多次激光重熔提高致密度并避免孔洞缺陷的方法
CN111590074A (zh) * 2020-04-30 2020-08-28 汕头大学 基于金属3d打印多孔结构随形冷却水路的制造方法
CN112276084A (zh) * 2020-10-28 2021-01-29 上海艾斯拓扑管理中心(有限合伙) 一种用于增材制造的透气模具钢成形工艺方法
CN112643057A (zh) * 2020-12-15 2021-04-13 南京前知智能科技有限公司 一种吹除飞溅金属颗粒和烟尘的装置及其控制方法
CN114535607A (zh) * 2022-02-23 2022-05-27 浙江工业大学 一种用于扫描振镜的激光增材制造各向同性的扫描方法
CN115138859A (zh) * 2022-08-17 2022-10-04 南京农业大学 一种一体化成形的金刚石砂轮及其制备方法

Also Published As

Publication number Publication date
CN103418985B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN203509463U (zh) 一种具有随形冷却水路注塑模具的复合制造设备
CN103418985B (zh) 一种复合制造设备制造具有随形冷却水路注塑模具的方法
CN102825251B (zh) 一种基于ccd视觉定位的复杂零件制造方法
CN104493492B (zh) 激光选区熔化与铣削复合加工设备及加工方法
KR101606426B1 (ko) 3차원 형상 조형물의 제조 방법
CN102248307B (zh) 用于不同极限孔径的紫外激光双光头精细加工装置及方法
US9599756B2 (en) Method for manufacturing a mirror comprising at least one cavity and optical mirror
KR101648442B1 (ko) 3차원 형상 조형물의 제조 방법
US20080110869A1 (en) Method of machining mold surface using laser
CN202343945U (zh) 一种选区激光烧结快速成型系统
US20120170280A1 (en) Illumination apparatus using a solid state source and a thick composite molded lens
WO2010150805A1 (ja) 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
CN105252145A (zh) 一种金属薄板叠加制造复杂形状零件的方法和设备
CN106944622A (zh) 一种激光选区熔化与送丝复合多材料成型装置与成型方法
CN109641275A (zh) 三维形状造形物的制造方法
CN207205269U (zh) 一种激光选区熔化与送丝复合多材料成型装置
CN107498046A (zh) 一种激光增材用粉末床装置及其激光增材方法和应用
CN205414923U (zh) 基于slm快速成型方法的注塑模具随形冷却水路设备
CN105642893B (zh) 选区激光熔化系统激光光斑直径输出可调装置及方法
CN103273196B (zh) 有机玻璃的co2激光选区辐照扫描加工微透镜阵列的方法
CN205167584U (zh) 单激光双光斑三维打印固化系统
JP2017030224A (ja) 三次元形状造形物の製造方法および三次元形状造形物
CN202726051U (zh) 一种基于ccd视觉定位的复杂零件制造设备
Li et al. An affordable injection-molded precision hybrid glass–polymer achromatic lens
CN214443088U (zh) 一种激光增减材复合五轴机械加工成型设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant