CN103418333B - 一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料 - Google Patents

一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料 Download PDF

Info

Publication number
CN103418333B
CN103418333B CN201310323583.7A CN201310323583A CN103418333B CN 103418333 B CN103418333 B CN 103418333B CN 201310323583 A CN201310323583 A CN 201310323583A CN 103418333 B CN103418333 B CN 103418333B
Authority
CN
China
Prior art keywords
solution
nano particle
bismuth
molybdate
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310323583.7A
Other languages
English (en)
Other versions
CN103418333A (zh
Inventor
彭银
陈庆国
周海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN201310323583.7A priority Critical patent/CN103418333B/zh
Publication of CN103418333A publication Critical patent/CN103418333A/zh
Application granted granted Critical
Publication of CN103418333B publication Critical patent/CN103418333B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料,称取适量铋盐溶解在一定量的水中,在磁力搅拌条件下,加入一定浓度的硝酸溶液;将适量钼酸盐溶液溶解在上述溶液中,用一定浓度的氨水调节溶液的pH值;再将上述混合溶液倒入坩埚中,微波反应。所得产物用水和无水乙醇依次洗涤多次,并干燥。所述的铋盐为氯化铋、硝酸铋、硫酸铋一种或数种的混合物。所述的钼酸盐为钼酸铵、钼酸钾、钼酸镉一种或数种的混合物。通过改变溶液的pH、反应物浓度和微波频率,获得不同粒径大小的Bi3.64Mo0.36O6.55纳米粒子。由于Bi3.64Mo0.36O6.55纳米粒子表面所带电荷不同,从而与不同离子型的染料产生静电作用,使Bi3.64Mo0.36O6.55纳米粒子在吸附性上表现出高的选择性和吸附能力。

Description

一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料
技术领域
本发明涉及一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料。
背景技术
随着工业化进程的不断深入,全球性环境污染问题日益加重。纺织印染、皮革、造纸、塑料、食品等行业每年都排放大量的工业废水,这些废水未经良好的处理而进入水体,对水体造成了严重的污染。中国是纺织大国,纺织印染行业又是工业废水排放的大户,约占整个工业废水排放量的35%,据不完全统计,我国印染废水排放量约为每天3×106~4×106吨,因此,印染废水的治理成为环保行业关注的重点。目前国内染料废水治理率不足30%,合格率不足60%,对江河湖海水域等造成严重污染。目前染料的处理方法主要有生物处理法、化学氧化法、活性炭吸附法。生物处理法很难适应染料废水水质千差万别、染料种类多、毒性高的实际状况,微生物本身还存在着安全性问题。化学氧化法在染料废水的处理中容易导致产生二次污染,运行费用相对偏高,使其广泛应用受到了较大限制。纳米材料中的无机纳米材料,如纳米陶瓷、纳米碳材料(主要包括纳米碳纤维、碳纳米管、类金刚石碳等)、纳米金属及其纳米氧化物比表面积大,这些纳米材料吸附剂应用于染料的吸附处理前景广阔。Gopal Das利用磁性氧化铁纳米粒子对不同染料进行了吸附研究,发现了对含有羟基的有机染料的吸附能力比不含羟基的有机染料具有更高的吸附能力,然后在外加磁场的作用下使吸附染料的达到磁性氧化铁纳米粒子迅速的分离,但吸附量也比较小,最大达到200mg/L。然而,我们的研究发现用简单快速的微波法合成了不同形貌的Bi3.64Mo0.36O6.55纳米粒子对染料的吸附量能达到800mg/L。更有趣的是,Bi3.64Mo0.36O6.55纳米粒子在极短的时间内(1-2min)对亚甲基蓝溶液表现出极高的选择吸附性。
发明内容
本发明的目的在于提供一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料,本发明所要解决的第一个技术问题是提供了对亚甲基蓝高选择性、高吸附能力的Bi3.64Mo0.36O6.55纳米粒子的制备方法。本发明所要解决的第二个技术问题是通过可控条件制备出不同粒径大小和形貌的Bi3.64Mo0.36O6.55纳米材料。本发明解决技术问题的技术方案为:采用微 波法合成出不同粒径和形貌的Bi3.64Mo0.36O6.55纳米材料。
具体技术方案如下:
一种Bi3.64Mo0.36O6.55纳米粒子的制备方法,采用如下步骤:
(1)称取适量铋盐溶解在一定量的水中;
(2)加入一定浓度的硝酸溶液;
(3)将适量钼酸盐溶液溶解在上述溶液中,用一定浓度的氨水调节溶液的pH值;
(4)将上述混合溶液倒入坩埚中,微波反应。
进一步地,进一步包括步骤(5):将步骤(4)所得产物用水和无水乙醇依次洗涤多次,并干燥。
进一步地,所述的铋盐为氯化铋、硝酸铋、硫酸铋一种或数种的混合物。
进一步地,步骤(2)在磁力搅拌条件下进行。
进一步地,所述铋盐、钼酸盐的摩尔比为(0.1~2):(0.5~8)。
进一步地,步骤(4)中的微波频率为(20~230)W,和/或,微波时间:(0~60)min。
进一步地,步骤(3)中的pH=(1~14)。
进一步地,通过可控条件制备出不同粒径大小和形貌的Bi3.64Mo0.36O6.55纳米材料。
进一步地,所述可控条件包括改变溶液的pH、反应物浓度和/或微波频率。
上述Bi3.64Mo0.36O6.55纳米粒子的制备方法所制备的Bi3.64Mo0.36O6.55纳米材料,进一步地,其为在吸附性上表现出高的选择性和吸附能力的Bi3.64Mo0.36O6.55纳米粒子,或,对亚甲基蓝高选择性、高吸附能力的Bi3.64Mo0.36O6.55纳米粒子,或,粒径尺寸在10-20nm大小的Bi3.64Mo0.36O6.55纳米球状粒。
与目前现有技术相比,本发明所述的Bi3.64Mo0.36O6.55纳米材料对高浓度的亚甲基蓝染料在短时间内(1-2min)几乎吸附完全。此产品与目前市售任何一种运用于污水处理的吸附剂相比,表现出无可比拟的吸附能力。
附图说明
图1. S-2在pH=7时,对B-Rh.B、MO、salicylic acid、p-nitroaniline、MB的吸附率随时间变化图
图2.(a) S-2对MB、 B-Rh.B、 MO的吸附率随pH变化图;(b) S-2在PH=1-3时,对B-Rh.B和MB吸附前与吸附后的数码照片
图3. Bi3.64Mo0.36O6.55样品在25℃对亚甲基蓝的某一时刻平衡吸附量随时间变化图  (a)S-1; (b)S-2;(c)S-3
图4. S-1(40mg)在酸性条件下25℃下对MB吸附的三种动力学曲线  (a)Lagergren一级方程; (b)拟二级方程;(c)粒子内部扩散模型
图5.在25℃下,S-1对MB的三种吸附等温线 (a)Langmuir吸附等温线; (b)Freundlich吸附等温线;(c)Temkin吸附等温线
具体实施方式
下面根据附图对本发明进行详细描述,其为本发明多种实施方式中的一种优选实施例。
称取适量铋盐溶解在一定量的水中,在磁力搅拌条件下,加入一定浓度的硝酸溶液;将适量钼酸盐溶液溶解在上述溶液中,用一定浓度的氨水调节溶液的pH值;再将上述混合溶液倒入坩埚中,微波反应。所得产物用水和无水乙醇依次洗涤多次,并干燥。所述的铋盐为氯化铋、硝酸铋、硫酸铋一种或数种的混合物。所述的钼酸盐为钼酸铵、钼酸钾、钼酸镉一种或数种的混合物。通过改变溶液的pH、反应物浓度和微波频率,获得不同粒径大小的Bi3.64Mo0.36O6.55纳米粒子。由于Bi3.64Mo0.36O6.55纳米粒子表面所带电荷不同,从而与不同离子型的染料产生静电作用,使Bi3.64Mo0.36O6.55纳米粒子在吸附性上表现出高的选择性和吸附能力。
实施例1:
称取适量(0.00001~1mol)铋盐溶解在一定量(2~30ml)的水中,在磁力搅拌条件下,加入一定浓度(5~90%)的硝酸溶液;将适量(0.0001~2mol)钼酸盐溶液溶解在上述溶液中,并且用一定浓度(1~27%)的氨水调节溶液的pH;再将混合溶液倒入坩埚中,微波反应。所得物质用水和无水乙醇依次各洗涤多次,然后干燥处理。
铋盐、钼酸盐的摩尔比为(0.1~2):(0.5~8);微波频率:(20~230)W;微波时间:(0~60)min;pH=(1~14)。得到的粒径尺寸在10-20nm大小的Bi3.64Mo0.36O6.55纳米球状粒。
实施例2:
从图1可以看出S-2在吸附30min时,对MB的吸附率为91.6%,在同样的吸附时间下,对B-Rh.B吸附率大约只有4.3%,对MO、salicylic acid、p-nitroaniline的吸附率基本为0,说明Bi3.64Mo0.36O6.55对亚甲基蓝(MB)具有高的选择吸附性。
图2为S-2样品在不同pH值条件下对不同染料的吸附。从图2(a)中可以看出,S-2在pH=7吸附30min时,对B-Rh.B吸附率仅仅4.3%,对MO基本不吸附。S-2在pH=12吸附30min时,对B-Rh.B与MO都不吸附。但是S-2在pH=7、 12吸附30min时,对MB的吸附率P分别能达到91.6%、13.2%。说明S-2在中性与碱性下,对MB的吸附能力比B-Rh.B、MO要好。S-2 在pH=1吸附10min时,对MO的吸附率只达到13.1%,但对MB、B-Rh.B的吸附率P能达到100%。说明在偏酸性条件下能够促进S-2对MB与B-Rh.B的吸附。图2为S-2在PH=1时,对B-Rh.B和MB吸附前与吸附10min后的数码照片,可以观察到吸附10min后,染料被吸附完全。
实施例3:
表1.Bi3.64Mo0.36O6.55样品在25℃某一时刻对亚甲基蓝吸附量效果表
从表1和图3可以看出,三种产品对常见的染料具有极高的吸附效果,2min内将亚甲蓝几乎吸附完全,从2min到10min时平衡吸附量增加不到0.4mg/g。S-3和S-1的吸附能力几乎相同,在2min 内吸附量达到约1746 mg/g。 S-2在2min时平衡吸附量就到达了993.5mg/g,从2min到10min时平衡吸附量只增加了0.5mg/g,但S-2的吸附能力要比S-1、S-3小得多。
表2.S-1、S-2、S-3在25℃时对亚甲基蓝吸附的三种动力学模型参数
 图4为S-1在25℃下对MB的三种吸附动力学曲线。三种吸附动力学曲线由图4知,S-1对MB的吸附最符合拟二级动力学模型,相关系数R2=1。表2给出三种产物的吸附动力学参数。 从表2知,这三种产物均符合拟二级动力学模型。吸附速率常数k分别为0.634, 0.623和 0.646g·(mg)-1(min) -1。从k值也可以看出三种产品均具快速吸附能力。
图5为S-1在25℃下对MB吸附的三种等温吸附曲线。由图5可知,吸附剂对MB的吸附最符合Langmuir吸附等温模型,其相关系数R2=0.997。
表 3. S-1, S-2, S-3对亚甲基蓝(MB)的等温吸附参数
表3为三种产品的吸附等温参数。从表可以看到,三种产物的吸附均符合Langmuir吸附等温模型。S-1, S-2和S-3的饱合吸附量qm分别为1.979×103 ,1.198×10和2.014×10mg/g。这说明三种产品在室温下对MB具有极强的吸附能力。从表中我们还可以看到,温度升高到45℃,三种产品对MB的饱合吸附量有所减小,但仍然在1.0×103~1.6×103 mg/g。通过实验发现,此三种产品可以在0~65℃温度范围内对MB具有极强的吸附能力。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。

Claims (1)

1.一种 Bi3.64Mo0.36O6.55纳米粒子在选择性吸附亚甲基蓝方面的应用,其特征在于:
所述的Bi3.64Mo0.36O6.55纳米粒子,为粒径尺寸在10-20nm大小的Bi3.64Mo0.36O6.55纳米球状粒;
所述的Bi3.64Mo0.36O6.55纳米粒子采用如下步骤制备:
(1)称取适量氯化铋或硫酸铋或其混合物溶解在一定量的水中;
(2)在磁力搅拌条件下加入一定浓度的硝酸溶液;
(3)将适量钼酸盐溶液溶解在上述溶液中,氯化铋或硫酸铋或其混合物与钼酸盐的摩尔比为(0.1~2):(0.5~8),用一定浓度的氨水调节溶液的pH值;
(4)将上述混合溶液倒入坩埚中,微波反应,微波频率为(20~230)W,和/或,微波时间:(0~60)min,微波时间不为0min;
(5)将步骤(4)所得产物用水和无水乙醇依次洗涤多次,并干燥;
(6)通过改变溶液的pH、反应物浓度和/或微波频率制备出不同粒径大小和形貌的Bi3.64Mo0.36O6.55纳米材料。
CN201310323583.7A 2013-07-30 2013-07-30 一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料 Expired - Fee Related CN103418333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310323583.7A CN103418333B (zh) 2013-07-30 2013-07-30 一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310323583.7A CN103418333B (zh) 2013-07-30 2013-07-30 一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料

Publications (2)

Publication Number Publication Date
CN103418333A CN103418333A (zh) 2013-12-04
CN103418333B true CN103418333B (zh) 2015-09-23

Family

ID=49644019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310323583.7A Expired - Fee Related CN103418333B (zh) 2013-07-30 2013-07-30 一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料

Country Status (1)

Country Link
CN (1) CN103418333B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107126953B (zh) * 2017-05-19 2020-05-22 武汉工程大学 一种铋/非化学计量比奥里维里斯化合物纳米复合材料及其制备方法和应用
CN107837807B (zh) * 2017-11-01 2021-04-06 浙江海洋大学 一种WO3/Bi2MoO6复合光催化材料及其制备方法
CN109574075A (zh) * 2019-01-18 2019-04-05 合肥学院 一种三元高阶富铋Bi3.64Mo0.36O6.55纳米晶的制备方法
CN109589966A (zh) * 2019-01-21 2019-04-09 合肥学院 一种异质结TiO2@Bi3.64Mo0.36O6.55纳米复合光催化剂的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060330A (zh) * 2010-11-24 2011-05-18 江南大学 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864313B1 (ko) * 2007-05-21 2008-10-20 한국화학연구원 불포화 금속자리를 갖는 다공성 유-무기 혼성체 또는메조세공체의 표면 기능화 및 그의 응용

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060330A (zh) * 2010-11-24 2011-05-18 江南大学 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enhanced photocatalytic activity of bismuth molybdate via hybridization with carbon;Fang Duan et.al.;《Materials Letters》;20101030;第65卷;第191页第1-2节 *
可见光下Bi2WO6光催化降解亚甲基蓝研究;赵先辉;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20090115;摘要 *

Also Published As

Publication number Publication date
CN103418333A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
Yu et al. Functionalized MIL-53 (Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution
Gao et al. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light
Meng et al. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method
Shang et al. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed
Pitakteeratham et al. High efficiency removal of phosphate from water by zirconium sulfate-surfactant micelle mesostructure immobilized on polymer matrix
Yang et al. Applications and characteristics of Fe-Mn binary oxides for Sb (V) removal in textile wastewater: selective adsorption and the fixed-bed column study
Huang et al. Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies
Yang et al. Adsorption of Sb (III) from aqueous solution by QFGO particles in batch and fixed-bed systems
Lou et al. Brown algae based new sorption material for fractional recovery of molybdenum and rhenium from wastewater
CN112156752B (zh) 吸附性可再生的改性活性炭及其在废水处理中的应用
Sağlam et al. Use and applications of metal-organic frameworks (MOF) in dye adsorption
CN107486130A (zh) 普鲁士蓝类化合物脱铵材料制备方法及污水脱铵中的应用
Feng et al. A novel selective hybrid cation exchanger for low-concentration ammonia nitrogen removal from natural water and secondary wastewater
Yang et al. Facile preparation of low-cost HKUST-1 with lattice vacancies and high-efficiency adsorption for uranium
Wang et al. Highly efficient and selective capture Pb (II) through a novel metal-organic framework containing bifunctional groups
CN103418333B (zh) 一种Bi3.64Mo0.36O6.55纳米粒子的制备方法及其Bi3.64Mo0.36O6.55纳米材料
Li et al. Efficient separation and high selectivity for nickel from cobalt-solution by a novel chelating resin: batch, column and competition investigation
Zhu et al. Kinetics and thermodynamic study of phosphate adsorption on the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood microstructure
CN109499529A (zh) 一种氮掺杂的磁性多孔碳材料及其制备方法和应用
Li et al. Fabrication of porous resins via solubility differences for adsorption of cadmium (II)
Viglašová et al. Engineered biochar as a tool for nitrogen pollutants removal: Preparation, characterization and sorption study
Fan et al. Guanidinium ionic liquid-controlled synthesis of zeolitic imidazolate framework for improving its adsorption property
Akram et al. Enhanced removal of phosphate using pomegranate peel-modified nickel‑lanthanum hydroxide
Chen et al. Removal of ammonia-nitrogen in wastewater using a novel poly ligand exchanger-Zn (II)-loaded chelating resin
CN106268617A (zh) 铁掺杂二氧化锰微纳结构材料及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150923

Termination date: 20200730

CF01 Termination of patent right due to non-payment of annual fee