CN103406547A - 一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管 - Google Patents

一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管 Download PDF

Info

Publication number
CN103406547A
CN103406547A CN2013103300304A CN201310330030A CN103406547A CN 103406547 A CN103406547 A CN 103406547A CN 2013103300304 A CN2013103300304 A CN 2013103300304A CN 201310330030 A CN201310330030 A CN 201310330030A CN 103406547 A CN103406547 A CN 103406547A
Authority
CN
China
Prior art keywords
nickel
nanotube
synthesis method
nanocatalyst
high efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103300304A
Other languages
English (en)
Other versions
CN103406547B (zh
Inventor
李祥子
章尧
魏先文
吴孔林
刘海军
宋晶晶
路勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wannan Medical College
Original Assignee
Wannan Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wannan Medical College filed Critical Wannan Medical College
Priority to CN201310330030.4A priority Critical patent/CN103406547B/zh
Publication of CN103406547A publication Critical patent/CN103406547A/zh
Application granted granted Critical
Publication of CN103406547B publication Critical patent/CN103406547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管,包括以下工序:将孔径0.015-2.0μm的聚碳酸酯膜,放在两个玻璃反应池的中间,一个反应池注入浓度为0.025-1.0mol/L硫酸镍镀液,另一个反应池注入0.025-1.0mol/L硼氢化钠水溶液,室温下静置1-30分钟,取下填充有黑色金属镍的聚碳酸酯复合膜,用金相砂纸打磨复合膜的两侧,然后用三氯甲烷浸泡溶解聚碳酸酯膜、清洗所得固体,获得的黑色纳米管(棒),真空室温干燥至恒重。本发明与现有技术相比,一方面实现了一步法合成磁性镍纳米管(棒),合成装置简单,制备周期短,成本较低,所制的磁性纳米管的长短、管径、壁厚及晶型均可控;另一方面,本方法合成的镍纳米管(棒)可高效催化降解氮杂染料,催化时间很短,从而为环境污水处理等领域提供高效催化剂。

Description

一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管
技术领域
本发明涉及一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管。
背景技术
目前,磁性纳米管的可控合成技术以及高效染料降解催化剂的研制仍然是个备受人们挑战的课题。报导较多的是氧化铝模板电化学沉积法,然而这种方法合成磁性纳米管,通常需要对模板进行预处理,技术要求高,合成时间长,模板孔洞的填充率低,设备专业,且氧化铝模板价格贵,实用性差,所得材料后处理麻烦等问题。聚碳酸酯膜虽也可作为模板用于合成磁性纳米管,但相关合成主要也局限于电化学技术、真空喷镀技术或湿模板技术等,实际操作性不好,且这些合成方法在纳米管的管径、壁厚、长度方面一般不易控制。此外,当前用于氮杂染料降解的催化剂一般以零维氧化物颗粒为主,并以光催化体系为主体,存在催化剂制备方法不简便、催化的效率不高、催化时间较长等不足。
本申请人曾经在先申请过一件发明专利申请,一种磁性纳米管的制备方法,专利号:ZL 201010575330.5,采用了类似的合成方法,但本申请的改进点是通过改变技术条件实现对其中一种镍纳米管的可控合成,主要在于使用了不同类型的有机聚碳酸酯膜为模板,对纳米管的管径、长度、管棒进行可控合成,属于一种改进的全新工艺控制,并且由此,本发明中的镍纳米管(棒)具有高效的染料降解的催化功能,可以说是目前同等体系中催化效果最快的一种催化剂。
发明内容
本发明的目的在于提供一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管。
具体技术方案如下:
一种高效染料降解纳米催化剂的可控合成方法,包括如下步骤:
(1)将聚碳酸酯膜放在两个玻璃反应池的中间;
(2)一个反应池注入硫酸镍镀液;
(3)另一个反应池注入硼氢化钠水溶液;
(4)静置;
(5)取下填充有黑色金属镍的聚碳酸酯复合膜;
(6)打磨复合膜的两侧;
(7)浸泡溶解聚碳酸酯膜、清洗所得固体;
(8)干燥至恒重,获得黑色镍纳米管,和/或黑色镍纳米棒;
所述纳米管和/或纳米棒的长度、尺寸可控:选择不同规格的聚碳酸酯膜可获得不同管径的非晶或多晶镍纳米管,和/或,改变溶液浓度及比例可控制镍纳米管的壁厚。
进一步地,
步骤(1)中所述聚碳酸酯膜的孔径为0.015-2.0 µm,
和/或,
步骤(2)中所述硫酸镍镀液浓度为0.025-1.0 mol/L。
进一步地,
步骤(3)中硼氢化钠水溶液为0.025-1.0 mol/L,
和/或,
步骤(4)中为室温下静置1-30分钟。
进一步地,
步骤(6)中用金相砂纸打磨,
和/或,
步骤(7)中,用三氯甲烷浸泡溶解聚碳酸酯膜、清洗所得固体,
和/或,
步骤(8)中,真空室温进行干燥。
进一步地,所述多孔聚碳酸酯膜的纳米孔洞作为微反应器,所述聚碳酸酯膜起模板的作用,还原剂分子与镍离子分别从模板两侧进入孔洞,并在模板孔洞中相遇时,立即发生氧化还原反应并释放气体。
进一步地,所述模板为商用多孔聚碳酸酯膜,和/或,所述金属离子是二价镍离子,和/或,所述还原剂为硼氢化钠。
进一步地,所述生成的气体优先从阻力较小的孔洞轴线处移动并排出,使得被还原的离子只能在孔壁处沉积和附着,模板孔壁上沉积的金属粒子可作为新的生长点,其它离子继续在所述生长点上继续沿着管壁生长,并形成镍纳米管,和/或,溶液浓度变稀时,获得多孔的镍纳米棒。
进一步地,所述硫酸镍镀液与硼氢化钠水溶液的用量之比为0.25-4,和/或,步骤(8)中采用真空干燥箱。
进一步地,进一步包括步骤(9):磁性镍纳米管于500℃真空加热退火120分钟,真空度大于0.995巴,可获得相应的晶态镍纳米管。
一种纳米管,进一步地,采用上述的高效染料降解纳米催化剂的可控合成方法制备得到。
与目前现有技术相比,本发明以多孔聚碳酸酯膜的纳米孔洞作为微反应器,其中聚碳酸酯膜起到了硬模板的作用;硼氢化钠分子与镍离子分别从模板两侧进入孔洞,并在模板孔洞中相遇时,立即发生氧化还原反应并释放气体,由于模板的孔径很小,所以生成的气体优先从阻力较小的孔洞轴线处移动并排出,使得被还原的离子只能在孔壁处沉积和附着;模板孔壁上沉积的金属粒子可作为新的生长点,加上模板孔壁的活性很高,其它的离子便继续在这些生长点上继续沿着管壁生长,从而形成了镍纳米管。溶液浓度变稀时,还可获得多孔的镍纳米棒。
本发明方法的优点之一是,它实现了一步法合成镍纳米管的简易方法,合成装置很简单,合成时间很短,可以被高效利用,具有较好的推广和应用价值。
本发明方法的第二个优点是,它拓展了模板化学沉积合成一维纳米材料的技术,合成出的磁性纳米管长度、尺寸可控,实现了纳米管与纳米棒之间的转变。
本发明方法的第三个优点是,它解决了一种合成镍纳米管(棒)的新方法,并提供了系统性的研究技术。
本发明方法的第四个优点是,它提供了一种高效染料降解纳米催化剂的合成方法。
本发明方法的第五个优点是,本技术合成出的镍纳米管(棒),可作为内核用于合成其它镍基复合纳米电缆或纳米管,为获得更多其它异质功能纳米材料提供原料。
附图说明
图1为孔径为2.0 µm聚碳酸酯膜合成的镍纳米管扫描电子显微镜图;
图2为孔径为0.2 µm聚碳酸酯膜合成的镍纳米管扫描电子显微镜图;
图3为孔径为0.05 µm聚碳酸酯膜合成的镍纳米管扫描电子显微镜图;
图4为孔径为0.015 µm聚碳酸酯膜合成的镍纳米管扫描电子显微镜图;
图5为孔径为0.2 µm聚碳酸酯膜合成的壁厚约60 nm镍纳米管透射电子显微镜图;
图6为孔径为0.2 µm聚碳酸酯膜合成的平均长度0.75 µm镍纳米棒的扫描电子显微镜图;
图7为孔径为0.2 µm聚碳酸酯膜合成的镍纳米管催化甲基橙的紫外吸收图;
图8为孔径为0.2 µm聚碳酸酯膜合成的镍纳米管催化亚甲基蓝的紫外吸收图;
图9为孔径为0.2 µm聚碳酸酯膜合成的镍纳米管催化罗丹明B的紫外吸收图;
具体实施方式
下面根据附图对本发明进行详细描述,其为本发明多种实施方式中的一种优选实施例。
一种高效染料降解纳米催化剂的可控合成方法,包括以下工序:将孔径0.015-2.0 µm的聚碳酸酯膜,放在两个玻璃反应池的中间,一个反应池注入浓度为0.025-1.0 mol/L硫酸镍镀液,另一个反应池注入0.025-1.0 mol/L硼氢化钠水溶液,室温下静置1-30分钟,取下填充有黑色金属镍的聚碳酸酯复合膜,用金相砂纸打磨复合膜的两侧,然后用三氯甲烷浸泡溶解聚碳酸酯膜、清洗所得固体,真空室温干燥至恒重,获得黑色镍纳米管(棒),所述的模板为商用多孔聚碳酸酯膜,金属离子是二价镍离子,还原剂为硼氢化钠,利用不同规格的聚碳酸酯膜可获得不同管径的非晶或多晶镍纳米管,改变溶液浓度及比例可控制镍纳米管的壁厚,同时还可获得镍纳米棒,所得镍纳米管(棒)可高效降解氮杂类染料,所述的金属离子是二价镍离子,还原剂为硼氢化钠水溶液。
实施例1
取购买的孔径为2.0 µm聚碳酸酯膜一片置于两个玻璃反应池中间,一个玻璃反应池注入NiSO4溶液,另一个玻璃反应池注入NaBH4水溶液,其中NiSO4与NaBH4的物质的量之比为2,室温下静置150秒,取下黑色纳米管/聚碳酸酯复合膜,再用三氯甲烷溶解该复合膜,并用三氯甲烷清洗4-5次,放入真空干燥箱中室温干燥至恒重,即可得到非晶态磁性镍纳米管。用扫描电子显微镜检测纳米管的形貌图(图1);将所得的磁性镍纳米管于500℃真空加热退火120分钟,真空度大于0.995巴,可获得相应的晶态镍纳米管。
实施例2
取购买的孔径0.2 µm聚碳酸酯膜一片置于两个玻璃反应池中间,一个玻璃反应池注入NiSO4溶液,另一个玻璃反应池注入NaBH4水溶液,其中NiSO4与NaBH4的物质的量之比为2,室温下静置150秒,取下黑色纳米管/聚碳酸酯复合膜,再用三氯甲烷溶解该复合膜,并用三氯甲烷清洗4-5次,放入真空干燥箱中室温干燥至恒重,即可得到非晶态磁性镍纳米管。用扫描电子显微镜检测纳米管的形貌图(图2);将所得的磁性镍纳米管于500℃真空加热退火120分钟,真空度大于0.995巴,可获得相应的晶态镍纳米管。
实施例3
取购买的孔径0.05 µm聚碳酸酯膜一片置于两个玻璃反应池中间,一个玻璃反应池注入NiSO4溶液,另一个玻璃反应池注入NaBH4水溶液,其中NiSO4与NaBH4的物质的量之比为2,室温下静置150秒,取下黑色纳米管/聚碳酸酯复合膜,再用三氯甲烷溶解该复合膜,并用三氯甲烷清洗4-5次,放入真空干燥箱中室温干燥至恒重,即可得到非晶态磁性镍纳米管。用扫描电子显微镜检测纳米管的形貌图(图3);将所得的磁性镍纳米管于500℃真空加热退火120分钟,真空度大于0.995巴,可获得相应的晶态镍纳米管。
实施例4
取购买的孔径0.015 µm聚碳酸酯膜一片置于两个玻璃反应池中间,一个玻璃反池注入NiSO4溶液,另一个玻璃反应池注入NaBH4水溶液,其中NiSO4与NaBH4的物质的量之比为2,室温下静置150秒,取下黑色纳米管/聚碳酸酯复合膜,再用三氯甲烷溶解该复合膜,并用三氯甲烷清洗4-5次,放入真空干燥箱中室温干燥至恒重,即可得到多晶的磁性镍纳米棒。用扫描电子显微镜检测纳米管棒的形貌图(图4);将所得的磁性镍纳米棒于500℃真空加热退火120分钟,真空度大于0.995巴,可获得镍纳米棒的结晶性更好。
实施例5
取购买的孔径0.2 µm聚碳酸酯膜一片置于两个玻璃反应池中间,一个玻璃反应池注入NiSO4溶液,另一个玻璃反应池注入NaBH4水溶液,分别改变NiSO4与NaBH4的物质的量之比为4、1、0.5、0.25,室温下静置150秒,取下黑色纳米管/聚碳酸酯复合膜,再用三氯甲烷溶解该复合膜,并用三氯甲烷清洗4-5次,放入真空干燥箱中室温干燥至恒重,即可得到不同壁厚的非晶态磁性镍纳米管。用扫描电子显微镜检测其中一种纳米管的形貌图(图5);将所得的磁性镍纳米管于500℃真空加热退火120分钟,真空度大于0.995巴,可获得相应的晶态镍纳米管。
实施例6
取购买的孔径0.2 µm聚碳酸酯膜一片置于两个玻璃反应池中间,一个玻璃反应池注入NiSO4溶液,另一个玻璃反应池注入NaBH4水溶液,其中NiSO4与NaBH4的物质的量之比为0.5,室温下分别静置60秒、5分钟、10分钟、30分钟,取下黑色纳米管/聚碳酸酯复合膜,再用三氯甲烷溶解该复合膜,并用三氯甲烷清洗4-5次,放入真空干燥箱中室温干燥至恒重,即可得到不同长度的非晶态磁性镍纳米棒。用扫描电子显微镜检测其中一种纳米棒的形貌图(图6);将所得的磁性镍纳米棒于500℃真空加热退火120分钟,真空度大于0.995巴,可获得相应的晶态镍纳米棒。
实施例7
将本发明中的0.2 µm的镍纳米管分散到二次水中,获得浓度为100mg/L的悬浮液,分别配制0.06 mol/L的 NaBH4水溶液和3×10−5 mol/L的甲基橙水溶液,依次将甲基橙溶液、镍纳米管悬浮液和NaBH4溶液注入1cm厚的石英比色皿,立即用液体紫外分光光度计检测混合后溶液的紫外可见吸收曲线(图7)。
实施例8
将本发明中的0.2 µm的镍纳米管分散到二次水中,获得浓度为100mg/L的悬浮液,分别配制0.06 mol/L的NaBH4水溶液和3×10−5 mol/L的亚甲基蓝水溶液,依次将亚甲基蓝溶液、镍纳米管悬浮液和NaBH4溶液注入1cm厚的石英比色皿,立即用液体紫外分光光度计检测混合后溶液的紫外可见吸收曲线(图8)。
实施例9
将本发明中的0.2 µm的镍纳米管分散到二次水中,获得浓度为100mg/L的悬浮液,分别配制0.06 mol/L的NaBH4水溶液和3×10−5 mol/L的罗丹明B水溶液,依次将罗丹明B溶液、镍纳米管悬浮液和NaBH4溶液注入1cm厚的石英比色皿,立即用液体紫外分光光度计检测混合后溶液的紫外可见吸收曲线(图9)。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。

Claims (10)

1.一种高效染料降解纳米催化剂的可控合成方法,其特征在于,包括如下步骤:
(1)将聚碳酸酯膜放在两个玻璃反应池的中间;
(2)一个反应池注入硫酸镍镀液;
(3)另一个反应池注入硼氢化钠水溶液;
(4)静置;
(5)取下填充有黑色金属镍的聚碳酸酯复合膜;
(6)打磨复合膜的两侧;
(7)浸泡溶解聚碳酸酯膜、清洗所得固体;
(8)干燥至恒重,获得黑色镍纳米管,和/或黑色镍纳米棒;
所述纳米管和/或纳米棒的长度、尺寸可控:选择不同规格的聚碳酸酯膜可获得不同管径的非晶或多晶镍纳米管,和/或,改变溶液浓度及比例可控制镍纳米管的壁厚。
2.如权利要求1所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,
步骤(1)中所述聚碳酸酯膜的孔径为0.015-2.0 µm,
和/或,
步骤(2)中所述硫酸镍镀液浓度为0.025-1.0 mol/L。
3.如权利要求1或2所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,
步骤(3)中硼氢化钠水溶液为0.025-1.0 mol/L,
和/或,
步骤(4)中为室温下静置1-30分钟。
4.如权利要求1-3中任一项所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,
步骤(6)中用金相砂纸打磨,
和/或,
步骤(7)中,用三氯甲烷浸泡溶解聚碳酸酯膜、清洗所得固体,
和/或,
步骤(8)中,真空室温进行干燥。
5.如权利要求1-4中任一项所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,所述多孔聚碳酸酯膜的纳米孔洞作为微反应器,所述聚碳酸酯膜起模板的作用,还原剂分子与镍离子分别从模板两侧进入孔洞,并在模板孔洞中相遇时,立即发生氧化还原反应并释放气体。
6.如权利要求1-5中任一项所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,所述模板为商用多孔聚碳酸酯膜,和/或,所述金属离子是二价镍离子,和/或,所述还原剂为硼氢化钠。
7.如权利要求1-6中任一项所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,所述生成的气体优先从阻力较小的孔洞轴线处移动并排出,使得被还原的离子只能在孔壁处沉积和附着,模板孔壁上沉积的金属粒子可作为新的生长点,其它离子继续在所述生长点上继续沿着管壁生长,并形成镍纳米管,和/或,溶液浓度变稀时,获得多孔的镍纳米棒。
8.如权利要求1-7中任一项所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,所述硫酸镍镀液与硼氢化钠水溶液的用量之比为0.25-4,和/或,步骤(8)中采用真空干燥箱。
9.如权利要求1-8中任一项所述的高效染料降解纳米催化剂的可控合成方法,其特征在于,进一步包括步骤(9):磁性镍纳米管于500℃真空加热退火120分钟,真空度大于0.995巴,可获得相应的晶态镍纳米管。
10.一种纳米管,其特征在于,采用如权利要求1-9所述的高效染料降解纳米催化剂的可控合成方法制备得到。
CN201310330030.4A 2013-08-01 2013-08-01 一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管 Active CN103406547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310330030.4A CN103406547B (zh) 2013-08-01 2013-08-01 一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310330030.4A CN103406547B (zh) 2013-08-01 2013-08-01 一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管

Publications (2)

Publication Number Publication Date
CN103406547A true CN103406547A (zh) 2013-11-27
CN103406547B CN103406547B (zh) 2015-12-02

Family

ID=49599614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310330030.4A Active CN103406547B (zh) 2013-08-01 2013-08-01 一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管

Country Status (1)

Country Link
CN (1) CN103406547B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349240A (zh) * 2001-11-27 2002-05-15 北京大学 一种场发射阴极及其制造方法和应用
CN1880218A (zh) * 2005-06-17 2006-12-20 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制造方法
CN101319407A (zh) * 2008-06-25 2008-12-10 北京理工大学 一种金属氧化物纳米颗粒状纳米阵列材料的制备方法
CN101786002A (zh) * 2010-03-19 2010-07-28 南京大学 铈锆纳米棒、纳米方块或纳米管担载铜基的催化剂及其制法
CN102021654A (zh) * 2010-12-06 2011-04-20 皖南医学院 一种磁性纳米管的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349240A (zh) * 2001-11-27 2002-05-15 北京大学 一种场发射阴极及其制造方法和应用
CN1880218A (zh) * 2005-06-17 2006-12-20 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制造方法
CN101319407A (zh) * 2008-06-25 2008-12-10 北京理工大学 一种金属氧化物纳米颗粒状纳米阵列材料的制备方法
CN101786002A (zh) * 2010-03-19 2010-07-28 南京大学 铈锆纳米棒、纳米方块或纳米管担载铜基的催化剂及其制法
CN102021654A (zh) * 2010-12-06 2011-04-20 皖南医学院 一种磁性纳米管的制备方法

Also Published As

Publication number Publication date
CN103406547B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN103924260B (zh) 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
CN108439549B (zh) 一种阵列结构过渡金属硒化物电极的制备及其在电解水中的应用
CN106048650B (zh) 3d多孔电极的制备方法及其在电化学析氢反应中的应用
Yuan et al. Cooperation of carbon doping and carbon loading boosts photocatalytic activity by the optimum photo-induced electron trapping and interfacial charge transfer
CN110433833B (zh) 一种基于协同改性的非贵金属析氢电催化剂及其制备方法
Liu et al. Directing the architecture of surface-clean Cu2O for CO electroreduction
CN101811044A (zh) 铌酸钾纳米管光催化剂及其制备方法和应用
CN112080759B (zh) 一种用于电催化氧化尿素的铋掺杂双金属硫化物电极的制备方法
CN101829564A (zh) 一种用于硼氢化钠水解制氢的Ru/C催化剂的制备方法
CN110331415A (zh) 一种三维双金属氧化物集流体电极材料、其制备方法及用途
CN106784880A (zh) 水溶性一维金钯合金纳米线的合成方法
CN109136982A (zh) 通过牺牲对电极合成纳米复合材料的方法及其在电解水催化剂中的应用
CN109267095A (zh) 一种新型磷化镍催化剂及其制备方法
CN101406832A (zh) 不同粒径单分散的花状金/铂杂化纳米粒子制备方法
Guan et al. Review on Synthesis, Modification, Morphology, and Combination of BiVO4-based Catalysts for Photochemistry: Status, Advances, and Perspectives
CN105833871B (zh) 一种富缺陷的钴镶嵌碳纳米管、制备方法及其应用
CN103406547B (zh) 一种高效染料降解纳米催化剂的可控合成方法以及一种纳米管
CN109355677B (zh) 表面掺杂磷元素的钯立方纳米晶及其制备方法和应用
CN114289043A (zh) 一种自支撑多孔纳米板钴镍磷化物催化剂制备方法及应用
CN108163903B (zh) 基于多孔镍骨架一步制备球形交叉氢氧化镍纳米片的方法
CN113089014B (zh) 一种核壳结构超亲水超疏气高效析氢催化剂及其制备方法
CN108031481A (zh) 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法
CN100443167C (zh) 分次还原沉积高分散性铂催化剂颗粒的方法
CN107201600B (zh) 一种无纺布及其制备方法
CN111420654B (zh) 一种基于碳基纳米材料及其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant