CN103378595A - 考虑谐振的混合型有源滤波器参数优化配置 - Google Patents

考虑谐振的混合型有源滤波器参数优化配置 Download PDF

Info

Publication number
CN103378595A
CN103378595A CN201210105400XA CN201210105400A CN103378595A CN 103378595 A CN103378595 A CN 103378595A CN 201210105400X A CN201210105400X A CN 201210105400XA CN 201210105400 A CN201210105400 A CN 201210105400A CN 103378595 A CN103378595 A CN 103378595A
Authority
CN
China
Prior art keywords
algorithm
hybrid active
resonance
capacity
active filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210105400XA
Other languages
English (en)
Other versions
CN103378595B (zh
Inventor
夏向阳
徐林菊
王欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha High Tech Development Zone Yuelushan University Science And Technology Park Science And Technology Service Co ltd
Hunan Huagang Technology Investment Co ltd
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201210105400.XA priority Critical patent/CN103378595B/zh
Publication of CN103378595A publication Critical patent/CN103378595A/zh
Application granted granted Critical
Publication of CN103378595B publication Critical patent/CN103378595B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明针对混合型有源滤波器在实际应用时无功补偿不能出现过补偿及谐振的问题,公开了一种采用电容无功补偿功率与串并联谐振频率的关系作为约束条件对并联混合型有源滤波器(shunthybridactivepowerfilter,SHAPF)参数进行优化配置的方法,采用改进的粒子群优化算法(improved particleswarmoptimization,IPSO),根据粒子群算法参数速度和惯性因子
Figure 148202DEST_PATH_IMAGE002
的关系,提出时变的非线性三角函数方法来控制参数,加速了算法的收敛速度,防止陷入局部最优。通过Matlab进行仿真验证,SHAPF的参数设计得到了优化配置,具有良好的滤波效果。在实例应用中,有效地避免了谐振,具有一定的工程应用价值。

Description

考虑谐振的混合型有源滤波器参数优化配置
技术领域
本发明涉及一种应用于混合型有源滤波器参数的优化配置技术,有效地避免了谐振,属于电气工程领域。 
背景技术
混合型有源滤波器性能比价高,更利于工程的实现,日益成为高压大容量系统进行谐波抑制和无功补偿的首要措施,但容易受到背景谐波电压的影响。这些谐波电压可能导致系统谐振和直流侧电压升高,损坏混合型有源滤波器的逆变开关和直流侧电容。 
针对上述问题,通过多目标遗传算法对混合有源滤波器中有源部分注入支路的参数进行优化,采用并联多个逆变器和直流侧电容的多重化主电路形式、先进的控制算法来减小基波谐振支路的谐波分压,显然混合有源滤波器的设计经济费用很大。通过建立电气模型、结构以及最优的控制策略设计有源电力滤波器有源和无源部分的参数设计,确保了混合型有源滤波器的安全有效运行,没有对参数进行优化性设计。采用改进粒子群优化算法对混合滤波装置中无源滤波器进行多目标优化设计,但没有考虑谐振的问题。 
发明内容
本发明主要针对并联混合型有源滤波器(shunt hybrid active power filter ,SHAPF)参数进行的优化配置 
(1)提出采用电容无功补偿功率与串并联谐振频率的关系作为约束条件对并联混合型有源滤波器(shunt hybrid active power filter ,SHAPF)参数进行优化配置
 (2)寻优算法采用改进的粒子群优化算法(improved particle swarm optimization ,IPSO),根据粒子群算法参数速度和惯性因子
Figure 371182DEST_PATH_IMAGE003
的关系,提出时变的非线性三角函数方法来控制参数,加速了算法的收敛速度,防止陷入局部最优。
有益效果: 
(1)提出采用电容补偿功率与串并联谐无功振频率的关系为谐振约束条件,对并联混合型有源滤波器进行优化配置,避免了过补偿及避免谐振的问题
(2)根据速度
Figure 851842DEST_PATH_IMAGE004
和惯性因子
Figure 144283DEST_PATH_IMAGE003
的关系,提出改进的算法采用非线性三角函数时变的方法来控制参数,加速了优化算法的收敛速度, 避免算法陷入局部最优。
附图说明:
图1 SHAPF拓扑结构图。
具体实施方式:
以并联混合型有源滤波器(shunt hybrid active power filter ,SHAPF)参数为研究对象。SHAPF优化的问题是在SHAPF的拓扑结构和控制目标确定的前提下,寻求其优化配置参数,SHAPF的拓扑结构如图1所示:
SHAPF由APF与PPF串联混合而成,由有源和无源部分共同抑制谐波,APF主要由隔离变压器、输出滤波器、电压型逆变器组成。其中PPF采用多个调谐滤波器组成,其调谐频率根据被补偿对象的谐波确定,降低了APF的容量和电压等级,为谐波电流提供低阻抗通路。
1、优化问题描述 
实用滤波器的参数优化问题能够在最低费用下满足谐波抑制的要求:
(1)SHAPF无源部分主要由电感和电容组成,其经济性主要由元件的功率容量决定。本文采用的优化配置的目标函数为:
                           
Figure 409546DEST_PATH_IMAGE007
                         (1)
表示最小的经济费用;
Figure 912388DEST_PATH_IMAGE009
是PPF电容、电感的费用与其额定容量之间的函数关系;
Figure 461181DEST_PATH_IMAGE010
是APF费用与其额定容量之间的函数关系。如下所示:
                                
Figure 611540DEST_PATH_IMAGE011
                            (2)
                                 
Figure 878573DEST_PATH_IMAGE012
                            (3)
PPF对系统进行无功补偿,且流过的电流包括基波电流和有源滤波器输出的各次谐波电流,其容量为
Figure 372746DEST_PATH_IMAGE013
为:
Figure 41625DEST_PATH_IMAGE014
                        (4)
其中:                          
Figure 300568DEST_PATH_IMAGE015
 
Figure 789318DEST_PATH_IMAGE016
                           (5)
电感
Figure 854226DEST_PATH_IMAGE005
容量
Figure 377611DEST_PATH_IMAGE017
为:
  
Figure 541876DEST_PATH_IMAGE018
                          (6)
                                  
Figure 845819DEST_PATH_IMAGE019
                              (7)                                               为避免系数选值的盲目性,使理论总投资费用更接近实际工程总投资费用, 采用市场价格决定法确定系数:取
Figure 386521DEST_PATH_IMAGE020
Figure 764413DEST_PATH_IMAGE021
Figure 427476DEST_PATH_IMAGE022
Figure 890818DEST_PATH_IMAGE023
,单位为万元/Mvar
有源滤波器APF在选择容量时,根据实测结果还要考虑10%-15%的裕量,即:
Figure 235212DEST_PATH_IMAGE024
 A
其容量由所补偿的各次谐波电流值决定,与基波电流无关,其容量决定于所补偿的总谐波电流有效值,即:
                              
Figure 803038DEST_PATH_IMAGE026
                        (8)
(2)装设滤波装置后,使电网谐波含量在符合国家标注的基础上尽量低,以电网整个母线的谐波电压畸变率为衡量标准
                     
Figure 19256DEST_PATH_IMAGE027
                (9)
 2、约束条件
(1)混合型有源滤波器在实际应用中,系统无功不能出现过补偿,否则在容性负载环境下,有源滤波器产生的补偿谐波和系统谐波的反相谐波容易在容性负载环境下产生谐振,被谐振放大的谐波反冲APF中的IGBT,导致其烧坏。而滤波器的导纳以容性为主,为了避免与系统发生谐振,保证系统的稳定性,以滤波器装置中电容器的容量与串并联谐振频率的关系作为目标函数的约束条件:
                                  
Figure 964078DEST_PATH_IMAGE028
                        (10)
                                     
Figure 316562DEST_PATH_IMAGE029
                           (11)
变压器的容量;
Figure 493783DEST_PATH_IMAGE031
变压器的标么值阻抗;
Figure 179979DEST_PATH_IMAGE032
为PPF的电容器容量;
Figure 386970DEST_PATH_IMAGE033
负荷容量;
Figure 562736DEST_PATH_IMAGE034
串联谐振频率;
Figure 487967DEST_PATH_IMAGE035
并联谐振频率;基波频率;
Figure 600203DEST_PATH_IMAGE037
电源短路容量。
(2)SHAPF中的无源滤波器中的电容具有一定的无功补偿作用,配置滤波装置后既不能使系统出现无功功率过补偿现象,又要使系统的功率尽量接近于1,安装有源滤波器时应注意系统的无功补偿不能出现过补偿,即向系统输送无功功率。 
                           
Figure 884554DEST_PATH_IMAGE038
                           (12) 
Figure 31501DEST_PATH_IMAGE039
为无源滤波器提供的基波无功功率的上下限。
3、参数优化设计的改进的粒子群算法 
粒子群算法(PSO)初始化为一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪个体极值
Figure 303400DEST_PATH_IMAGE041
和全局极值
Figure 758652DEST_PATH_IMAGE042
进行更新,标准的粒子群算法是一个反复迭代比较收敛的过程。
Figure 658475DEST_PATH_IMAGE043
           (13) 
学习因子
Figure 322991DEST_PATH_IMAGE045
使粒子保持着运动惯性,代表每个粒子推向
Figure 502803DEST_PATH_IMAGE042
位置的统计加速项的权值,较低的值允许粒子被拉回前在目标区域外徘徊,较高的值导致粒子冲向或越过目标函数,使其具有扩展搜索空间趋势,有能力搜索新的区域。
3.1 PSO参数分析 
群体规模
Figure 222759DEST_PATH_IMAGE047
取20-40。速度
Figure 19814DEST_PATH_IMAGE048
决定当前位置与最好位置之间的区域分辨率,如果太快,则粒子有可能越过极小点;如果太慢,则粒子不可能在局部极小点之外进行足够的搜素,会陷入局部极值区域内,这种限制可以达到防止计算溢出。而惯性因子,大的惯性因子
Figure 598880DEST_PATH_IMAGE003
可以使算法不易陷入局部最优,到算法的后期,小的惯性因子
Figure 609561DEST_PATH_IMAGE003
可以使收敛速度加快,不至于出现振荡现象;动态减小惯性因子,可以使算法更加稳定。
3.2时变非线性三角函数控制 
PSO算法在进化初期收敛速度快,运算简单,但该算法在进化后期收敛慢、精度较差,容易陷入局部极值点。根据参数速度
Figure 735966DEST_PATH_IMAGE048
和惯性因子的特性以及之间的关系,PSO算法中参数速度变大时,减小惯性因子
Figure 779511DEST_PATH_IMAGE003
可以防止粒子飞出搜索区域;速度
Figure 97360DEST_PATH_IMAGE048
变小时,增大防止粒子在局部最优点徘徊,造成局部最优;且由于凹函数的递减特性优于线性递减的特性,而线性函数的递减特性优于凸函数的递减特性。因此为了提高粒子群算法的收敛性,避免算法陷入局部最优,本文改进的粒子群算法采用时变的非线性三角函数方法来控制参数如下式所示。
                      
Figure 597929DEST_PATH_IMAGE049
                   (14) 
采用了改进的PSO 算法,加快了算法的收敛速度,避免算法陷入局部最优,明显优于PSO 算法。
2.3适应度函数的构造 
并联混合型有源滤波器在满足经济性最小的情况下同时满足滤波效果、无功功率、串并联谐振的条件。根据优化的目标函数,粒子个体适应函数为:
                             
Figure 468539DEST_PATH_IMAGE050
                           (15)
其中为一较大正数;
                                                        (16)
                             
Figure 229188DEST_PATH_IMAGE052
                           (17)

Claims (3)

1.考虑谐振的混合型有源滤波器参数优化配置技术,其特征在于:无功补偿不能出现过补偿及谐振的问题,采用电容无功补偿功率与串并联谐振频率的关系作为约束条件对并联混合型有源滤波器参数进行优化配置;寻优算法采用改进的粒子群优化算法,根据粒子群算法参数速度                                                
Figure 983740DEST_PATH_IMAGE001
和惯性因子
Figure 205774DEST_PATH_IMAGE002
的关系,提出时变的非线性三角函数方法来控制参数,加速了算法的收敛速度,防止陷入局部最优。
2.根据权利要求1所述的电容无功补偿功率与串并联谐振频率的关系作为约束条件,其特征在于: 
                               
Figure 618301DEST_PATH_IMAGE003
                           (1)
                                  
Figure 583983DEST_PATH_IMAGE004
                              (2)
Figure 451051DEST_PATH_IMAGE005
变压器的容量;
Figure 640724DEST_PATH_IMAGE006
变压器的标么值阻抗;为PPF的电容器容量;
Figure 44341DEST_PATH_IMAGE008
负荷容量;
Figure 283692DEST_PATH_IMAGE009
串联谐振频率;
Figure 644266DEST_PATH_IMAGE010
并联谐振频率;
Figure 969068DEST_PATH_IMAGE011
基波频率;
Figure 338870DEST_PATH_IMAGE012
电源短路容量。
3.根据权利要求1所述的采用改进的粒子群优化算法,其特征在于:
                       
Figure 229465DEST_PATH_IMAGE013
                    (3)
可以在提高粒子群算法的收敛性的同时避免算法陷入局部最优。
CN201210105400.XA 2012-04-12 2012-04-12 考虑谐振的混合型有源滤波器参数优化配置 Active CN103378595B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210105400.XA CN103378595B (zh) 2012-04-12 2012-04-12 考虑谐振的混合型有源滤波器参数优化配置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210105400.XA CN103378595B (zh) 2012-04-12 2012-04-12 考虑谐振的混合型有源滤波器参数优化配置

Publications (2)

Publication Number Publication Date
CN103378595A true CN103378595A (zh) 2013-10-30
CN103378595B CN103378595B (zh) 2016-06-08

Family

ID=49463329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210105400.XA Active CN103378595B (zh) 2012-04-12 2012-04-12 考虑谐振的混合型有源滤波器参数优化配置

Country Status (1)

Country Link
CN (1) CN103378595B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812109A (zh) * 2014-02-21 2014-05-21 国网浙江杭州市萧山区供电公司 一种电动汽车充电站并联有源滤波器的容量配置方法
CN105322553A (zh) * 2015-11-05 2016-02-10 北京许继电气有限公司 基于局部树的配电网电容器并联补偿计算方法
CN110021940A (zh) * 2019-04-25 2019-07-16 国网重庆市电力公司璧山供电分公司 一种基于改进粒子群算法的电容器优化配置方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201303251Y (zh) * 2008-09-20 2009-09-02 大连理工大学 基于相控开关技术带无功补偿的并联混合型有源滤波器
CN102201672A (zh) * 2010-03-26 2011-09-28 长沙理工大学 改进的模拟退火-粒子群优化算法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201303251Y (zh) * 2008-09-20 2009-09-02 大连理工大学 基于相控开关技术带无功补偿的并联混合型有源滤波器
CN102201672A (zh) * 2010-03-26 2011-09-28 长沙理工大学 改进的模拟退火-粒子群优化算法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
(新西兰)JOS ARRILLAGA NEVILLE R.WATSON: "《电力系统谐波 第二版》", 30 November 2008, article "谐波畸变的影响", pages: 111-113 *
于士启等: "混合型有源电力滤波器主电路优化设计", 《中国电机工程学报》, vol. 31, no. 6, 25 February 2011 (2011-02-25), pages 22 - 29 *
周柯等: "大功率有源滤波器直流侧电容设计与电压控制", 《电力电子技术》, vol. 41, no. 4, 30 April 2007 (2007-04-30), pages 12 - 15 *
罗时武等: "一种电网滤波器优化配置新算法", 《电力科学与技术学报》, vol. 26, no. 2, 30 June 2011 (2011-06-30), pages 107 - 117 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812109A (zh) * 2014-02-21 2014-05-21 国网浙江杭州市萧山区供电公司 一种电动汽车充电站并联有源滤波器的容量配置方法
CN103812109B (zh) * 2014-02-21 2016-06-15 国网浙江杭州市萧山区供电公司 一种电动汽车充电站并联有源滤波器的容量配置方法
CN105322553A (zh) * 2015-11-05 2016-02-10 北京许继电气有限公司 基于局部树的配电网电容器并联补偿计算方法
CN105322553B (zh) * 2015-11-05 2018-02-13 北京许继电气有限公司 基于局部树的配电网电容器并联补偿计算方法
CN110021940A (zh) * 2019-04-25 2019-07-16 国网重庆市电力公司璧山供电分公司 一种基于改进粒子群算法的电容器优化配置方法
CN110021940B (zh) * 2019-04-25 2023-04-07 国网重庆市电力公司璧山供电分公司 一种基于改进粒子群算法的电容器优化配置方法

Also Published As

Publication number Publication date
CN103378595B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN102684222B (zh) 一种基于储能技术的风力发电功率平滑控制方法
CN102832625B (zh) 配电网滤波装置优化配置方法
CN102201672A (zh) 改进的模拟退火-粒子群优化算法
CN102916429A (zh) 混合有源电力滤波器的多目标优化方法
CN105281368A (zh) 一种光伏并网与电能质量治理统一控制策略
CN103475018B (zh) 基于动态辨识电网谐振频率的自适应并网逆变器控制方法
CN101882237A (zh) 一种改进的免疫-粒子群优化算法
CN102737277A (zh) 基于多岛粒子群算法的混合型滤波器中无源滤波器多目标优化设计方法
CN103378595A (zh) 考虑谐振的混合型有源滤波器参数优化配置
WO2019037428A1 (zh) 双层优化全局同步脉冲宽度调制系统及方法
CN109586342B (zh) 一种多并网逆变系统的带宽优化控制方法
Zhao et al. Passivity enhancement control strategy and optimized parameter design of islanded microgrids
Yadav et al. Solar powered grid integrated charging station with hybrid energy storage system
CN109193820B (zh) 用于对光伏发电站进行无功优化的方法、系统及存储介质
CN102044877A (zh) 基于单调谐滤波器等效的三调谐滤波器设计方法
CN103064031A (zh) 一种电池化成检测系统及其吸收保护电路参数选择方法
Imtiaz et al. Modelling of an optimized microgrid model by integrating DG distributed generation sources to IEEE 13 Bus System
Zhou et al. LCL filter utilized in battery charging applications to achieve compact size and low ripple charging
Zhang et al. Overview on resonance characteristics and resonance suppression strategy of multi-parallel photovoltaic inverters
CN104133922A (zh) 多谐波源相互影响的配电网滤波装置优化配置
CN104410093A (zh) 储能电池的荷电状态控制方法
Xu et al. Optimal configuration of filters for harmonic suppression in microgrid
Zhou et al. Voltage Source Active Damper Applied to Resonance Suppression of Multi-inverter Grid-connected
Shami et al. A novel strategy to enhance power management in AC/DC hybrid microgrid using virtual synchronous generator based interlinking converters integrated with energy storage system
Cho et al. Design of LCL filter using hybrid intelligent optimization for photovoltaic system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220525

Address after: 410221 Room 203, building C2, luguyuyuan, No. 27, Wenxuan Road, Changsha high tech Development Zone, Changsha City, Hunan Province

Patentee after: Changsha high tech Development Zone Yuelushan University Science and Technology Park Science and Technology Service Co.,Ltd.

Address before: 410004 industrial building, No. 45, Chiling Road, Changsha City, Hunan Province

Patentee before: Hunan Huagang Technology Investment Co.,Ltd.

Effective date of registration: 20220525

Address after: 410004 industrial building, No. 45, Chiling Road, Changsha City, Hunan Province

Patentee after: Hunan Huagang Technology Investment Co.,Ltd.

Address before: 410004 No. 960, Section 2, Wanjiali South Road, Yuhua District, Changsha City, Hunan Province

Patentee before: CHANGSHA University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right