CN103373862B - 在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴 - Google Patents

在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴 Download PDF

Info

Publication number
CN103373862B
CN103373862B CN201310149615.6A CN201310149615A CN103373862B CN 103373862 B CN103373862 B CN 103373862B CN 201310149615 A CN201310149615 A CN 201310149615A CN 103373862 B CN103373862 B CN 103373862B
Authority
CN
China
Prior art keywords
mandrel
cmc
preformed member
inner cavity
cavity chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310149615.6A
Other languages
English (en)
Other versions
CN103373862A (zh
Inventor
P.E.格雷
H.C.罗伯茨三世
G.C.塔克萨赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN103373862A publication Critical patent/CN103373862A/zh
Application granted granted Critical
Publication of CN103373862B publication Critical patent/CN103373862B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D22/00Producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/54Producing shaped prefabricated articles from the material specially adapted for producing articles from molten material, e.g. slag refractory ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/30Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
    • C04B26/32Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴。用于在CMC制品中产生内腔室的过程及与其一起使用的心轴。该过程需要并入由在预成型件的热处理期间被大致吸收以形成CMC制品的材料制成的心轴。心轴材料优选为在热处理期间与CMC预成型件的一种或更多种组分反应。材料优选为硅或硅合金。

Description

在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴
本申请要求2012年4月27日提交的美国临时申请No.61/639,617的权益,该申请的内容通过参考并入本文中。
本发明在能源部授予的合同No.DE-FC26-05NT42643下利用政府支持完成。政府具有本发明中的某些权利。
技术领域
本发明大体涉及陶瓷基质复合材料(CMC)制品及其生产过程。
背景技术
当寻找较高操作温度以提高涡轮机的效率时,涡轮机中的使用已经变得特别感兴趣的是CMC材料。CMC材料和特别地提出用于燃气涡轮发动机应用的这些CMC材料典型地包括嵌入在陶瓷基质材料中的陶瓷纤维增强材料。增强材料用作CMC的承载组分,并且陶瓷基质保护增强材料,保持其纤维的方位,并且用于使负载散开至增强材料。
高温应用特别感兴趣的是硅基复合材料,诸如作为基质材料和/或增强材料的碳化硅(SiC)。在共同转让的美国专利No.5,015,540、5,330,854、5,336,350、5,628,938、6,024,898、6,258,737、6,403,158和6,503,441,以及共同转让的美国专利申请公开No.2004/0067316中公开SiC/Si-SiC(纤维/基质)CMC材料和过程的值得注意的实例。一种这种过程被称为"预浸料坯(prepreg)"熔渗(MI),其大体上需要使用多个预浸料坯层(每个呈包括期望的增强材料的带状结构的形式)、CMC基质材料的前体(precursor)、粘合剂和其它可能的成分来制造CMC。预浸料坯必须经历加工(包括固化,也被称为焚烧),以使前体转变成期望的陶瓷。多个预浸料坯板层(ply)被堆叠和压实以形成层压预成型件,该过程被称为"铺层"。在铺层之后,层压预成型件将典型地经历压实和固化,同时经受施加的压力和升高的温度,诸如在高压釜中。熔渗过程大体需要在真空或惰性气氛中加热层压预成型件,以分解(烧尽)粘合剂并且产生多孔预成型件以备熔渗,在此之后,可利用例如从外部供应至预成型件的熔融的硅熔渗预成型件。熔融的硅渗透到孔隙中,并且优选为与基质内的组分(例如,碳源)反应以形成硅基陶瓷(例如,碳化硅),其填充孔隙以产生期望的CMC构件。
对于一些应用,具有内腔室的CMC制品为合乎需要或必要的,该内腔室包括但不受限于限定翼型构件内的冷却槽/孔和复杂的冷却通路的腔室,以及意图大体实现减轻重量的腔室。可通过围绕心轴形成层压预成型件而在CMC制品中产生内腔室。然而,在熔渗之前必须移除心轴。在烧制(burnout)期间保持固体的心轴必须被物理地移除,如果期望的腔室具有扭曲或为锥形,则这可为不可能的。图1示意性地示出了实例,其中,常规钢心轴30意图在层压预成型件10的区段20中形成随后的腔室。钢心轴30由于其被在预成型件10的一个端部处由板层限定的肩部22捕获而不可从预成型件10移除。为了解决该问题,已经提出了由易变树脂形成的聚合物心轴。在本说明书的背景下,易变聚合树脂典型地为基于碳氢化合物的固体,其在加热到足够高的温度(典型地为400℃至800℃)之后挥发,从而留下很少的碳残渣或不留下碳残渣。易变树脂的值得注意实例包括聚甲基丙烯酸甲酯或聚乙烯醇。然而,这些树脂具有可比CMC预成型件的材料大五倍至十倍的热膨胀系数。易变树脂的较高膨胀系数可在加热以分解粘合剂树脂期间引起CMC预成型件扭曲。在烧制期间,易变树脂熔化,并且熔融树脂必须从CMC制品的内部内的产生的腔室移除。熔融树脂中的一些可在腔室内侧形成含碳涂层,在随后的熔渗期间与硅反应时,该含碳涂层可改变腔室尺寸。当与较大大小的CMC构件一起使用易变树脂时,在聚合物心轴分解时必须从或通过预成型件逸出的气体的量还增大。这使使用较慢的高温分解循环成为必需,这延长用于CMC构件的加工循环时间。
因此,存在对能够在CMC制品内形成内腔室的改进方法的需要。
发明内容
本发明提供了一种能够通过使用心轴而在CMC制品内形成内腔室的方法,该心轴可与CMC材料的组分有利地反应以便并入到CMC制品中。
本发明的第一方面为一种通过使用反应性心轴而在CMC制品中形成内腔室以实现CMC制品中的腔室的方法。心轴材料在热处理期间润湿CMC预成型件并且与预成型件反应,并且/或者吸收到预成型件中。在本发明的优选实施例中,反应性心轴由元素硅或硅合金制成,该元素硅或硅合金在熔渗期间熔化以提供用于熔渗过程的硅源,并且/或者大部分被从产生的中空内腔室除去。
本发明的第二方面为一种适合于在CMC制品中形成内腔室的目的的心轴。在本发明的优选实施例中,心轴包括硅或硅合金。
本发明的第三方面为通过使用心轴和熔渗预成型件的方法形成具有期望内腔室的CMC制品,该心轴由与CMC预成型件的组分起化学反应和/或能够被CMC预成型件吸收的材料制成,其中,心轴材料润湿CMC预成型件,与预成型件的组分反应,并且被大致吸收。
一种形成具有至少一个内腔室的CMC制品的方法,该方法包括:将至少一个心轴并入到CMC预成型件中;以及使CMC预成型件经受热处理,其中,至少一个心轴熔化以产生熔融材料,其润湿CMC预成型件,并且与CMC预成型件反应并且/或者吸收到CMC预成型件中,从而在CMC预成型件内留下至少一个内腔室。
优选地,至少一个心轴由硅或硅合金构成。
优选地,热处理包括熔渗步骤。
优选地,至少一个内腔室包括多个内腔室,并且至少一个心轴包括多个心轴。
优选地,至少一个心轴包含与CMC预成型件的组分起化学反应的材料。
一种并入到CMC预成型件中的心轴,其中,心轴在熔化时产生熔融材料,其在热处理期间与CMC预成型件反应并且/或者吸收到CMC预成型件中,以在CMC预成型件中留下内腔室。
优选地,心轴由硅或硅合金制成。
优选地,心轴包括CMC预成型件的组分不可渗透的涂层。
优选地,涂层包括丙烯酸树脂。
优选地,丙烯酸树脂为甲基丙烯酸甲酯。
优选地,心轴包括烧结的粉末材料。
优选地,心轴由包括3D打印的过程制成。
一种具有至少一个内腔室的CMC制品,其中,至少一个内腔室由如下方法制成,该方法包括:将至少一个心轴并入到CMC预成型件中,至少一个心轴包括与CMC预成型件的组分起化学反应的材料;以及熔渗CMC预成型件,其中,至少一个心轴熔化,并且其材料润湿CMC预成型件,与CMC预成型件的组分反应,并且被大致消耗,从而在CMC预成型件中留下至少一个内腔室。
优选地,至少一个心轴的材料为元素硅。
优选地,至少一个心轴的材料为硅或硅合金。
优选地,至少一个腔室包括多个内腔室,并且至少一个心轴包括多个心轴。
优选地,至少一个腔室为冷却槽/孔。
优选地,CMC制品为翼型构件。
优选地,CMC制品基于硅化合物。
优选地,硅化合物为SiC。
本发明的技术效果为,因为心轴被熔化以与CMC预成型件反应或吸收到CMC预成型件中,所以可在用于生产制品的CMC预成型件没有不期望的扭曲或变形的情况下产生CMC制品中的内腔室。此外,可消除易变树脂用于产生腔室时典型地需要的长加工时间。
本发明的另一个技术效果为,可出于减轻重量和/或冷却的目的,在没有典型地与移除非反应性金属心轴相关的困难或与除去在非反应性心轴中使用的易变树脂相关的问题的情况下,在CMC制品中实现期望且复杂的形状的腔室。
将从下列详细描述进一步认识到本发明的其它方面和优点。
附图说明
图1示意性地示出具有非反应性心轴的CMC预成型件的截面。
图2示意性地示出具有反应性心轴或另外可吸收心轴的CMC预成型件的截面。
图3示意性地示出通过使用反应性心轴或另外可吸收心轴而实现的具有腔室的CMC制品的截面。
部件列表
10、110 预成型件
20、120 区段
22、122 肩部
30、130 心轴
40、140 心轴
50、150 腔室
100、1100 制品。
具体实施方式
本发明涉及在CMC制品内形成内腔室,例如以形成冷却通道,实现减轻重量和/或任何其它期望的目的。形成这种腔室的常规过程利用由诸如易变树脂或非反应性金属的材料形成的心轴。这些方法两者具有如先前描述的若干限制和缺点。本发明通过如下方法解决现有技术的困难和缺点,该方法并入由如下材料制成的心轴的使用,该材料可由CMC制品的制造中使用的CMC预成型件吸收,并且优选为与该CMC预成型件反应。特别地,与本发明一起使用的心轴的优选材料在预成型件的热处理温度下熔化,例如,在于层压预成型件上执行固化(焚烧)步骤以形成多孔预成型件之后执行的熔渗期间。
可通过以CMC预成型件吸收并与CMC预成型件反应而有利地除去的心轴材料的优选特性包括如下能力:形成为心轴的适合形状、在熔渗温度下润湿CMC预成型件、与CMC预成型件的组分反应以形成对最终制品有利的或至少不是不利的反应产物,以及通过反应、通过渗透或两者而由CMC预成型件几乎完全吸收。
用于这种心轴的优选材料为硅和硅合金。烧结的含硅心轴可通过例如湿压和烧结大堆粉末材料而制造,以最小化成本。元素硅和硅合金粉末材料在烧结期间能够呈现几乎为零的收缩,还呈现足以承受处理和高压釜固化压力的强度。此外,烧结的含硅心轴可在熔渗之前的整个过程顺序期间保持在预成型件内,并且呈现与CMC预成型件的热膨胀特性相似的热膨胀特性。虽然硅或硅基材料可非常适合作为用于在基于SiC的CMC制品内形成腔室的心轴的材料,但是能够预见的是,具有不同的反应和/或渗透特性的不同心轴材料可存在,或者被开发,并且将能够与CMC制品的化学性质相容。
本发明的心轴可完全由元素硅或硅合金形成。可选地,烧结的含硅心轴还可包含易变粘合剂,诸如丙烯酸树脂或聚乙烯醇。可添加少量的水或酒精以使初始粉末混合物潮湿并适合于在模具中压制。可在足够的压力下压制粉末混合物以产生期望的独立形状,在下文中被称为内核。在优选的非限制性方法中,该内核可被干燥,并且接着装入真空炉中以经历烧结(例如,在大约1385+/-10℃的温度下烧结大约九十分钟),以使其独立并能够承受以陶瓷复合材料前体预浸料坯板层覆盖,以产生层压CMC预成型件。由于内核在烧结操作期间收缩,故必须通过加大原始压制内核形状而产生容差。接着,从真空炉移除烧结的形状。人们还可预想使用3维(3D)打印机,其中,打印油墨中的硅粉末适合于与3D打印机一起使用来作为制作具有优良特征的心轴的方式。如上所述,可烧结利用硅油墨制成的内核。
优选地涂履心轴以产生大致不可渗透表面,其能够防止CMC预成型件的任何树脂在层压CMC预成型件的铺层和固化期间渗透烧结的硅心轴。如果预成型件树脂为将形成硅化合物(诸如,碳化硅)的类型,并且因此可与心轴中的硅反应,并且可能引起由心轴形成的内腔室尺寸改变,则不可渗透表面是特别合乎需要的。用于该目的的适合涂层材料包括但不受限于丙烯喷雾树脂,诸如聚甲基丙烯酸甲酯。
接着,陶瓷复合材料前体预浸料坯板层可包覆在烧结的心轴形状上面,并且在高压釜或匹配的板形模组中固化。在固化之后,可将预成型件和烧结的心轴加热至500℃以上,以移除树脂成分以产生多孔预成型件。接着,可在另一个真空炉或气氛炉中进一步加热多孔预成型件加上烧结的硅内核和任何附加的硅,以引起硅熔化和渗透多孔预成型件。图2示意性地示出并入到层压预成型件10的区段20中的烧结的硅心轴40。在预成型件10的熔渗过程或其它热处理期间,硅心轴40熔化,并且产生的熔融材料润湿CMC预成型件10,渗透到预成型件10中,并且与CMC预成型件的组分起化学反应,以形成例如SiC或另一种硅化合物。任何未反应的硅可简单地保持渗透。图3示意性地示出在图3中表示为最终CMC制品100的完全渗透的CMC预成型件10的区段20中形成的腔室50。
本领域技术人员将注意,使用反应性心轴材料可导致未消耗的心轴材料。可通过适当调整加工条件而避免这种状态。除了必须紧密地控制CMC制品的重量的情况之外,未消耗的心轴材料存在于CMC制品内可不具有任何有害的效果。在该情况下,可通过根据需要的附加加工步骤确保心轴材料的完全消耗。可利用多个心轴和遵循本文中描述的方法在CMC预成型件中形成多个腔室。形成在CMC制品中的单个腔室或多个腔室可出于减轻重量和/或作为冷却槽/孔的目的而利用。
可预见的是,可使用其它材料,其在熔渗过程期间润湿CMC预成型件10并且通过渗透到CMC预成型件10中而被完全吸收,但是将不必如硅那样与CMC预成型件10反应。然而,在这种情况下,人们需要确保这种材料不会有助于由于热膨胀特性或其它物理性质而产生的任何不良效果。因此,本发明的优选实施例涉及利用含硅材料,使得不使用或形成除如下材料之外的无关材料,该材料导致基于SiC的CMC制品的常规CMC熔渗过程。还将注意,公开的方法可用于基于除SiC之外的硅化合物(诸如,作为非限制性实例的SiN)在CMC制品中形成内腔室。
鉴于上文,可看到,本发明的显著优点在于其解决了与在CMC制品内形成中空内腔室相关的问题,而不必须在固化之后从产生的腔室物理地移除心轴,并且不将潜在有害的材料引入到最终CMC制品中。
虽然已经按照特定实施例描述了本发明,但是显而易见的是,其它形式可被本领域技术人员采用。因此,应当理解,本发明不受限于具体公开的实施例。还应当理解,以上使用的措词和用语出于公开本发明和实施例的目的,并且不必用作对本发明的范围的限制。因此,本发明的范围将仅由下列权利要求限制。

Claims (12)

1.一种形成具有至少一个内腔室的CMC制品的方法,所述方法包括:
将至少一个心轴并入到层压CMC预成型件中;以及
使所述CMC预成型件经受热处理,其中,所述至少一个心轴熔化以产生熔融材料,其润湿所述CMC预成型件,并且与所述CMC预成型件反应并且/或者吸收到所述CMC预成型件中,从而在所述CMC预成型件内留下至少一个内腔室。
2.根据权利要求1所述的方法,其特征在于,所述至少一个心轴由硅或硅合金构成。
3.根据权利要求1所述的方法,其特征在于,所述热处理包括熔渗步骤。
4.根据权利要求1所述的方法,其特征在于,所述至少一个内腔室包括多个内腔室,并且所述至少一个心轴包括多个心轴。
5.根据权利要求1所述的方法,其特征在于,所述至少一个心轴包含与所述CMC预成型件的组分起化学反应的材料。
6.一种并入到层压CMC预成型件中的心轴,其中,所述心轴在熔化时产生熔融材料,其在热处理期间与所述CMC预成型件反应并且/或者吸收到所述CMC预成型件中,以在所述CMC预成型件中留下内腔室。
7.根据权利要求6所述的心轴,其特征在于,所述心轴由硅或硅合金制成。
8.根据权利要求7所述的心轴,其特征在于,所述心轴包括所述CMC预成型件的组分不可渗透的涂层。
9.根据权利要求8所述的心轴,其特征在于,所述涂层包括丙烯酸树脂。
10.根据权利要求9所述的心轴,其特征在于,所述丙烯酸树脂为甲基丙烯酸甲酯。
11.根据权利要求6所述的心轴,其特征在于,所述心轴包括烧结的粉末材料。
12.根据权利要求6所述的心轴,其特征在于,所述心轴由包括3D打印的过程制成。
CN201310149615.6A 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴 Expired - Fee Related CN103373862B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261639617P 2012-04-27 2012-04-27
US61/639,617 2012-04-27
US61/639617 2012-04-27
US13/780306 2013-02-28
US13/780,306 US10450235B2 (en) 2012-04-27 2013-02-28 Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor
US13/780,306 2013-02-28

Publications (2)

Publication Number Publication Date
CN103373862A CN103373862A (zh) 2013-10-30
CN103373862B true CN103373862B (zh) 2019-01-08

Family

ID=48143215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310149615.6A Expired - Fee Related CN103373862B (zh) 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴

Country Status (6)

Country Link
US (1) US10450235B2 (zh)
EP (1) EP2657209B1 (zh)
JP (1) JP6276514B2 (zh)
CN (1) CN103373862B (zh)
BR (1) BR102013010197A2 (zh)
CA (1) CA2813313A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450235B2 (en) 2012-04-27 2019-10-22 General Electric Company Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor
US10011043B2 (en) * 2012-04-27 2018-07-03 General Electric Company Method of producing an internal cavity in a ceramic matrix composite
EP3004559B1 (en) 2013-05-29 2020-01-15 General Electric Company Method of forming a ceramic matrix composite component with cooling features
US9624138B2 (en) 2014-04-08 2017-04-18 United Technologies Corporation Formation of voids within components formed from porous substrates
US10808554B2 (en) * 2016-11-17 2020-10-20 Raytheon Technologies Corporation Method for making ceramic turbine engine article
US10196315B2 (en) * 2017-01-11 2019-02-05 General Electric Company Melt infiltration with SiGa and/or siln alloys
US10562210B2 (en) 2017-03-22 2020-02-18 General Electric Company Method for forming passages in composite components
US11066335B2 (en) * 2017-09-06 2021-07-20 General Electric Company Articles for creating hollow structures in ceramic matrix composites
US10895448B2 (en) * 2019-04-09 2021-01-19 General Electric Company System and method for collecting measurement data of shaped cooling holes of CMC components
US11867067B2 (en) 2022-06-03 2024-01-09 Rtx Corporation Engine article with ceramic insert and method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262468A1 (en) * 2001-05-30 2002-12-04 General Electric Company Method for producing melt-infiltrated ceramic compositions using formed supports
US20050056020A1 (en) * 2003-08-26 2005-03-17 Honeywell International Inc. Tube cooled combustor

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907949A (en) 1970-10-27 1975-09-23 Westinghouse Electric Corp Method of making tubular polycrystalline oxide body with tapered ends
US4040849A (en) * 1976-01-06 1977-08-09 General Electric Company Polycrystalline silicon articles by sintering
US4615855A (en) 1984-03-15 1986-10-07 Programmed Composites, Inc. Process for forming composite article
JPS62227603A (ja) 1986-03-31 1987-10-06 日本碍子株式会社 セラミツクス焼結体の製造方法及び該製造方法に用いるための成形型
JPS62256605A (ja) 1986-04-30 1987-11-09 マツダ株式会社 セラミツク成形品の製造法
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5330854A (en) 1987-09-24 1994-07-19 General Electric Company Filament-containing composite
JPH01198343A (ja) 1988-02-02 1989-08-09 Toray Ind Inc 筒状炭素・炭素複合材料の製造方法
US5336350A (en) 1989-10-31 1994-08-09 General Electric Company Process for making composite containing fibrous material
US5066454A (en) 1990-06-20 1991-11-19 Industrial Materials Technology, Inc. Isostatic processing with shrouded melt-away mandrel
US5177039A (en) 1990-12-06 1993-01-05 Corning Incorporated Method for making ceramic matrix composites
JPH07195147A (ja) 1993-12-29 1995-08-01 Masaru Nemoto 成形用特殊中子を用いた成形方法
US5725044A (en) 1994-08-30 1998-03-10 Hirokawa; Koji Casting method using a forming die
US5628938A (en) 1994-11-18 1997-05-13 General Electric Company Method of making a ceramic composite by infiltration of a ceramic preform
US6024898A (en) 1996-12-30 2000-02-15 General Electric Company Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
US5910095A (en) 1997-02-21 1999-06-08 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite marine engine riser elbow
US6001436A (en) 1997-05-12 1999-12-14 Northrop Grumman Corporation Ceramic matrix composite turbocharger housing
DE19834571C2 (de) * 1998-07-31 2001-07-26 Daimler Chrysler Ag Verfahren zur Herstellung von Körpern aus faserverstärkten Verbundwerkstoffen und Verwendung des Verfahrens
US6280550B1 (en) 1998-12-15 2001-08-28 General Electric Company Fabrication of composite articles having an infiltrated matrix
US6403158B1 (en) 1999-03-05 2002-06-11 General Electric Company Porous body infiltrating method
US6627019B2 (en) 2000-12-18 2003-09-30 David C. Jarmon Process for making ceramic matrix composite parts with cooling channels
US6746755B2 (en) * 2001-09-24 2004-06-08 Siemens Westinghouse Power Corporation Ceramic matrix composite structure having integral cooling passages and method of manufacture
DE10164229B4 (de) * 2001-12-31 2006-03-09 Sgl Carbon Ag Reibscheiben, Verfahren zu ihrer Herstellung und ihre Verwendung
US20040067316A1 (en) 2002-10-04 2004-04-08 Paul Gray Method for processing silicon-carbide materials using organic film formers
US7153464B2 (en) 2003-12-01 2006-12-26 General Electric Company Method of making porous ceramic matrix composites
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US20070096371A1 (en) 2005-10-27 2007-05-03 General Electric Company Process of producing ceramic matrix composites
US7600979B2 (en) 2006-11-28 2009-10-13 General Electric Company CMC articles having small complex features
US7837914B2 (en) 2006-12-04 2010-11-23 General Electric Company Process of producing a composite component and intermediate product thereof
CN101224497B (zh) 2007-01-17 2010-05-26 富准精密工业(深圳)有限公司 动压轴承制造方法
US20080199661A1 (en) 2007-02-15 2008-08-21 Siemens Power Generation, Inc. Thermally insulated CMC structure with internal cooling
DE102007057198B4 (de) 2007-11-28 2017-04-20 Daimler Ag Verfahren zur Herstellung eines Faserverbund-Hohlkörpers mit kraftfluss- und spannungsoptimierter Faserausrichtung
US20100279845A1 (en) 2009-04-30 2010-11-04 General Electric Company Process of producing ceramic matrix composites
FR2955609B1 (fr) 2010-01-26 2012-04-27 Snecma Aube composite a canaux internes
NL2004209C2 (en) 2010-02-08 2011-08-09 Rgs Dev B V Apparatus and method for the production of semiconductor material foils.
US8980435B2 (en) 2011-10-04 2015-03-17 General Electric Company CMC component, power generation system and method of forming a CMC component
US9663404B2 (en) 2012-01-03 2017-05-30 General Electric Company Method of forming a ceramic matrix composite and a ceramic matrix component
CN102527601B (zh) 2012-03-02 2013-12-11 西安石油大学 一种雾化器喷头防堵涂层的制备方法
US9050769B2 (en) 2012-04-13 2015-06-09 General Electric Company Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component
US10450235B2 (en) 2012-04-27 2019-10-22 General Electric Company Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262468A1 (en) * 2001-05-30 2002-12-04 General Electric Company Method for producing melt-infiltrated ceramic compositions using formed supports
US20050056020A1 (en) * 2003-08-26 2005-03-17 Honeywell International Inc. Tube cooled combustor

Also Published As

Publication number Publication date
CN103373862A (zh) 2013-10-30
JP2013256436A (ja) 2013-12-26
US20140072736A1 (en) 2014-03-13
US10450235B2 (en) 2019-10-22
BR102013010197A2 (pt) 2017-07-11
JP6276514B2 (ja) 2018-02-07
EP2657209A1 (en) 2013-10-30
EP2657209B1 (en) 2014-12-17
CA2813313A1 (en) 2013-10-27

Similar Documents

Publication Publication Date Title
CN103373862B (zh) 在陶瓷基质复合材料中产生内腔室的方法及用于其的心轴
CN106927846B (zh) 一种C/C-SiC复合材料零件的制备方法及其产品
EP2657207B1 (en) Method of producing a melt-infiltrated ceramic matrix composite article
JP6411894B2 (ja) セラミックマトリックス複合材を製造する方法およびそれによって形成されたセラミックマトリックス複合材
US10011043B2 (en) Method of producing an internal cavity in a ceramic matrix composite
JP2013256436A5 (zh)
CN102924106B (zh) 一种碳-碳化硅复合材料的制备方法
JP2020506091A (ja) 複合材料部品の製造方法
CN110330351A (zh) 一种SiC纤维增强SiC陶瓷基零件的制备方法及产品
CN110171976A (zh) 基于増材制造的SiC基陶瓷零件的制备方法及产品
IT201800006916A1 (it) “sintesi in situ, densificazione e conformazione di ceramiche non ossidiche mediante tecnologie di produzione additive sottovuoto”
US20140004764A1 (en) Ceramic component
RU2020115056A (ru) Способ получения полой детали из композиционного материала с керамической матрицей
US11332411B2 (en) Method for producing a consolidated fiber preform
CN106882976A (zh) 一种C/HfC-ZrC-SiC复合材料的制备方法
JP2015212215A (ja) セラミックマトリックス複合材料を生成する方法及びそれによって形成されるセラミックマトリックス複合材料
JP2009120426A (ja) 長繊維強化セラミックス複合材料およびその製造方法
CN114230347A (zh) 连续纤维增强ZrC/SiC复合零件的制备方法及产品
US10723660B2 (en) Carbon yielding resin for melt infiltration
CN105924200B (zh) 陶瓷基质复合物制品及用于形成其的方法
Pelanconi et al. High‐strength Si–SiC lattices prepared by powder bed fusion, infiltration‐pyrolysis, and reactive silicon infiltration
CN105985113A (zh) 生产陶瓷基质复合物的工艺和由此形成的陶瓷基质复合物
EP3055273B1 (en) Processing method for pip derived cmc article

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190108

Termination date: 20210426